Return to Contents

INTEGRALS

 

1. Evaluate:

1

0 
(x2 + 2x)dx







2. Evaluate:

2

1 
(x2 - 3e-x + 6)dx






3. Find the area under the curve y = cos q, above the q-axis and to the right of the y-axis. Sketch the area.




4. Evaluate:

 


4

0 
  __
x
 
dx





5. Let     E(x) =
x

0 
e-t2dt.     Find E (0)








6.    Find     d
dx

x2

0 
(t3 + t)dt








7. Evaluate    
1

0 
  _____
1 - x2
 
dx








8. Write a Riemann Sum S with 3 subdivisions which approximates

the area under y = x2  ,above the x-axis beween x = 0 and x = 1.

Use the output at the right-hand endpoint of the subintervals as the

height of the rectangles. Sketch the graph and the approximating

rectangles.

 

9. Evaluate    
p/3

0 
sin q
1 + cos q
d q







10. Evaluate:    
e

1 
lnx
x
dx




Return to Contents