
Schema Refinement and

Normal Forms

CS430/630
Lecture 16

Slides based on “Database Management Systems” 3rd ed, Ramakrishnan and Gehrke

Why Schema Refinement?

 We have learnt the advantages of relational tables …

 … but how to decide on the relational schema?

 At one extreme, store everything in single table

 Huge redundancy

 Leads to anomalies!

 We need to break the information into several tables

 How many tables, and with what structures?

 Having too many tables can also cause problems

 E.g., performance, difficulty in checking constraints

Sample Relation

Hourly_Emps (ssn, name, lot, rating, wage, hrs_worked)

 Denote relation schema by attribute initial: SNLRWH

 Constraints (dependencies)

 ssn is the key: S SNLRWH

 rating determines wage: R W

 E.g., worker with rating A receives 20$/hr

Anomalies

 Problems due to R W :

 Update anomaly: Change value of W only in a tuple – dependency violation

 Insertion anomaly: How to insert employee if we don’t know hourly wage for

that rating?

 Deletion anomaly: If we delete all employees with rating 5, we lose the

information about the wage for rating 5!

S N L R W H

123-22-3666 Attishoo 48 8 10 40

231-31-5368 Smiley 22 8 10 30

131-24-3650 Smethurst 35 5 7 30

434-26-3751 Guldu 35 5 7 32

612-67-4134 Madayan 35 8 10 40

Removing Anomalies

S N L R H

123-22-3666 Attishoo 48 8 40

231-31-5368 Smiley 22 8 30

131-24-3650 Smethurst 35 5 30

434-26-3751 Guldu 35 5 32

612-67-4134 Madayan 35 8 40

R W

8 10

5 7

Hourly_Emps2 Wages

Create 2 smaller tables!

 Updating rating of employee will result in the wage “changing” accordingly

 Note that there is no physical change of W, just a “pointer change”

 Deleting employee does not affect rating-wages data

Dealing with Redundancy

 Redundancy is at the root of redundant storage,

insert/delete/update anomalies

 Integrity constraints, in particular functional dependencies, can

be used to identify redundancy

 Main refinement technique: decomposition (replacing ABCD

with, say, AB and BCD, or ACD and ABD)

 Decomposition should be used judiciously:

 Decomposition may sometimes affect performance. Why?

 What problems (if any) does decomposition cause?

 Incorrect data

 Loss of dependencies

Functional Dependencies (FDs)

 A functional dependency X Y holds over relation R if

for every instance r of R

 t1, t2 r, (t1) = (t2) implies (t1) = (t2)

 given two tuples in r, if the X values agree, Y values must also

agree

 FD is a statement about all allowable relations.

 Identified based on semantics of application (business logic)

 Given an instance r of R, we can check if it violates some FD f,

but we cannot tell if f holds over R!

 X
 X

 Y Y

FDs and Keys

 FDs are a generalization of keys

 A key uniquely identifies all attribute values in a tuple

 That is a particular case of FD …

 … but not all FDs must determine ALL attributes

 K is a key for R means that K R

 However, K R does not require K to be minimal!

 K can be a superkey as well

Reasoning About FDs

 Given FD set F, we can usually infer additional FDs:

 = closure of F is the set of all FDs that are implied by F

 Armstrong’s Axioms (X, Y, Z are sets of attributes):

 Reflexivity: If Y X, then X Y

 Augmentation: If X Y, then XZ YZ for any Z

 Transitivity: If X Y and Y Z, then X Z

 These are sound and complete inference rules for FDs!

F

Reasoning About FDs (cont’d)

 Additional rules

 Not necessary, but helpful

 Union and decomposition (splitting)

 X Y and X Z => X YZ

 X YZ => X Y and X Z

 SDJ JP, JP CSJDPQV imply SDJ CSJDPQV

An Example of FD Inference

 Contracts(cid, sid, jid, did, pid, qty, value), and:

 Contract id, supplier, project, department, part

 C is the key: C CSJDPQV

 Project purchases each part using single contract: JP C

 Dept purchases at most one part from a supplier: SD P

 SD P implies SDJ JP

 JP C, C CSJDPQV imply JP CSJDPQV

Attribute Closure

 Attribute closure of X (denoted X) wrt FD set F:

 Set of all attributes A such that X A is in F

 Set of all attributes that can be determined starting from

attributes in X and using FDs in F

 Apply split rule such that all FDs have single attr in RHS

X = X

Repeat
Y=X

Search all FDs in F with LHS completely included in X

Add RHS of those FDs to X

Until Y=X

A

Verifying if given FD in FD-set closure

 Computing the closure of a set of FDs can be expensive

 Size of closure is exponential in number of attributes!

 But if we just want to check if a given FD X Y is in the

closure of a set of FDs F:

 Can be done efficiently without need to know F+

 Compute wrt F

 Check if Y is in

X

X

Verifying if attribute set is a key

 Key verification can also be done with attribute closure

 To verify if X is a key, two conditions needed:

 X+ = R

 X is minimal

 How to test minimality

 Removing an attribute from X results in X’ such that X’+ <> R

