
Normal Forms. BCNF and 3NF

Decompositions

CS430/630
Lecture 17

Slides based on “Database Management Systems” 3rd ed, Ramakrishnan and Gehrke

Decomposition of a Relation Schema

 A decomposition of R replaces it by two or more relations

 Each new relation schema contains a subset of the attributes of R

 Every attribute of R appears in one of the new relations

 E.g., SNLRWH decomposed into SNLRH and RW

 Decompositions should be used only when needed

 Cost of join will be incurred at query time

 Problems may arise with (improper) decompositions

 Reconstruction of initial relation may not be possible

 Dependencies cannot be checked on smaller tables

Lossless Join Decompositions

 Decomposition of R into X and Y is lossless-join if:

 (r) (r) = r

 It is always true that r (r) (r)

 In general, the other direction does not hold!

 If it does, the decomposition is lossless-join.

 It is essential that all decompositions used to deal with

redundancy be lossless!

 X Y

 X Y

Incorrect Decomposition

A B C

1 2 3

4 5 6

7 2 8

1 2 8

7 2 3

A B C

1 2 3

4 5 6

7 2 8

A B

1 2

4 5

7 2

B C

2 3

5 6

2 8

Natural

Join

Condition for Lossless-join

 The decomposition of R into X and Y is lossless-join wrt

F if and only if the closure of F contains:

 X Y X, or

 X Y Y

 In particular, the decomposition of R into UV and R - V is

lossless-join if U V holds over R.

Dependency Preserving Decomposition

 Consider CSJDPQV, C is key, JP C and SD P.

 Consider decomposition: CSJDQV and SDP

 Problem: Checking JP C requires a join!

 Dependency preserving decomposition (Intuitive):

 If R is decomposed into X and Y, and we enforce the FDs that hold on

X, Y then all FDs that were given to hold on R must also hold

 Projection of set of FDs F: If R is decomposed into X, ...

projection of F onto X (denoted FX) is the set of FDs U V

in F+ (closure of F) such that U, V are in X.

Dependency Preserving Decompositions

 Decomposition of R into X and Y is dependency preserving if

(FX U FY)
+ = F +

 Dependencies that can be checked in X without considering Y, and in

Y without considering X, together represent all dependencies in F +

 Dependency preserving does not imply lossless join:

 ABC, A B, decomposed into AB and BC.

Normal Forms

 If a relation is in a certain normal form (BCNF, 3NF etc.), it is

known that certain kinds of problems are avoided/minimized.

 Role of FDs in detecting redundancy:

 Consider a relation R with attributes AB

 No FDs hold: There is no redundancy

 Given A B:

 Several tuples could have the same A value

 If so, they’ll all have the same B value!

Boyce-Codd Normal Form (BCNF)

 Relation R with FDs F is in BCNF if, for all X A in

 A X (called a trivial FD), or

 X contains a key for R

 The only non-trivial FDs allowed are key constraints

 BCNF guarantees no anomalies occur

F

Decomposition into BCNF

 Consider relation R with FDs F. If X Y violates BCNF,

decompose R into R - Y and XY.

 Repeated application of this idea will give us a collection of relations

that are in BCNF; lossless join decomposition, and guaranteed to

terminate.

 e.g., CSJDPQV, key C, JP C, SD P, J S

 To deal with SD P, decompose into SDP, CSJDQV.

 To deal with J S, decompose CSJDQV into JS and CJDQV

Decomposition into BCNF

 In general, several dependencies may cause violation of BCNF.

The order in which we “deal with” them could lead to very

different sets of relations!

CSJDPQV

SDP CSJDQV

SD P

JS CJDQV

J S

BCNF and Dependency Preservation

 In general, there may not be a dependency preserving

decomposition into BCNF

 e.g., ABC, AB C, C A

 Can’t decompose while preserving first FD; not in BCNF

Third Normal Form (3NF)

 Relation R with FDs F is in 3NF if, for all X A in

 A X (called a trivial FD), or

 X contains a key for R, or

 A is part of some key for R (A here is a single attribute)

 Minimality of a key is crucial in third condition above!

 If R is in BCNF, it is also in 3NF.

 If R is in 3NF, some redundancy is possible

 compromise used when BCNF not achievable

 e.g., no ``good’’ decomposition, or performance considerations

 Lossless-join, dependency-preserving decomposition of R into a

collection of 3NF relations always possible.

F

Decomposition into 3NF

 Lossless join decomposition algorithm also applies to 3NF

 To ensure dependency preservation, one idea:

 If X Y is not preserved, add relation XY

 Refinement: Instead of the given set of FDs F, use a minimal

cover for F

 Example: CSJDPQV, JP C, SD P, J S

 Choose SD P, result is SDP and CSJDQV

 Choose J S, result is JS and CJDQV, all 3NF

 Add CJP relation

Summary of Schema Refinement

 BCNF: relation is free of FD redundancies

 Having only BCNF relations is desirable

 If relation is not in BCNF, it can be decomposed to BCNF

 Lossless join property guaranteed

 But some FD may be lost

 3NF is a relaxation of BCNF

 Guarantees both lossless join and FD preservation

 Decompositions may lead to performance loss

 performance requirements must be considered when using

decomposition

