
1 

Views 

CS430/630 
Lecture 11 

Slides based on “Database Management Systems” 3rd ed, Ramakrishnan and Gehrke 

Views 

 So far, we have looked at SQL tables 

 Relations that are persistent 

 Physically stored in the DBMS 

 

 It is also possible to have virtual relations, or views 

 Defined by an expression which is a SQL query 

 Do not exist physically in DBMS 

 Although it is possible to used materialized views 

 

 Views can be queried directly 

 In some cases, it is also possible to modify views 

 

2 

                                                                                       External  

                Schema 

Levels of Abstraction 

Data 

Physical Schema 

Conceptual Schema 

View 1 View 2 View 3 

Describes 
files and 
indexes 

used 

Defines 
logical data 

structure 

Views 
define how 

users see 
data 

3 

Creating a view 

CREATE VIEW RegionalSales (category, sales, state) 
 AS SELECT P.category, S.sales, L.state 
      FROM Products P, Sales S, Locations L 
      WHERE P.pid=S.pid AND S.locid=L.locid 

View 

Defining Query 
(also referred to as 
View Subquery) 

Base Tables 

4 

Querying views 

SELECT R.category, R.state, SUM(R.sales) 
FROM RegionalSales R GROUP BY R.category, R.state 

Querying Views 

 Views are queried just like regular tables 

 A view is just another relation (albeit a virtual one) 

 Queries can involve both views and base tables 

 Helps to think of views in terms of analogy with window on data 

5 

Views as subqueries 

SELECT R.category, R.state, SUM(R.sales) 
FROM (SELECT P.category, S.sales, L.state 
 FROM Products P, Sales S, Locations L 
 WHERE P.pid=S.pid AND S.locid=L.locid) R 
GROUP BY R.category, R.state 

Equivalent Query 
(without views) 

SubQuery 

6 



2 

Why are views useful?(1/3) 

 Usability 

 

 Certain information must be retrieved from many tables 

 

 View abstraction can get all info in one (virtual) table 

 

 Queries are much easier to write on a single table 

 

 Subqueries that are often used can be included in queries 

without need for nesting 

 

7 

Why are views useful? (2/3) 

 Compatibility 

 

 Shield users and application developer from changes 

 

 What if a schema changes? Define view that looks like the old 

schema 

 

 Users/applications access view, no changes needed in queries 

 

 “Obsolete” tables are preserved using views 

 

8 

Why are views useful? (3/3) 

 Security 

 Restrict user access to certain data only 

 Managers and employees are given different “views” of same data 

 

 Both column- and row-level access control possible 

 

 Column-wise: students can only access Name and Age 

columns from a Student table 

 

 Row-wise: access only transactions above $10,000 value 

9 

Modifying views 

 Is it possible to insert, update, delete tuples in a view? 

 Views are virtual …  

 … so modifications must be reflected in the base tables 

 Why modifying views is a subtle issue? 

 Difficulty of translating view modifications in a unique way of 

updating base tables 

 Must be non-ambiguous in how to trace the base table tuple to update 

 Views can be modified subject to restrictions 

 These are called updatable views 

 Still, many views are not updatable 

10 

Updatable Views 

 SQL-92 provides formal definition of updatable view: 

 1. View involves a single relation R. If R is a view, it must also be 

updatable (relaxed in SQL-99) 

2. Aggregate operations are not present in the view definition 

3. The DISTINCT keyword is not specified in SELECT clause 

4. All columns in subquery are simple columns, not expressions 

5. The WHERE clause must not contain a subquery involving R 

6. All attributes in R that are not in the SELECT clause of the 

view must not have both NOT NULL restriction and no 

default 
11 

Updatable Views (contd.) 

 Insertion can be done directly on the base table 

 Other attributes in R set to NULL 

 Deletion also possible 

 Delete tuple from base table 

 Both insertion and deletion may cause problems! 

12 



3 

Issues with insertion 
View Definition 

 Now let’s insert a new student 

CREATE VIEW TopStudents (sname) 
      AS SELECT Name 
      FROM Students S 
       WHERE S.gpa > 3.0; 

INSERT INTO TopStudents VALUES  (‘FirstLastName’); 

 GPA is set to NULL 

 Tuple falls outside view definition! 

 Not a mistake, but update will not be reflected in view! 

 WITH CHECK OPTION clause disallows such an insertion 

 One solution is to include GPA in view definition 

13 

Issues with deletion 

 Now let’s delete students named Johnson 

CREATE VIEW TopStudents (sname) 
      AS SELECT Name 
      FROM Students S 
       WHERE S.gpa > 3.0; 

DELETE FROM TopStudents WHERE Name LIKE ‘%Johnson%’; 

 Must only affect tuples in the view! 

 Outside tuples must be inaccessible (views used for security, too) 

 DBMS appends WHERE clause in view definition to statement 

DELETE FROM Students WHERE Name LIKE ‘%Johnson%’ 
 AND S.gpa > 3.0; 

14 

Deleting views 

 View deleted from the schema 

 Note that, underlying data still intact 

 Contrast this with DROP TABLE! 

DROP VIEW RegionalSales; 

15 

View Materialization 

 Materialized views can help speed up popular queries 

 Result has to be maintained when base tables change 

 They are stored just like base tables 

 But their contents are not “independent”;  they must constantly 

reflect base tables 

16 

Example 

Create view ActorSummary that lists for every actor the actor identifier, actor 
name, number of movies starred in, and the year of debut (i.e., the year of the 
earliest movie(s) the actor starred in). The view will have four columns with 
headings:  
ID, ActorName, MovieCount and DebutYear  

CREATE VIEW ActorSummary(ID, ActorName, MovieCount, DebutYear ) 
AS 
 
SELECT A.actor_id, A.name, COUNT(M.movie_id), MIN(M.year) 
FROM Actors A, StarsIn S, Movies M 
WHERE A.actor_id = S.actor_id AND S.movie_id = M.movie_id 
GROUP BY A.actor_id, A.name; 

Example 2 

CREATE VIEW ManagerSummary(DeptName, MgrName, MgrID, 
 MgrSalary, EmpCount) AS 
 
SELECT D.dname, D.managerid, E.ename, E.salary, COUNT(W.eid) 
FROM Department D, Employee E, Works W 
WHERE D.managerid = E.eid AND D.did = W.did 
GROUP BY D.did, D.dname, D.managerid, E.ename, E.salary; 

 

Create  a  view  ManagerSummary  that  lists  for  every  department  the  
department  name, manager  ID  and  manager  name,  manager  salary  and  
the  number  of  employees  in  that  department. The view will have five 
columns with headings:  
DeptName,  MgrID, MgrName, MgrSalary and EmpCount.  


