
Database Application Development

Oracle PL/SQL

CS430/630
Lecture 15

Slides based on “Database Management Systems” 3rd ed, Ramakrishnan and Gehrke

Outline

 Embedded SQL

 Dynamic SQL

 JDBC (API)

 SQLJ (Embedded)

 Stored procedures

Many host languages:

C, Cobol, Pascal, etc.

Java

Stored Procedures

Why Stored Procedures?

 So far, all data processing is done at the client

 Lots of data may have to be transferred

 Functionality (code) replicated at each client

 Lots of state (e.g., locks, transaction data) at the DBMS

 While client processes the data

 Stored procedures execute in same process space as DBMS

 Encapsulates application logic and is close to the data

 Reuse of common functionality by different clients

 Vendors introduced their own procedural extensions

 e.g., Oracle’s PL/SQL

SQL/PSM

 SQL Persistent Stored Modules

 SQL standard for stored procedures, available in SQL:2003

 Commercial vendors may offer own extensions of PSM

 Standard language for stored procedures

 Supports both procedures and functions

 Functions can return results through RETURN statement

 Procedures can return results in parameters

 In this course we focus on Oracle PL/SQL

PL/SQL

PL/SQL (Procedural Language SQL)

 Procedural extension to SQL developed by Oracle

 Most prominent DBMS procedural language

 Another language is T-SQL from Microsoft (MS SQL)

 Only DML allowed in PL/SQL

 DDL such as creating or dropping tables NOT allowed

 Basic program structure is a block

 There can be nested blocks

 PL/SQL syntax is not case sensitive (variable names as well)

PL/SQL Program Structure

DECLARE

 variable_declarations

BEGIN

 procedural_code

EXCEPTION

 error_handling

END;

PL/SQL in SQL Plus

 Ensure output goes to screen

 SET SERVEROUTPUT ON

 Executing PL/SQL in command line

 BEGIN

 DBMS_OUTPUT.PUT_LINE(‘Hello World’);

 END;

 /

 The / must be by itself on separate line

 DBMS_OUTPUT.PUT_LINE equivalent of printf() in C or

System.out.println() in Java

Data Types

 It is possible to use ORACLE SQL types

 NUMBER, VARCHAR, etc

 PL/SQL allows directly referring to a column type

 tablename.columnname%TYPE

e.g, SAILORS.SNAME%TYPE

 Also possible to define a row type (e.g., tuple)

 tablename%ROWTYPE

 Declaring a variable: <var_name> <TYPE>;

 sailor_rec SAILORS%ROWTYPE;

 Can later refer to individual fields using column names

 DBMS_OUTPUT.PUT_LINE(‘Name: ’ || sailor_rec.name ||

 ‘Age:’ || sailor_rec.age);

|| means string concatenation (like + in Java)

Assignments and Branches

 Assignment

 A := B + C;

 Branch

 IF condition THEN statements;

 ELSIF (condition) statements;

 ELSIF …

 ELSE statements;

 END IF;

Branch Example

DECLARE

 A NUMBER(6) := 10;

 B NUMBER(6);

BEGIN

 A := 23;

 B := A * 5;

 IF A < B THEN

 DBMS_OUTPUT.PUT_LINE(A || ’ is less than ’ || B);

 ELSE

 DBMS_OUTPUT.PUT_LINE(B || ’ is less-or-equal than ’ || A);

 END IF;

END;

 Output is: 23 is less than 115

Branch Example (2)

DECLARE

 NGRADE NUMBER;

 LGRADE CHAR(2);

BEGIN

 NGRADE := 82.5;

 IF NGRADE > 95 THEN

 LGRADE := ’A+’;

 ELSIF NGRADE > 90 THEN

 LGRADE := ’A’;

 ELSIF NGRADE > 85 THEN

 LGRADE := ’B+’;

 ELSIF NGRADE > 80 THEN

 LGRADE := ’B’;

 ELSE

 LGRADE := ’F’;

END IF;

Loops

LOOP

 statements

IF condition THEN

 EXIT;

END IF;

 statements

END LOOP;

LOOP

 statements

EXIT WHEN condition;

 statements

END LOOP;

Loop Example

DECLARE

 J NUMBER(6);

BEGIN

 J := 1;

 LOOP

 DBMS_OUTPUT.PUT_LINE(’J= ’ || J);

 J := J + 1;

 EXIT WHEN J > 5;

 DBMS_OUTPUT.PUT_LINE(’J= ’ || J);

 END LOOP;

END;

Output = ?

Loop Variants

WHILE condition

LOOP

 various_statements

END LOOP;

FOR counter IN startvalue .. endvalue

LOOP

 various_statements

END LOOP;

“For Loop” Example

BEGIN

 FOR K IN 1..5

 LOOP

 DBMS_OUTPUT.PUT_LINE(‘K= ’ || K);

 END LOOP;

END;

SQL Statements

 Data can be manipulated (DML) from PL/SQL

 SELECT must have INTO when cursors not used

DECLARE

 SID NUMBER(6);

BEGIN

 SID := 20;

 INSERT INTO Sailors (sid, name) VALUES (SID, ’Rusty’);

 SID := SID + 1;

 INSERT INTO Sailors (sid, name) VALUES (SID, ’Yuppy’);

END;

SQL Statements – retrieving data

 As before, there are two cases

1. Single-tuple result (the “easy” case)
SELECT selectfields INTO declared_variables

FROM table_list WHERE search_criteria;

DECLARE

 VAR_NAME Sailors.name%TYPE;

 VAR_AGE Sailors.age%TYPE;

BEGIN

 SELECT name, age INTO VAR_NAME, VAR_AGE

 FROM Sailors WHERE SID = 10;

 DBMS_OUTPUT.PUT_LINE(‘Age of ’ || VAR_NAME || ’ is ’ ||
VAR_AGE);

END;

SQL Statements – retrieving data

2. Multiple-tuples result: cursors are needed

CURSOR cursorname IS SELECT_statement;

OPEN cursorname;

FETCH cursorname INTO variable_list;

CLOSE cursorname;

Cursor Example

DECLARE

 S Sailors%ROWTYPE;

 CURSOR SAILORCURSOR IS

 SELECT * FROM Sailors;

BEGIN

 OPEN SAILORCURSOR;

 LOOP

 FETCH SAILORCURSOR INTO S;

 EXIT WHEN SAILORCURSOR %NOTFOUND;

 DBMS_OUTPUT.PUT_LINE(’AGE OF ’ || S.sname || ’
 IS ’ || S.age);

 END LOOP;

 CLOSE SAILORCURSOR ;

END;

Cursor Attributes

%NOTFOUND: Evaluates to TRUE when cursor has no more rows

to read. FALSE otherwise

%FOUND: Evaluates to TRUE if last FETCH was successful and

FALSE otherwise

%ROWCOUNT: Returns the number of rows that the cursor has

already fetched from the database

%ISOPEN: Returns TRUE if this cursor is already open, and FALSE

otherwise

Declaring a Procedure

CREATE OR REPLACE

PROCEDURE procedure_name (parameters) IS

 variable declarations

BEGIN

 procedure_body

END;

 Parameters can be IN, OUT or INOUT, default is IN

CREATE OR REPLACE

PROCEDURE SUM_AB (A INT, B INT, C OUT INT) IS

BEGIN

 C := A + B;

END;

Declaring a Function

CREATE OR REPLACE

FUNCTION function_name (function_params) RETURN return_type IS

 variable declarations

BEGIN

 function_body

 RETURN something_of_return_type;

END;

 Example

CREATE OR REPLACE

FUNCTION ADD_TWO (A INT, B INT) RETURN INT IS

BEGIN

 RETURN (A + B);

END;

Exceptions

 Exceptions defined per block (similar to Java)

 Each BEGIN…END has its own exception handling

 If blocks are nested, exceptions are handled in an “inside to

outside” fashion

 If no block in the nesting handles the exception, a runtime error

occurs

 There are multiple types of exceptions

 Named system exceptions (most frequent) – we only cover these

 Unnamed system exceptions

 User-defined exceptions

Exceptions

 DECLARE

 …

 BEGIN

 EXCEPTION

 WHEN ex_name1 THEN

 error handling statements

 WHEN ex_name2 THEN

 error handling statements

 …

 WHEN Others THEN

 error handling statements

END;

Named System Exceptions

Exception Name Reason Error Number

CURSOR_ALREADY_OPEN When you open a cursor that is

already open.

ORA-06511

INVALID_CURSOR When you perform an invalid

operation on a cursor like closing

a cursor or fetch data from a

cursor that is not opened.

ORA-01001

NO_DATA_FOUND When a SELECT...INTO clause

does not return any row from a

table.

ORA-01403

TOO_MANY_ROWS When you SELECT or fetch more

than one row into a record or

variable.

ORA-01422

ZERO_DIVIDE When you attempt to divide a

number by zero.

ORA-01476

