
Null Values. SQL Constraints

CS430/630
Lecture 10

Slides based on “Database Management Systems” 3rd ed, Ramakrishnan and Gehrke

Null Values

 Field values in a tuple may sometimes be

 unknown: e.g., a rating has not been assigned, or a new

column is added to the table

 inapplicable: e.g., CEO has no manager, single person has no

spouse

 SQL provides a special value NULL for such situations

 Special operators IS NULL, IS NOT NULL

SELECT * FROM Sailors WHERE rating IS NOT NULL

 Note: NULL must not be used as constant in expressions!

 A field can be declared as NOT NULL, means NULL values

are not allowed (by default, PK fields are NOT NULL)

Dealing with Null Values

 The presence of NULL complicates some issues

 NULL op value has as result NULL (op is +,-,*,/)

 What does rating>8 evaluate to if rating is equal to NULL ?

 Answer: unknown

 3-valued logic: true, false and unknown

 Recall that WHERE eliminates rows that don’t evaluate to true

 What about AND, OR and NOT connectives?

unknown AND true = unknown

unknown OR false = unknown

NOT unknown = unknown

 Also, <NULL_value> = <NULL_value> is unknown!

Null Values and Aggregates

 The COUNT(*) result includes tuples with NULL

 COUNT(A) only counts tuples where value of attribute A

is not NULL

 All other aggregates skip NULL values (if aggregate is on

the field that is NULL)

 If all values are NULL on the aggregated field, the result of

aggregate is also NULL (except COUNT which returns 0)

Null Values and Aggregates

Following two queries DO NOT RETURN SAME RESULT if there are

NULLs (in field name):

SELECT COUNT(*) FROM Sailors S

SELECT COUNT(S.name) FROM Sailors S

 Following two queries DO NOT RETURN SAME RESULT if there

are NULLs (in field rating):

SELECT COUNT(*) FROM Sailors S

SELECT COUNT(*) FROM Sailors

WHERE (rating>8) OR (rating <= 8)

Null Values and Duplicates

 Comparing two NULL values gives as result unknown

 But there are anomalies when checking for duplicates!

 NULL values are considered equal in this case!

 Two tuples are duplicates if they match in all non-NULL
attributes

 Implications for DISTINCT, UNIQUE subqueries, set operations!

 Tuples with NULL in some group-by attributes placed in same
group if all non-NULL group-by attributes match!

 DISTINCT: if multiple tuples have equal values in all non-
NULL attributes only one of them is output

Outer Joins

 Include in join result non-matching tuples

 Result tuple padded with NULL values

 Variants

 FULL: non-matching tuples in both relations included in result

 LEFT: only non-matching tuples in left relation included in result

 RIGHT: only non-matching tuples in right relation included in result

Outer Joins

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

sid bid day

22 101 10/10/96

58 103 11/12/96

Reserves Sailors

sid sname rating age bid day

22 dustin 7 45.0 101 10/10/96

31 lubber 8 55.5 NULL NULL

58 rusty 10 35.0 103 11/12/96

SELECT sid, sname, rating, age, bid, day

FROM Sailors NATURAL LEFT OUTER JOIN Reserves

Join Expressions

 SQL shorthands for expressions we already saw

Cross Product:

Sailors CROSS JOIN Reserves

Condition Join:

Sailors JOIN Reserves ON <condition>

Natural Join:

Sailors NATURAL JOIN Reserves

Usage Example:

SELECT *

FROM Sailors JOIN Reserves ON Sailors.sid=Reserves.sid

Integrity Constraints (Review)

 An IC describes conditions that every legal instance of a

relation must satisfy.

 Inserts/deletes/updates that violate IC’s are disallowed.

 Types of IC’s:

 domain constraints

 Field values must be of right type - always enforced

 primary key constraints

 foreign key constraints

 general constraints

Sample Schema

Enforcing Referential Integrity

 What should be done if an Enrolled tuple with a non-existent
student id is inserted?

 Reject the insert!

 What should be done if a Students tuple is deleted?

 Delete all Enrolled tuples that refer to it

 Correct as far as IC is concerned, but data is lost!

 Disallow deletion of a Students tuple that is referred to

 More appropriate in practice

 Set sid in Enrolled tuples that refer to it to a default sid

 Or, set it to NULL

14

Referential Integrity in SQL

 SQL/92 and SQL:1999 support

all options on deletes and

updates.

 Default is NO ACTION

(delete/update is rejected)

 CASCADE (delete/update all

tuples that refer to

deleted/updated tuple)

 SET NULL / SET DEFAULT (sets

foreign key value of

referencing tuple)

CREATE TABLE Enrolled
 (sid CHAR(20) default ‘00’,
 cid CHAR(20),
 grade CHAR(2),
 PRIMARY KEY (sid,cid),
 FOREIGN KEY (sid)
 REFERENCES Students (sid)
 ON DELETE SET DEFAULT

 ON UPDATE CASCADE)

15

Complex Constraints: CHECK clause

 Useful when more general ICs

than keys are involved

 Can use queries to express

constraint

 Constraints can be named

 Not checked if table is empty!

 Standalone CHECK for single

table only!

CREATE TABLE Sailors
 (sid INTEGER,

 sname CHAR(10),

 rating INTEGER,

 age REAL,

 PRIMARY KEY (sid),
 CONSTRAINT RatingRange
 CHECK (rating >= 1
 AND rating <= 10)
)

Complex Constraints: Assertions

 Number of boats plus number of sailors is < 100

 Not associated with a particular table

 Constraint may apply to multiple tables!

CREATE ASSERTION smallClub
CHECK
(
 (SELECT COUNT (S.sid) FROM Sailors S)
 +
 (SELECT COUNT (B.bid) FROM Boats B) < 100
)

