CS Homework 0

J. Holly DeBlois

January 26, 2026

J. Holly DeBlois January 26, 2026

1. Use the CS Server

We cover basic concepts/practices/commands that are used at a Linux command-line prompt and
. There are lots of online/print resources available. Here is what CS IT provides:

in C programming
o https://www

@ https://www.

https://www.
https://uww.
https://www.
https://www.
@ https://www.

.CS.

CS.

CsS.

CS.

CS.

CcsS.

Cs.

umb

umb.

umb

umb.

umb.

umb

umb.

.edu/~ghoffman/linux/linux_help.html
edu/~ghoffman/linux/nano_text_editor.html
.edu/~ghoffman/linux/common_unix_commands.html
edu/~ghoffman/linux/unix_essentials.html
edu/~ghoffman/linux/remote_access_windows.html
.edu/~ghoffman/linux/remote_access_mac.html

edu/~ghoffman/linux/unix_cs_students.html

Note that the fourth item named unix_essentials is indeed essential! Note that type of laptop you
have in class matters - do you have windows? mac? linux? - because commands will differ.

J. Holly DeBI

ois

January 26, 2026

https://www.cs.umb.edu/~ghoffman/linux/linux_help.html
https://www.cs.umb.edu/~ghoffman/linux/nano_text_editor.html
https://www.cs.umb.edu/~ghoffman/linux/common_unix_commands.html
https://www.cs.umb.edu/~ghoffman/linux/unix_essentials.html
https://www.cs.umb.edu/~ghoffman/linux/remote_access_windows.html
https://www.cs.umb.edu/~ghoffman/linux/remote_access_mac.html
https://www.cs.umb.edu/~ghoffman/linux/unix_cs_students.html

2. Login to the CS Server

o From your laptop, use your CS username and password to access the CS servers. This hw0
assumes you have already accessed the CS Department portal and created your course
directory. Accessing the portal can be done from your browser by typing:
https://www.cs.umb.edu and clicking on Portal Login in upper right.

@ In this document, we use bobz as anyone's cs username. To login, replace bobz with your cs
username and type: ssh bobzQusers.cs.umb.edu. You will be prompted to enter your
password.

o If you have trouble with login, use your UMB email to write to: operator@cs.umb.edu to
request help. Please copy your instructor (jane.deblois@umb.edu) on any email you write to
operator.

o After you are "on" the CS server that listens for your ssh request, type: exit to leave the
server.

J. Holly DeBlois January 26, 2026 3/11

https://www.cs.umb.edu

3. Simple commands: pwd, etc.

Many commands print out basic information. In the example, j;; represents a prompt. Run:
@ whoami to print your username
@ pwd to print the working directory

@ hostname to print the name of the host you're currently on

w|more to print out who is on the server (output not shown)

>>> whoami
bobz

>>> pwd
/home/bobz
>>> hostname
someserver

a user's prompt often contains helpful information and can be customized by editing, e.g.,
the ~/.bashrc file in the user's home directory

@ info on command foo can be viewed on its “man"” page by typing man foo; try typing man w

o get a little “meta” by typing man man

J. Holly DeBlois January 26, 2026 4/11

4. Output file for Homework 0 is output.txt

Entering the commands in this “assignment” will result in a single output file being built
line-by-line. At the end, we will compare it to the instructor-provided example output with a diff
command. In the example, bobz will be replaced by your cs username. Let's start. Run:

@ cd with no arguments to change to your home directory

@ cd csNNN where NNN is 444 or 410 to change to your course directory

mkdir hwO to create a directory for the this assignment
@ cd hwO to change into it

@ touch output.txt to create the output file we will build
°

1s -la to view things, which should look something like:

>>> 1s -la
drwx------ 2 bobz bobz 4096 Sep 2 19:50 .
drwx------ 3 bobz bobz 4096 Sep 2 19:50 ..
“rw--———--- 1 bobz bobz O Sep 2 19:50 output.txt
@ note that the file is initially empty, i.e., O bytes (man touch for more)
@ note that the Is command has many switches and can do a lot; see 1s, e.g., here:

https://www.gnu.org/software/coreutils/manual/html_node/What-information-is-listed.html

J. Holly DeBlois January 26, 2026

https://www.gnu.org/software/coreutils/manual/html_node/What-information-is-listed.html

5. Building, Step 1: output redirection

We will use output redirection to form the first few lines of our file. Review file handles,
redirection, pipes, and related concepts, e.g., here:
https://en.wikipedia.org/wiki/Redirection_(computing). Now:
@ print a message to stdout with echo "Hello World!"
redirect the message to our file with echo "Hello World!" > output.txt
o do both (using tee -a command to write with append) with echo "Hello again!" | tee
-a output.txt

@ append to our file with echo "my username is:" >> output.txt
@ and again with whoami >> output.txt ... the screen output should be looking like this:
>>> echo "Hello World!"
Hello World!
>>> echo "Hello World!" > output.txt
>>> echo "Hello again!" | tee -a output.txt
Hello again!
>>> echo "my username is:" >> output.txt
>>> whoami >> output.txt
v
@ check contents with cat output.txt and number of lines with wc -1 output.txt
@ you should have 4 lines in your file
@ to start over at any point, use the one-liner rm -f output.txt &% touch output.txt
@ to be ready for Step 3 below, exit and login again in 2 terminal windows — do your work in

one and type: top in the other (the top cmd will monitor all system processes)

J. Holly DeBlois January 26, 2026 6/11

https://en.wikipedia.org/wiki/Redirection_(computing)

6. Building, Step 2: text editor

We can run a text editor from the command line interface (CLI) to add to our file. We will
illustrate with nano. In class, we will practice using emacs, since it is famous in server work. Now:

examine your PATH variable by typing: echo $PATH

determine the location/existence of the executable of the editor by typing: which nano
is the nano executable’s location contained in the PATH?

type executable name’s first two characters: na and tap TAB twice — what happens?
type nan and hit TAB — what happens?

type nano ou and hit TAB — what happens?

run nano output.txt to add a single (unique, non-empty) line of your choosing at the end
of the file; save (CTRL/O and ENTER), exit (CTRL/X)

edit again, this time running nano by its full path /usr/bin/nano output.txt; append
another (unique, non-empty) line of your choosing, save, exit

the version of a program is often easy to get at the CLI — type nano -V

get help with nano -h or nano --help or man nano

check the number of lines in our file with wc -1 output.txt — you should have 6
fyi, our file's final version will have 11 lines

review newline subtleties, e.g., here: https://en.wikipedia.org/wiki/Newline

J. Holly DeBlois January 26, 2026

https://en.wikipedia.org/wiki/PATH_(variable)
https://en.wikipedia.org/wiki/Newline

7. Building, Step 3: (dis)assembly, another login

head -n 3 output.txt > part_A.txt to copy the first three lines

tail -n 3 output.txt > part_C.txt to copy the last three lines

tail -n 4 output.txt | head -n 1 > part_B.txt to copy just the third line
rm output.txt to delete the original output file

cat part_*.txt > new.txt to assemble the parts

uniq new.txt > output.txt to recreate the output file with non-duplicate lines
wc -1 output.txt to check number of lines — should have 6

rm -f part_*.txt && rm -f new.txt to clean up

Now — assuming you got top running in another session earlier, you can use ps to snapshot
current processes. In your main session, run the following replacing bobz with your username:

ps -u bobz (sample screen output is shown below)

ps -u bobz | grep top >> output.txt to capture your top command’s process id, etc. in
your output file

cat output.txt to see contents and wc -1 output.txt to see number of lines, now 7

PID TTY TIME CMD
11130 ? 00:00:00 sshd
11132 pts/0 00:00:00 bash
13554 ? 00:00:00 sshd

13555 pts/1 00:00:00 bash
17854 pts/0 00:00:00 top
17855 pts/1 00:00:00 ps

J. Holly DeBlois January 26,

8. Building, Step 4: compiling a substitute wc

The we (“word count”) system command counts the words (or lines, or characters) in the file it is passed as an
argument (see man wc). We will compile a very small C program that amounts to a crude version of this
program. Note that our version will read from standard input. Now run:

@ g and then exit to close the top command/window from before (if still open)

o wget https://www.cs.umb.edu/ hdeblois/hw0/crude_wc.c to download the source code
file to current directory (hwO)

@ less crude_wc.c to view its contents and q to exit the less command
@ gcc -o crude_wc crude_wc.c to compile

o 1s -la to view directory contents — should look something like this:

total 36

bobz 4096 Sep
bobz 4096 Sep
bobz 16664 Sep
bobz 635 Sep
bobz 57 Sep

02:43 .

02:46 ..

02:43 crude_wc
02:43 crude_wc.c
01:48 output.txt

wWwwww

@ run wc output.txt to perform counts with the system wc

run ./crude_wc < output.txt to perform counts with our crude substitute and compare

@ run ./crude_wc < output.txt >> output.txt three times in a row

cat output.txt and make sense of what you see

run 1dd crude_wc to view the shared library dependencies of the executable

J. Holly DeBlois January 26,

9. Building, Step 5: symbolic links

A symbolic link can be useful. Command 1n makes a hard link. Command 1n -s makes a soft
link. Links are somewhat similar to pointers — they can get broken. Now run:

o mkdir somedir to create a subdirectory and change into it with cd somedir
@ In -s ../crude_wc crude_wc_ptr to create a symlink to our new executable
@ In -s ../output.txt to create a symlink to our output file (note lack of 2nd argument)

o 1ls -la should show something like:

total 8

drwx------ 2 bobz bobz 4096 Sep 3 03:50 .

drwx------ 3 bobz bobz 4096 Sep 3 03:38 ..

lruxrwxrwx 1 bobz bobz 11 Sep 3 03:39 crude_wc_ptr -> ../crude_wc
lrwxrwxrwx 1 bobz bobz 13 Sep 3 03:50 output.txt -> ../output.txt

@ run echo "this is a test" | ./crude_wc_ptr to test running the link-to-executable
@ run ./crude_wc_ptr < output.txt to run link-to-executable on link-to-output-file

@ run chmod 770 crude_wc_ptr and use 1s -la on both current and parent directories to
discern which permissions have changed (note that this behavior may be OS-dependent)

@ run readlink -f crude_wc_ptr >> output.txt to dereference the link-to-executable and
append its full path to our output file

@ run cat output.txt to see path added

J. Holly DeBlois January 26,

10. Last tasks

Finally:
@ remove the two symlinks with rm crude_wc_ptr and rm output.txt
@ change to parent directory with cd ..
@ remove empty directory with rmdir somedir
o verify that output file has 11 lines with wc -1 output.txt
°

download instructor’s output file with
wget https://www.cs.umb.edu/ hdeblois/hw0/sample_output.txt

o run diff -y output.txt sample_output.txt to perform a side-by-side comparison of your
output file with the instructor’s; make sense of any differences

J. Holly DeBlois January 26, 2026 11/11

