Conceptual Design. The Entity-Relationship (ER) Model CS430/630 Lecture 12 Slides based on "Database Management Systems" 3rd ed, Ramakrishnan and Gebrke

Database Design Overview

- ▶ Conceptual design
 - The Entity-Relationship (ER) Model, UML
 - High-level, close to human thinking
 - ▶ Semantic model, intuitive, rich constructs
 - Not directly implementable
- Logical Design
 - ▶ The relational data model
 - Machine-implementable, fewer and more basic constructs
 - Logical design translates ER into relational model (SQL)
- ▶ Physical Design (not in this course)
 - Storage and indexing details

2

Conceptual Design - ER Model

- What are the entities and relationships in a typical application?
 - What information about these entities and relationships should we store in the database?
- ▶ What are the integrity constraints or business rules
 - Key constraints
 - ▶ Participation constraints
- ▶ Representation through ER diagrams
- ▶ ER diagrams are then mapped into relational schemas
- Conversion is fairly mechanical

3

Entities and Entity Sets

- ▶ Entity: represents a real-world object
 - ▶ Characterized using set of attributes
 - Each attribute has a domain similar to variable types
- ▶ Entity Set: represents collection of similar entities
 - E.g., all employees in an organization
 - All entities in an entity set share same set of attributes

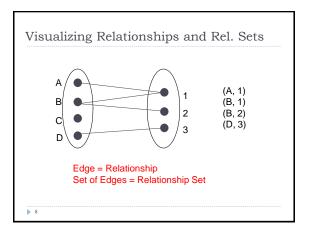
4

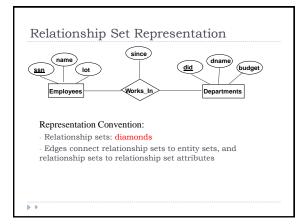
Keys

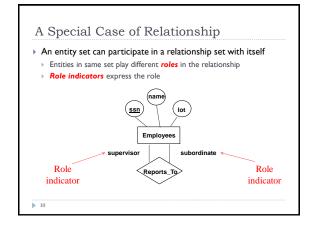
- Each entity set has a key
 - > Set of attributes that uniquely identify an entity
 - Multiple candidate keys may exist
 - Primary key selected among them

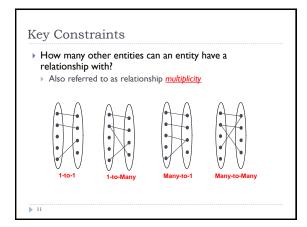
5

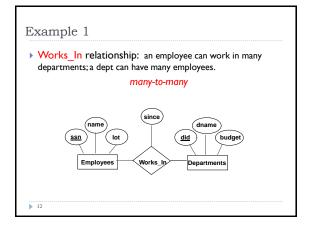
Entity Set Representation

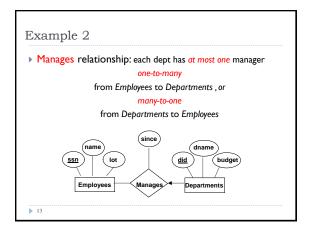


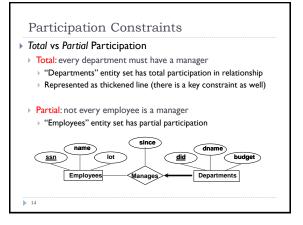

Representation Convention:

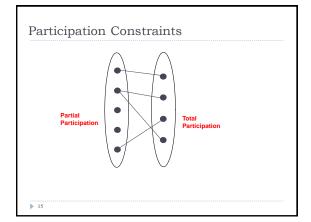

- Entity sets: rectangles
- Attributes: ovals, with key attributes underlined
- Edges connect entity sets to attributes


Relationships and Relationship Sets


- ▶ Relationship: Association among two (or more) entities
 - "Gabriel works in CS department"
 - Can have descriptive attributes: e.g., "since 9/1/2011"
 - ▶ But relationship must be fully determined by entities!
 - ▶ Binary, ternary or multi-way (n-way) relationships
- ▶ Relationship Set: Collection of similar relationships
- Contains *n*-tuples $(e_1, ..., e_n)$, where e_i belongs to entity set E_i
- Instance: "snapshot" of relationship set at some point in time







Example

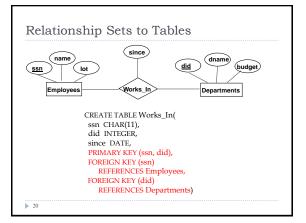
Design a database for a bank, including information about customers and their accounts. Information about customers includes their name, address, phone and SSN. Accounts have numbers, types (e.g., savings/checking) and balances.

- 1. Draw the E/R diagram for this database.
- 2. Modify the E/R diagram such that each customer must have at least one account.
- 3. Modify the E/R diagram further such that an account can have at most one customer.

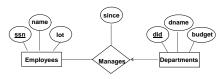
16

Mapping ER to Relational Schemas

- ▶ For most part, process is mechanical
 - ▶ Some special cases arise in the presence of constraints
- ▶ Translation from ER to SQL requires:
 - Mapping entity sets to tables
 - Mapping relationship sets to tables
 - Capturing key constraints
 - ▶ Capturing participation constraints


Entity Sets to Tables

CREATE TABLE Employees
(ssn CHAR(11),
name CHAR(20),
lot INTEGER,
PRIMARY KEY (ssn))


Relationship Sets to Tables

- "No-constraints" case follows simple rules
- ▶ Relationship set becomes a relation, attributes include:
 - Keys for each participating entity set (as foreign keys pointing to respective entity table)
 - All descriptive attributes for relationship
 - Primary key of relationship set table is the concatenation of primary keys for the entity sets

19

What if there are Key Constraints?

 Each department has at most one manager, according to the key constraint on Manages

2

Variant 1

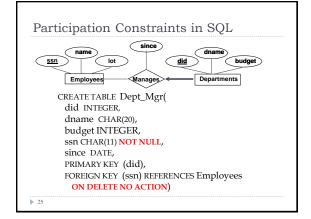
- Map relationship to a table:
- Note that did is the key now!
- ▶ Separate table for Manages relationship.

CREATE TABLE Manages(

ssn CHAR(11),
did INTEGER,
since DATE,
PRIMARY KEY (did),
FOREIGN KEY (ssn) REFERENCES Employees,
FOREIGN KEY (did) REFERENCES Departments)

▶ 2

Variant 2


 Since each department has a unique manager, we could instead combine Manages and Departments.

CREATE TABLE Dept_Mgr(
did INTEGER,
dname CHAR(20),
budget INTEGER,
ssn CHAR(11),
since DATE,
PRIMARY KEY (did),
FOREIGN KEY (ssn) REFERENCES Employees)

23

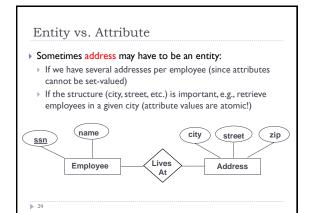
Review: Participation Constraints

- Does every department have a manager?
 - If yes, the participation of Departments in Manages is total
- ▶ Every did value in Departments table must appear in a row of the Manages table (with a non-null ssn value!), but this cannot be controlled in SQL (unless we use complex constraints)
- Turns out that it is NOT possible to capture this with the two-tables mapping
 - Foreign key mechanism does not allow to check if there is a reference to every tuple in the referenced table
 - ▶ The Dept_Mgr variant is the only way!

Participation Constraints Summary

- General case
 - Total participation cannot be enforced unless we use complex constraints
- What if there is also a key constraint in place?
- If the entity set with total participation also has a key constraint, then it is possible to capture total participation
- ▶ But only if "combined" table construction is used!

> 26


Design Choices in the ER Model

- ▶ Should a concept be modeled as an entity or an attribute?
- ▶ Should a concept be modeled as an entity or a relationship?
 - Considers hierarchies and inheritance
 - Outside the scope of this class

27

Entity vs. Attribute ssn name address Employees

Should address be an attribute of Employees or an entity (connected to Employees by a relationship)?

