LIMITS

Return to Contents

1.  Enter the limit and sketch a graph. Show all  asymptotes.


lim
x 4 
x-4
2x+3

2.  Find the limit. Enter the numerator first followed by the denominator:


lim
x a 
x-4
2x+3

3. Find and enter the limit. Sketch the graph paying attention to any asymptotes.


lim
x -3 
x2-x-12
x+3

4. Prove that


lim
x 3 
(4x-5) = 7     by finding a rule     d = d(e)

Enter the numerator of the rule followed by the denominator (use e for epsilon):

5. Find the following limit:


lim
h 0 
(3+h)2 - 9
h
6. Enter the following limit:

lim
x 0+ 
|x|
x
7. Sketch the graph of the Greatest Integer Function. Enter the limit:

lim
x 1+ 
[[x]]

8.

Use the given graph to find  the largest   d > 0    such that     |   __
x
 
- 2 | < 0.4     if     0 < |x - 4| < d
Enter d    to 2 decimal places

9. Find the limit.


lim
t 0 
Sin(5t)
t

10. Find the limit and enter below:(numerator followed by denominator)

lim
x 0 
tan(x)
3x
 

11. Sketch the graph. Enter the limit. Support your answer by an argument.

 


lim
x 0 
x2 Sin

1
x


12. Find the following limit:

lim
x  
2x3 + 3x
x3 +1

Return to Contents