CS 444 Operating Systems

Implementation of Huffman Code

J. Holly DeBlois

September 17, 2025

J. Holly DeBlois CS 444 Operating Systems September 17, 2025

Apply for a CS Account

@ Apply for an account on the CS subnet within UMB here
https://portal.cs.umb.edu/accounts/login/

@ Enter a username of your choice

@ Enter your UMB email — you will receive a link to activate your CS
account

@ Enter a password of your choice
e Join CS 444

@ See step-by-step directions here
https://www.cs.umb.edu/~ghoffman/linux/apply_process.html

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 2/47

https://portal.cs.umb.edu/accounts/login/
https://www.cs.umb.edu/~ghoffman/linux/apply_process.html

Text File Compression

@ Huffman code
@ David Huffman, 1952

J. Holly DeBlois CS 444 Operating Systems September 17, 2025

o Compress a file of 100,000 characters of a, b, ¢, d, e, and f
o Fixed-length codes: 300,000 bits

@ Variable-length codes:

‘ a b c d e f
Frequency (in 1000s) | 45 13 12 16 9 5
Fixed-length codes 000 001 010 011 100 101
Variable-length codes | 0 101 100 111 1101 1100

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 4/47

Lossless File Compression

o File compression using reduced representation of characters

o Let F be a file with n characters (n bytes or 8n bits)

o Each byte is a binary representation of the ASCII code of a character

@ Represent every character using a unique code of m bits (m < 8), and
write a file F/ with the original characters replaced by their codes

@ The new file size is 8m < 8n bits

@ Lossless compression

e We should be able to decompress F’ and get F back

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 5/47

Not all of 8 bits are needed to uniquely represent a character

Most files contain much fewer than 256 different characters

Consider a file of decimal digits and blanks and newlines
o 12 characters

As an ASCII file, each char takes 8 bits

@ But we can use 4 bits to code for 12 characters

0x30 — 0: digit '0' becomes 0000,
0x31 =1

0x39 — 9
0x0A — 0xA: linefeed (LF)
0x20 — 0xB: space ' ' becomes 1011,

Such a file can be compressed by a factor of 2

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 6 /47

Char | ASCII (dec) | ASCII (hex) | ASCII (binary) | New Code
0’ 48 30 00110000 0000
1 49 31 00110001 0001
2 50 32 00110010 0010
3 51 33 00110011 0011
4 52 34 00110100 0100
'5' 53 35 00110101 0101
6’ 54 36 00110110 0110
T 55 37 00110111 0111
'8’ 56 38 00111000 1000
9’ 57 39 00111001 1001
LF 10 0A 00001010 1010
SP 32 20 00100000 1011

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 7/47

Compress and Decompress

@ Original file “00123 890\n00456 098\n"

@ In ASCII hex: 30 30 31 32 33 20 38 39 30 OA 30 30 34 35 36 20 30
39 38 0A
o Compressed file in hex: 00 12 3B 89 0A 00 45 6B 09 8A (half as long)
@ To decompress, read 4 bits at a time from the compressed file
e 0 — 0x30,1 — 0x31,...,0xA — 0x0A,0xB — 0x20
@ Hex is easier to work with in this case

@ Question: When decompressing a file, how do you know you have
reached the end of the file?

e The last byte may contain only 1 nibble of code, or 2 nibbles

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 8/47

Efficient File Compression

@ We would like a quantitative estimate of the effectiveness of various
coding schemes

@ We need a distribution of character frequencies

@ Consider this distribution

o Digits 1 through 9 are about equally likely, although of declining
frequencies
e 0, space, and linefeed are much more frequent

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 9/47

Character Frequency

Char [SP LF 0 1 2
Freq [30 20 10 7 6

3 45 6 7 8 9
5 4 3 3 3 2 2
Total frequency count is 95

@ With this distribution, we would like shorter codes for SP, LF, and 0,
and longer ones for the other digits

@ How do we decompress if the lengths of the codes are variable?

@ The answer is prefix codes

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 10 /47

Prefix Codes

@ Prefix means some initial substring

@ For example 110 is a prefix of 11011

@ A set of prefix codes has the property that no code is the prefix of
another

e With a set of prefix codes, if we match the initial bits (prefix) of the
compressed data with all the bits of a certain code, it can only be
that code

@ So we look no further, remove the prefix from the stream, decode it,
and repeat

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 11/47

Prefix Code Examples

e For example, { 00, 10, 110 } is a set of prefix codes, because all three
pass the test:

o Testing 00: neither 10 nor 110 start with 00
o Testing 10: neither 00 nor 110 start with 10
o Testing 110: neither 00 nor 10 start with 110

e { 0,10, 11 } is also a set of prefix codes
e { 0,01, 11 } is not a set of prefix codes because 0 is a prefix of 01

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 12 /47

Construct a Prefix Code Tree

@ How do we generate a set of prefix codes for a certain use?

@ Answer: Construct a binary tree with the right number of leaves

@ Each code is determined by a path from the root to the leaf, where
going left gives a 0 and going right a 1

@ For example:

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 13 /47

Read the Prefix Codes from a Code Tree

@ This defines
e 00 and 01 from the leaves at the left
e 10000 and 10001 for the leaves at the bottom
e 10001, 1001, 101, and 11 for the leaves going up the right-hand side
@ Now we have some short codes for frequent symbols, and some longer
codes for less frequent symbols

@ No bit string is a prefix of another, because each bit string specifies a
unique path to a leaf

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 14 /47

Assign Codes According to Frequency

Char [SP LF 0

1 23 456 7809
Freq [30 20 10 7 6 5 4 3 3 3 2 2

@ Our example of 12 symbols

o Digits 1 through 9 are about
equally likely, although of
declining frequencies (this is
actually observed)

e 0, space, and linefeed are

i 0
much more frequent /\ /\

@ We can set up a binary tree with /\ /\ /\ /\
these 12 symbols at the leaves 987654 32

newline space

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 15 /47

Convert Symbols to Codes

@ Read off the codes from the

binary tree e e
@ Space is reached by traversing 1/\0
down the right-hand side of the /\
tree, going right 2 times, so its 0% 7/\0 /\ 5
code is 11 char code freq total bits
o Linefeed is reached by going SP 11 30 60
right and then left, so its code is LF 10 20 40
10 0 011 10 30
1 010 7 21
@ 1 is reached by going left, then 2 00111 6 30
right, then left, so its code is 3 00110 5 25
010, and so on 4 oolol 4 20
! 5 00100 3 15
@ 291 bits is used to encode the 6 00011 3 15
file, much better than 7 00010 3 15
4 % 95 = 380 bits o oo o ~

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 16 / 47

Encode the File

Original file 00123890\ n00456098\n"
In hex: 30 30 31 32 33 20 38 39 30 OA 30 30 34 35 36 20 30 39 38 OA

Compressed file in binary: 010 010 011 00000 00001 10 00110 00111
010 11 010 010 00010 00011 00100

Question: When compressing a file, what do you do with the last
byte, which may not be completely filled with codes?

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 17 /47

Decompress a File

@ For example: 0100100010010100011111

@ Following the bits from the input file, traverse down the code tree
until a leaf is reached

@ 010 leads to the leaf labeled by “1”

010 — 1

00100 — 5

10 — nl newline space
10 — ol /\ /\

00111 — 2 ! 0

11 — sp /\ A

9876 54 32
@ Thus this bit string decodes to “15\n\n2 "

@ Is this an optimal coding?

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 18 /47

Huffman Coding

Char [sp nl 0 1 2 3 4 5
Freq. |30 20 10 7 6 5 4 3

w|
Wl
| Co
N ©

-

Char [sp nl 0
Freq. | 30 20 10

,_.
¥
w

| 0o

| o
=
ot

w| o

w| =1

-
D
ot
e~
w

-
>

Char | sp nl 0 1
Freq. | 30 20 10

\]
w| o
ol ~3
oo
ol w
rof oo
ro| ©
IN{ 'S
wo|

-
-
<

Char [sp nl 0
Freq. | 30 20 10

NS
wo| et
3|~
w| o
w| =1
=
ol w
ro| oo
| o

=<
=<
©(<

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 19 /47

Huffman Coding

Char | sp nl 0 3 8 9 4 5 1 6 7 2
Freq. [30 20 10 5 2 2 4 3 7 3 3 6
\4 7 6 /

9 12

Char | sp nl 3 8 9 4 5

Freq. | 30 20 3 3 6 10 5 2 2 4 3 7
Char | sp nl 4 5 1 6 7 2 0 3 8 9
Freq. [30 20 4 3 7 3 3 6 10 5 2

vg YJ \w

J. Holly DeBlois CS 444 Operating Systems September 17, 2025

Huffman Coding ERROR: REVERSE 0 +— 1

Char [nl 0 8 9 3 sp 1 4 5 2 6 7
Freq. [20 10 2 2 5 30 7 4 3 6 3 3

1\/0 0\/1 0\/1
. 4 /0 0 7 1\ 6
0 Lo o\ 141 120
1 N
1 26

9

391 56 1

S~

95

@ During tree construction, a priority queue holds the characters
@ The frequencies of the characters are their priorities

@ Convention to assign code: larger weight = 0, smaller weight = 1,
random code for same weights

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 21 /47

Huffman Coding TREE NOT CORRECTED YET

char code freq. total bits

Sp 00 30 60

LF 10 20 40

0 110 10 30

1 o101 7 28

2 0110 6 24

3 1110 5 20 sp (30) nl (20)

4 01000 4 20 /\ Ou{\

5 01001 3 15

6 01110 3 15 /1\(7) z(é\ 3<5>/>\
7 Ol 3 15 4(4) 5(3) 6(3) 7() 8(2) 9(2
8 11110 2 10

9 11111 2 10

Total bits = 287

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 22 /47

Why is Huffman’s Algorithm Optimal?

o Consider the optimal coding scheme for n characters

@ It will have a longest code for the least frequent symbol

@ It will have at least two codes of this longest length, or we could
shorten one

o In other words, there are no nodes with one child, or we can replace the
child by the parent and get a shorter tree
@ The two symbols of the least frequencies will be of this particular
longest length

@ Thus an optimal coding scheme has its two least frequent symbols
with codes of the same length, the longest code length

e This is the first step of constructing the Huffman code tree
e The base case of induction

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 23 /47

Why is Huffman’s Algorithm Optimal?

@ If there are more than two codes of this length, they are
interchangeable, so get the two least frequent ones paired up to share
all but the last bit of their codes

@ Then merge the two characters into one new imaginary symbol with
summed frequency

@ The optimal coding scheme for this new char set will yield the
optimal coding scheme for the original set

e The induction

@ In this way, we keep coalescing until the problem is trivial, when we
have a rooted binary tree

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 24 /47

Why is Huffman’s Algorithm Optimal? TREE NOT

CORRECTED YET

Bm
p (30) nl (20)
g?>\ 0 (10)

& N

1(7) 8(2) 36
1(7 2 (6) @ ()/\

4(4) 5(3) 6(3) 73 2(6) 9(2)
4(4) 5(3) 6(3) 7(3) (2> 9(2)

A slightly different tree, less effective

Huffman’s tree in compression than Huffman’s

J. Holly DeBlois CS 444 Operating Systems September 17, 2025

Why is Huffman’s Algorithm Optimal? TREE NOT

CORRECTED YET

sp (30)

2
/\

1(7) 2 (6)

4(4) 5(3) 6(3) 7(3)

Longest path before compression Longest path after compression

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 26 /47

Implementation of Huffman’s Algorithm

@ Generate a custom table from the character frequencies of the
document under consideration

o Count character frequencies of the file, build a Huffman tree, then
compress its contents using the Huffman codes

@ Send the frequency table and the compressed document to the
recipient, where the same Huffman tree can be built and used to
decompress

@ Implementation

@ Read the file once to collect character frequencies

@ Build a Huffman tree based on the character frequencies

© Read the codes from the tree

© Read the file again and, for each ASCII code, output its Huffman code

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 27 /47

Bitwise Operations

& bitwise AND

| bitwise inclusive OR
"~ bitwise exclusive OR
<< left shift

>> right shift

~ one's complement

- two's complement

J. Holly DeBlois CS 444 Operating Systems September 17, 2025

One's Complement

Unary operator: ~

Flip each bit in the operand

Zeros become ones

Ones become zeros

Example: 10101010 == 01010101

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 29 /47

Two's Complement

o Unary operator: -

@ Two's complement is the negation operation
o It performs the following:

© Take the one's complement of the operand
© Thenadd 1

@ Try two's complement for these: 0x55, 0, —27

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 30/ 47

Left Shift <<

@ Syntax: operand << numOfBitPositions
Shift the bits in operand to the left
Bits that fall off the left side will disappear
0's are shifted in from the right

The operand is usually an unsigned integer

The value of i << 0 is not defined

o
o
o
o
@ The number of bit positions must be positive
o
o Example: 0x55 << 3

°

Left-shifting is the same as multiplying by a power of 2

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 31 /47

Right Shift >>

@ Syntax: operand >> numOfBitPositions

@ Shift the bits in operand to the right
@ Bits that fall off the right side will disappear
o If the operand is unsigned, O's are shifted in from the left
o If the operand is signed
o Arithmetic shift: fills with sign bit (extension)
o Logical shift: fills with 0's
@ The number of bit positions must be positive
@ The value of i >> 0 is not defined
o Example: 0x55 >> 1
@ Right-shifting of unsigned is the same as dividing by a power of 2

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 32 /47

Bitwise AND, Inclusive OR, Exclusive OR

@ Take the logical AND, OR, and XOR
@ Apply to each pair of bits

01001000 01001000 01001000
& 10111000 | 10111000 ~ 10111000
00001000 11111000 11110000

@ Example

o x = x & ~077 will clear the lowest 6 bits of x
e q = x > 077 is the quotient of dividing by 64
o r = x & 077 is the remainder

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 33 /47

Bit Masking

@ The process of turning on or off some bits in specific positions in an
unsigned integer

@ Some programs require a large number of Boolean variables
@ These variables are often referred to as flags

@ Since C does not have a Boolean type, these flags require an integer
type variable, but this uses more memory than is necessary for a
variable that only needs the capacity to hold two values

@ To save memory, these types of variables are often packed into one
integer variable

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 34 /47

Masks to Retrieve One Bit, Method 1

#define FLAG_1 1 /% 0000 0001 */
#define FLAG_2 2 /* 0000 0010 */
#define FLAG_3 4 /% 0000 0100 */
#define FLAG_4 8 /* 0000 1000 */
#define FLAG_5 16 /* 0001 0000 */
#define FLAG_6 32 /* 0010 0000 */
#define FLAG_7 64 /* 0100 0000 */
#define FLAG_8 128 /* 1000 0000 */
void main(void) {

int state = 44; /* 0010 1100 */

if (state & FLAG_1) printf("Flag 1 is set\n");
if (state & FLAG_2) printf("Flag 2 is set\n");
if (state & FLAG_3) printf("Flag 3 is set\n");
if (state & FLAG_4) printf("Flag 4 is set\n");
if (state & FLAG_5) printf("Flag 5 is set\n");
if (state & FLAG_6) printf("Flag 6 is set\n");
if (state & FLAG_7) printf("Flag 7 is set\n");
if (state & FLAG_8) printf("Flag 8 is set\n");
¥

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 35 /47

Masks to Retrieve One Bit, Method 2

#include <stdio.h>
#include <stdint.h>

uint64_t bitPos[64];

int main(void) {
uint64_t i, state = 0x1234567890ABCDEFul;

bitPos[0] = 1;
for (i = 1; 1 < 64; i++)
bitPos[i] = bitPos[i - 1] << 1;

for (i = 0; i < 64; i++)
if (state & bitPos[i])
printf("bit %lu is set\n", i + 1);

return O;

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 36 /47

Turn Off a Group of Bits

Example: char n = ’\xA5’;
1010 0101

Turn off the most significant 3 bits
Equivalently, keep the least significant 5 bits

So create a mask 0001 1111, which is >\x1F’
Do a bitwise AND between n and the mask
en=mn & ’\x1F’;

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 37 /47

Turn Off a Group of Bits

@ Example: char n = ’\xA5’;
1010 0101

@ Turn off the least significant 6 bits
Equivalently, keep the most significant 2 bits

So create a mask 1100 0000, which is >\xCO0’
Do a bitwise AND between n and the mask
n=n& >\xC0’;

Alternatively, flip 0011 1111
n=né& 077

@ ~077 is probably easier than >\xC0’ for most people

J. Holly DeBlois CS 444 Operating Systems September 17, 2025

Turn On a Group of Bits

@ Example: char n = ’\xA5’;

e 1010 0101

@ Turn on the most significant 2 bits
en =n | ~077

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 39 /47

Retrieve a Group of Bits

@ Goal: given an unsigned int x, retrieve n bits starting at position p
@ Example: n == 3, p == 6, retrieving bits at 6, 5, and 4
(7]6]5/4][3][2]1]0]
unsigned getBits(unsigned x, unsigned p, unsigned n) {
return (x >> (p - n + 1)) & (70 << n);

3

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 40 /47

Big Endian and Little Endian

@ Big endian: the 4 bytes of int is stored from the most significant
byte to the least significant
o Little endian: reversed
@ We can test to see whether a machine is big or little endian
union {
int 1i;
char c[sizeof (int)];

} u;

u.i = 1;
if (u.cl0] == 1)
printf("little endian\n");
else
printf ("big endian\n");

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 41 /47

Binary File /0O

@ When we open files in "r", "w", or "a" modes, they are text files
e Data for I/O are converted to ASCII codes

@ We can write binary data directly to files

@ Binary file 1/0 is faster than ASCII |/O

@ Binary files are more compact

°

Binary files preserve all bits — text files incur loss of precision

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 42 /47

fread() and furite()

size_t fread(void *ptr, size_t size,
size_t howMany, FILE *fp);

size_t fwrite(const void *ptr, size_t size,
size_t howMany, FILE *fp);

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 43 /47

Write a Binary File, furite ()

@ We can use "rb", "wb", or "ab" modes to open binary files
uint32_t i;
FILE *fp;
fp = fopen("binaryFile", "wb");
if (1fp) {
fprintf (stderr, "fail to open file\n");
return 1;
}
for (i = 0; 1 < 20; i++)
furite(&i, sizeof (uint32_t), 1, fp);
fclose(fp);

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 44 /47

Read a Binary File, fread ()

fp = fopen("binaryFile", "rb");
if (1fp) {
fprintf(stderr, "fail to open file\n");
return 1;
}
fread(num, sizeof (uint32_t), 20, fp);
fclose(fp);

for (i = 0; i < 20; i++)
printf ("%u\t%u\n", i, num[i]);

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 45 /47

Save Data to a Binary File

Java: serialization

Python: pickle

C: write a large data structure to a binary file
Be careful with endianness

You should fully document the format and how to read/write to
ensure portability

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 46 / 47

How to View Binary Files

Use the command hexdump to examine a binary file

Do a hexdump of a small executable

°
°

@ ELF, executable and linkable format

@ Use the command locate to locate a file
°

Use the utility readelf to see what is in an ELF file, such as libc.so

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 47 /47

