Aggregate Operators

Significant extension of relational algebra

COUNT (¥)

COUNT ([DISTINCT] A)
SUM ([DISTINCT] A) o
AVG ([DISTINCT] A) A'is a single column
. MAX (A)
SQL Aggregate Queries MIN (A)

Result is single value obtained by applying aggregate over all
CS430/630 qualifying tuples

Lecture § SELECT COUNT (*)
FROM Sailors S
Slides based on “Database Management Systems™ 3¢ ed, Ramakrishnan and Gehrke
Aggregate Queries Examples Common Mistake with Aggregates
SELECT AVG (S.age) SELECT S MAX (S
FROM Sailors S FROM Sails;asrge, (.age) Illegal Query!
WHERE S.rating=10
SELECT COUNT (DISTINCT S.rating)
FROM Sailors S
WHERE S.sname="Bob’ » Can’t have both aggregates and non-aggregates in SELECT
Exception: GROUP BY (later in this class)
SELECT S.sname Aggregate + nested! » Reason:it is not guaranteed that there is only one tuple
FROM Sailors S ith the MAX val
WHERE S.rating= (SELECT MAX(S2.rating) Wi © value
FROM Sailors S2)
Grouping Results Queries With GROUP BY and HAVING
» So far, aggregates applied to all (qualifying) tuples SELECT [DISTINCT] farget-list
We may want to apply them to each of several groups FROM relation-list

WHERE qualification
GROUPBY grouping-list
HAVING group-qualification

v

“Find the age of the youngest sailor for each rating level”

In general, we don’t know how many rating levels exist, and what
the rating values for these levels are!

» The target-li tains:
Suppose we know that rating values go from | to 10 e target-list contains

(i) attribute names list

SELECT MIN (S.age) SELECT MIN (S.age) (i) terms with aggregate operations (e.g., MIN (S.age))
FROM Sailors S FROM Sailors S i o o
WHERE S.rating = 1 WHERE S.rating = 10 » The attribute list (i) must be a subset of grouping-list
A group is a set of tuples that have the same value for all attributes in

SELECT MIN (S. ing-li
FROM Sailors(S 28) How to achieve this? grouping-list

> Each answer tuple corresponds to a group, so these attributes must
WHERE S.rating = 2

have a single value per group.

Conceptual Evaluation

I. Compute cross-product of relation-list

2. Discard tuples that fail qualification, ‘unnecessary’ fields are
deleted

3. Remaining tuples are partitioned into groups by the value of
attributes in grouping-list

4. Discard groups that fail group-qualification

Expressions in group-qualification must have a single value per group!
An attribute in group-qualification that is not an argument of an
aggregate operation must appear in grouping-list (unless EVERY or
ANY used)

5. Generate single answer tuple per qualifying group

GROUPBY Query Example

“Find age of the youngest sailor with age at least i
18, for each rating with at least 2 such sailors” Sailors

sid|sname |rating |age
22 |dustin 7 |45.0
29 |brutus 1 (330

- 1]l !

SELECT S.rating, MIN (S.age) 22 al;l;l;er : 222
FROM Sailors S AS minage 58 |rusty | 10 [35.0
arlors 5 - 64 |horatio | 7 |35.0
WHERE S.age >=18 71|zorba | 10 |16.0
GROUP BY S.rating 74 |horatio | 9 |35.0
HAVING COUNT (¥) > 1 a5 lart 3 |oss
95 | bob 3 |635

96 |frodo 3 (255

GROUPBY Conceptual Evaluation Example

“Find age of the youngest sailor with age at least
18, for each rating with at least 2 such sailors”

rating | age rating | age
7 450 Td® 0
1 |[33.0 3 |255
8 |[555 3 1635 rating | minage
8 (255
3 |255 3 [255
10 [35.0 |) i B w0
7 135.0 7 350 8 |[255
9 [35.0 2 222
3 (255 5
3 [635 o>
3 |55 G0

More Group Qualification Functions

» So far; we have seen group qualification based on a property
of the group

E.g., aggregate function computed for entire group

» But recent SQL standard version allow group qualification
based on a property of individual records
EVERY (condition): TRUE if condition holds for every group tuple
ANY (condition): TRUE if condition holds for some group tuple

Find age of the youngest sailor with age 2 18, for each rating
with at least 2 such sailors and with every sailor under 60.

HAVING COUNT (*) > 1 AND EVERY (S.age <=60)

rating | age rating | age
7 |45.0
1 |330 ??2
8 |555 ' rating [minage
8 |255 3 5
10 |35.0 ‘ >§5 q ; 22(5)
7 |35.0 7 |45.0
+0—+6-6 7 135.0
9 [35.0 8 |55.5
3 |255 8 |255
3 |635 =)
3 |255 1CkaE0

Pay attention to order of steps!

» HAVING executes AFTER WHERE

“Find age of the youngest sailor with age >= 18,
for each rating with at least 2 sailors (of any age)”

SELECT S.rating, MIN (S.age)
FROM Sailors S

WHERE S.age >=18

GROUP BY S.rating

HAVING COUNT (¥) > 1

WRONG!!

Find age of the youngest sailor with age >= 18,
for each rating with at least 2 sailors (of any age)

rating | age rating | age rating|age
7 [45.0 7 [45.0 (=)
1 (330 1 (330 3 (255
8 |555 8 1555 3 |635 rating | minage
8 |255 8 |255 q 3 25.5- 3g 255g
lojss0) >\£ 0 7 |40 7 [0
- : 7 |350 8 |255
10 [16.0 1168
?350 >‘\\g\}5\{ 8 |555 10 [35.0
3 |255 3 [255) 8 1255
3 |e35 3 |635 x S50
3 |255 3 |255 10 [350

Pay attention to order of steps!

“Find age of the youngest sailor with age >= 18,
for each rating with at least 2 sailors (of any age)”
SELECT S.rating, MIN (S.age)
FROM Sailors S
WHERE S.age >=18
GROUP BY S.rating
HAVING 1 < (SELECT COUNT (¥)
FROM Sailors S2
WHERE S.rating=S2.rating)

» HAVING executes AFTER WHERE
» HAVING clause can also contain a subquery!

“Summary of cases” - INFORMAL!

» Can group validation condition be evaluated on “intermediate”
relation alone?

If NO, then we need subquery in HAVING

IfYES, then we do not need subquery, and we have two further cases:
Group validation condition DOES NOT depend on individual tuples in
group, only aggregates and group-by attributes appear in the HAVING
clause
Group validation DOES depend on individual tuples in group, in which
case non-group-by attributes may appear with ANY or EVERY
operator

» Note: this is just a guideline for most cases, it is actually
possible to have a mix of the above!!!

Aggregates and FROM Subqueries

» Aggregate operations cannot be nested!

“Find rating that has lowest average sailor age”
SELECT S.rating WRONG

FROM Sailors S
WHERE S.age = (SELECT MIN (AVG (S2.age)) FROM Sailors S2)

Correct solution:

SELECT Temp.rating, Temp.avgage
FROM (SELECT S.rating, AVG (S.age) AS avgage
FROM Sailors S
GROUP BY S.rating) Temp
WHERE Temp.avgage = (SELECT MIN (Temp.avgage)
FROM Temp)

