Conceptual Design. The Entity-Relationship (ER) Model CS430/630 Lecture 12 Slides based on "Database Management Systems" 3^{cd} ed, Ramakrishnan and Gehrke

Database Design Overview

- ▶ Conceptual design
 - The Entity-Relationship (ER) Model, UML
 - High-level, close to human thinking
 - > Semantic model, intuitive, rich constructs
 - Not directly implementable
- Logical Design
 - ▶ The relational data model
 - Machine-implementable, fewer and more basic constructs
 - Logical design translates ER into relational model (SQL)
- ▶ Physical Design (not in this course)
 - Storage and indexing details

.

Conceptual Design - ER Model

- What are the entities and relationships in a typical application?
 - What information about these entities and relationships should we store in the database?
- ▶ What are the integrity constraints or business rules
 - Key constraints
 - ▶ Participation constraints
- ▶ Representation through ER diagrams
- > ER diagrams are then mapped into relational schemas
- Conversion is fairly mechanical

3

Entities and Entity Sets

- ▶ Entity: represents a real-world object
 - ▶ Characterized using set of <u>attributes</u>
 - Each attribute has a domain similar to variable types
- ▶ Entity Set: represents collection of similar entities
 - E.g., all employees in an organization
- All entities in an entity set share same set of attributes

▶ 4

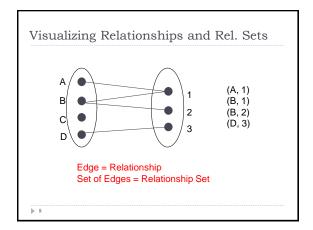
Keys

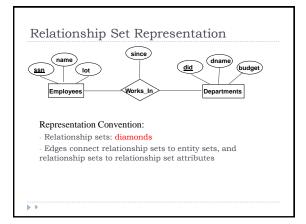
- ▶ Each entity set has a key
 - > Set of attributes that uniquely identify an entity
 - Multiple candidate keys may exist
 - Primary key selected among them

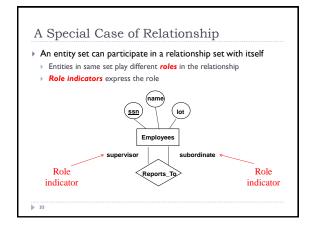
> 5

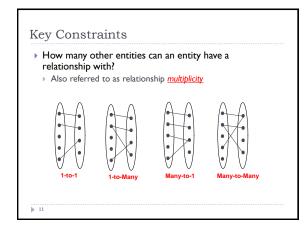
Entity Set Representation

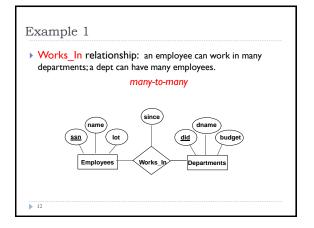
Representation Convention:

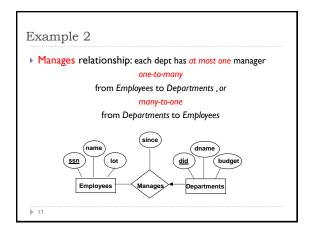

- Entity sets: rectangles
- Attributes: ovals, with key attributes underlined
- Edges connect entity sets to attributes

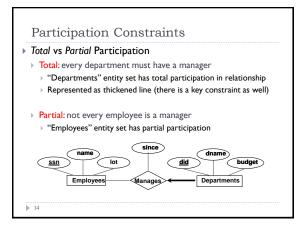

> 6

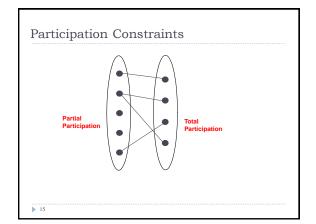

Relationships and Relationship Sets

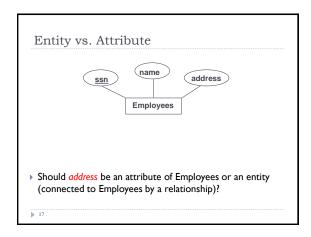

- ▶ Relationship: Association among two (or more) entities
 - "Gabriel works in CS department"
 - Can have descriptive attributes: e.g., "since 9/1/2011"
 - ▶ But relationship must be fully determined by entities!
 - ▶ Binary, ternary or multi-way (n-way) relationships
- ▶ Relationship Set: Collection of similar relationships
- Contains *n*-tuples $(e_1, ..., e_n)$, where e_i belongs to entity set E_i
- Instance: "snapshot" of relationship set at some point in time
- Instance. Shapshot of relationship set at some point in time

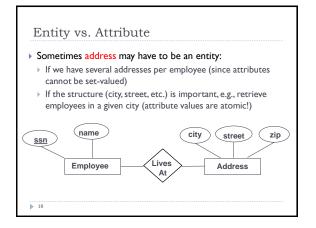

.











Design Choices in the ER Model

> Should a concept be modeled as an entity or an attribute?

> Should a concept be modeled as an entity or a relationship?
> Considers hierarchies and inheritance
> Outside the scope of this class

Example

Design a database for a bank, including information about customers and their accounts. Information about customers includes their name, address, phone and SSN. Accounts have numbers, types (e.g., savings/checking) and balances.

- 1. Draw the E/R diagram for this database.
- 2. Modify the E/R diagram such that each customer must have at
- 3. Modify the E/R diagram further such that an account can have at most one customer.

19