
CS 444 Operating Systems
Implementation of Huffman Code

J. Holly DeBlois

September 17, 2025

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 1 / 47



Apply for a CS Account

Apply for an account on the CS subnet within UMB here
https://portal.cs.umb.edu/accounts/login/

Enter a username of your choice

Enter your UMB email — you will receive a link to activate your CS
account

Enter a password of your choice

Join CS 444

See step-by-step directions here
https://www.cs.umb.edu/~ghoffman/linux/apply_process.html

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 2 / 47

https://portal.cs.umb.edu/accounts/login/
https://www.cs.umb.edu/~ghoffman/linux/apply_process.html


Text File Compression

Huffman code

David Huffman, 1952

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 3 / 47



Example

Compress a file of 100,000 characters of a, b, c, d, e, and f

Fixed-length codes: 300,000 bits

Variable-length codes:

a b c d e f

Frequency (in 1000s) 45 13 12 16 9 5
Fixed-length codes 000 001 010 011 100 101
Variable-length codes 0 101 100 111 1101 1100

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 4 / 47



Lossless File Compression

File compression using reduced representation of characters

Let F be a file with n characters (n bytes or 8n bits)

Each byte is a binary representation of the ASCII code of a character

Represent every character using a unique code of m bits (m < 8), and
write a file F ′ with the original characters replaced by their codes

The new file size is 8m < 8n bits

Lossless compression

We should be able to decompress F ′ and get F back

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 5 / 47



Rationale

Not all of 8 bits are needed to uniquely represent a character

Most files contain much fewer than 256 different characters

Consider a file of decimal digits and blanks and newlines

12 characters

As an ASCII file, each char takes 8 bits

But we can use 4 bits to code for 12 characters

0x30→ 0: digit ’0’ becomes 00002
0x31→ 1
. . .
0x39→ 9
0x0A→ 0xA: linefeed (LF)
0x20→ 0xB: space ’ ’ becomes 10112

Such a file can be compressed by a factor of 2

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 6 / 47



Example

Char ASCII (dec) ASCII (hex) ASCII (binary) New Code

’0’ 48 30 00110000 0000
’1’ 49 31 00110001 0001
’2’ 50 32 00110010 0010
’3’ 51 33 00110011 0011
’4’ 52 34 00110100 0100
’5’ 53 35 00110101 0101
’6’ 54 36 00110110 0110
’7’ 55 37 00110111 0111
’8’ 56 38 00111000 1000
’9’ 57 39 00111001 1001
LF 10 0A 00001010 1010
SP 32 20 00100000 1011

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 7 / 47



Compress and Decompress

Original file “00123 890\n00456 098\n”
In ASCII hex: 30 30 31 32 33 20 38 39 30 0A 30 30 34 35 36 20 30
39 38 0A

Compressed file in hex: 00 12 3B 89 0A 00 45 6B 09 8A (half as long)

To decompress, read 4 bits at a time from the compressed file

0→ 0x30, 1→ 0x31, . . . , 0xA→ 0x0A, 0xB → 0x20

Hex is easier to work with in this case

Question: When decompressing a file, how do you know you have
reached the end of the file?

The last byte may contain only 1 nibble of code, or 2 nibbles

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 8 / 47



Efficient File Compression

We would like a quantitative estimate of the effectiveness of various
coding schemes

We need a distribution of character frequencies

Consider this distribution

Digits 1 through 9 are about equally likely, although of declining
frequencies
0, space, and linefeed are much more frequent

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 9 / 47



Character Frequency

Char SP LF 0 1 2 3 4 5 6 7 8 9

Freq 30 20 10 7 6 5 4 3 3 3 2 2

Total frequency count is 95

With this distribution, we would like shorter codes for SP, LF, and 0,
and longer ones for the other digits

How do we decompress if the lengths of the codes are variable?

The answer is prefix codes

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 10 / 47



Prefix Codes

Prefix means some initial substring

For example 110 is a prefix of 11011

A set of prefix codes has the property that no code is the prefix of
another

With a set of prefix codes, if we match the initial bits (prefix) of the
compressed data with all the bits of a certain code, it can only be
that code

So we look no further, remove the prefix from the stream, decode it,
and repeat

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 11 / 47



Prefix Code Examples

For example, { 00, 10, 110 } is a set of prefix codes, because all three
pass the test:

Testing 00: neither 10 nor 110 start with 00
Testing 10: neither 00 nor 110 start with 10
Testing 110: neither 00 nor 10 start with 110

{ 0, 10, 11 } is also a set of prefix codes

{ 0, 01, 11 } is not a set of prefix codes because 0 is a prefix of 01

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 12 / 47



Construct a Prefix Code Tree

How do we generate a set of prefix codes for a certain use?

Answer: Construct a binary tree with the right number of leaves

Each code is determined by a path from the root to the leaf, where
going left gives a 0 and going right a 1

For example:

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 13 / 47



Read the Prefix Codes from a Code Tree

This defines

00 and 01 from the leaves at the left
10000 and 10001 for the leaves at the bottom
10001, 1001, 101, and 11 for the leaves going up the right-hand side

Now we have some short codes for frequent symbols, and some longer
codes for less frequent symbols

No bit string is a prefix of another, because each bit string specifies a
unique path to a leaf

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 14 / 47



Assign Codes According to Frequency

Char SP LF 0 1 2 3 4 5 6 7 8 9

Freq 30 20 10 7 6 5 4 3 3 3 2 2

Our example of 12 symbols

Digits 1 through 9 are about
equally likely, although of
declining frequencies (this is
actually observed)
0, space, and linefeed are
much more frequent

We can set up a binary tree with
these 12 symbols at the leaves

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 15 / 47



Convert Symbols to Codes

Read off the codes from the
binary tree

Space is reached by traversing
down the right-hand side of the
tree, going right 2 times, so its
code is 11

Linefeed is reached by going
right and then left, so its code is
10

1 is reached by going left, then
right, then left, so its code is
010, and so on

291 bits is used to encode the
file, much better than
4× 95 = 380 bits

char code freq total bits
SP 11 30 60
LF 10 20 40
0 011 10 30
1 010 7 21
2 00111 6 30
3 00110 5 25
4 00101 4 20
5 00100 3 15
6 00011 3 15
7 00010 3 15
8 00001 2 10
9 00000 2 10

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 16 / 47



Encode the File

Original file “00123890\n00456098\n”
In hex: 30 30 31 32 33 20 38 39 30 0A 30 30 34 35 36 20 30 39 38 0A

Compressed file in binary: 010 010 011 00000 00001 10 00110 00111
010 11 010 010 00010 00011 00100

Question: When compressing a file, what do you do with the last
byte, which may not be completely filled with codes?

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 17 / 47



Decompress a File

For example: 0100100010010100011111

Following the bits from the input file, traverse down the code tree
until a leaf is reached

010 leads to the leaf labeled by “1”

010 → 1
00100 → 5

10 → nl
10 → nl

00111 → 2
11 → sp

Thus this bit string decodes to “15\n\n2 ”

Is this an optimal coding?

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 18 / 47



Huffman Coding

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 19 / 47



Huffman Coding

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 20 / 47



Huffman Coding ERROR: REVERSE 0←→ 1

During tree construction, a priority queue holds the characters

The frequencies of the characters are their priorities

Convention to assign code: larger weight = 0, smaller weight = 1,
random code for same weights

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 21 / 47



Huffman Coding TREE NOT CORRECTED YET

char code freq. total bits
SP 00 30 60
LF 10 20 40
0 110 10 30
1 0101 7 28
2 0110 6 24
3 1110 5 20
4 01000 4 20
5 01001 3 15
6 01110 3 15
7 01111 3 15
8 11110 2 10
9 11111 2 10

Total bits = 287

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 22 / 47



Why is Huffman’s Algorithm Optimal?

Consider the optimal coding scheme for n characters

It will have a longest code for the least frequent symbol

It will have at least two codes of this longest length, or we could
shorten one

In other words, there are no nodes with one child, or we can replace the
child by the parent and get a shorter tree

The two symbols of the least frequencies will be of this particular
longest length

Thus an optimal coding scheme has its two least frequent symbols
with codes of the same length, the longest code length

This is the first step of constructing the Huffman code tree
The base case of induction

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 23 / 47



Why is Huffman’s Algorithm Optimal?

If there are more than two codes of this length, they are
interchangeable, so get the two least frequent ones paired up to share
all but the last bit of their codes

Then merge the two characters into one new imaginary symbol with
summed frequency

The optimal coding scheme for this new char set will yield the
optimal coding scheme for the original set

The induction

In this way, we keep coalescing until the problem is trivial, when we
have a rooted binary tree

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 24 / 47



Why is Huffman’s Algorithm Optimal? TREE NOT
CORRECTED YET

Huffman’s tree
A slightly different tree, less effective
in compression than Huffman’s

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 25 / 47



Why is Huffman’s Algorithm Optimal? TREE NOT
CORRECTED YET

Longest path before compression Longest path after compression

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 26 / 47



Implementation of Huffman’s Algorithm

Generate a custom table from the character frequencies of the
document under consideration

Count character frequencies of the file, build a Huffman tree, then
compress its contents using the Huffman codes

Send the frequency table and the compressed document to the
recipient, where the same Huffman tree can be built and used to
decompress

Implementation
1 Read the file once to collect character frequencies
2 Build a Huffman tree based on the character frequencies
3 Read the codes from the tree
4 Read the file again and, for each ASCII code, output its Huffman code

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 27 / 47



Bitwise Operations

& bitwise AND

| bitwise inclusive OR

^ bitwise exclusive OR

<< left shift

>> right shift

~ one’s complement

- two’s complement

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 28 / 47



One’s Complement

Unary operator: ~

Flip each bit in the operand

Zeros become ones

Ones become zeros

Example: ~10101010 == 01010101

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 29 / 47



Two’s Complement

Unary operator: -

Two’s complement is the negation operation

It performs the following:

1 Take the one’s complement of the operand

2 Then add 1

Try two’s complement for these: 0x55, 0, −27

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 30 / 47



Left Shift <<

Syntax: operand << numOfBitPositions

Shift the bits in operand to the left

Bits that fall off the left side will disappear

0’s are shifted in from the right

The operand is usually an unsigned integer

The number of bit positions must be positive

The value of i << 0 is not defined

Example: 0x55 << 3

Left-shifting is the same as multiplying by a power of 2

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 31 / 47



Right Shift >>

Syntax: operand >> numOfBitPositions

Shift the bits in operand to the right

Bits that fall off the right side will disappear

If the operand is unsigned, 0’s are shifted in from the left

If the operand is signed

Arithmetic shift: fills with sign bit (extension)
Logical shift: fills with 0’s

The number of bit positions must be positive

The value of i >> 0 is not defined

Example: 0x55 >> 1

Right-shifting of unsigned is the same as dividing by a power of 2

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 32 / 47



Bitwise AND, Inclusive OR, Exclusive OR

Take the logical AND, OR, and XOR

Apply to each pair of bits

01001000 01001000 01001000

& 10111000 | 10111000 ^ 10111000

---------- ---------- ----------

00001000 11111000 11110000

Example

x = x & ~077 will clear the lowest 6 bits of x
q = x >> 077 is the quotient of dividing by 64
r = x & 077 is the remainder

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 33 / 47



Bit Masking

The process of turning on or off some bits in specific positions in an
unsigned integer

Some programs require a large number of Boolean variables

These variables are often referred to as flags

Since C does not have a Boolean type, these flags require an integer
type variable, but this uses more memory than is necessary for a
variable that only needs the capacity to hold two values

To save memory, these types of variables are often packed into one
integer variable

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 34 / 47



Masks to Retrieve One Bit, Method 1

#define FLAG_1 1 /* 0000 0001 */

#define FLAG_2 2 /* 0000 0010 */

#define FLAG_3 4 /* 0000 0100 */

#define FLAG_4 8 /* 0000 1000 */

#define FLAG_5 16 /* 0001 0000 */

#define FLAG_6 32 /* 0010 0000 */

#define FLAG_7 64 /* 0100 0000 */

#define FLAG_8 128 /* 1000 0000 */

void main(void) {

int state = 44; /* 0010 1100 */

if (state & FLAG_1) printf("Flag 1 is set\n");

if (state & FLAG_2) printf("Flag 2 is set\n");

if (state & FLAG_3) printf("Flag 3 is set\n");

if (state & FLAG_4) printf("Flag 4 is set\n");

if (state & FLAG_5) printf("Flag 5 is set\n");

if (state & FLAG_6) printf("Flag 6 is set\n");

if (state & FLAG_7) printf("Flag 7 is set\n");

if (state & FLAG_8) printf("Flag 8 is set\n");

}

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 35 / 47



Masks to Retrieve One Bit, Method 2

#include <stdio.h>

#include <stdint.h>

uint64_t bitPos[64];

int main(void) {

uint64_t i, state = 0x1234567890ABCDEFul;

bitPos[0] = 1;

for (i = 1; i < 64; i++)

bitPos[i] = bitPos[i - 1] << 1;

for (i = 0; i < 64; i++)

if (state & bitPos[i])

printf("bit %lu is set\n", i + 1);

return 0;

}

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 36 / 47



Turn Off a Group of Bits

Example: char n = ’\xA5’;

1010 0101

Turn off the most significant 3 bits
Equivalently, keep the least significant 5 bits

So create a mask 0001 1111, which is ’\x1F’

Do a bitwise AND between n and the mask

n = n & ’\x1F’;

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 37 / 47



Turn Off a Group of Bits

Example: char n = ’\xA5’;

1010 0101

Turn off the least significant 6 bits
Equivalently, keep the most significant 2 bits

So create a mask 1100 0000, which is ’\xC0’

Do a bitwise AND between n and the mask

n = n & ’\xC0’;

Alternatively, flip 0011 1111

n = n & ~077

~077 is probably easier than ’\xC0’ for most people

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 38 / 47



Turn On a Group of Bits

Example: char n = ’\xA5’;

1010 0101

Turn on the most significant 2 bits

n = n | ~077

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 39 / 47



Retrieve a Group of Bits

Goal: given an unsigned int x, retrieve n bits starting at position p

Example: n == 3, p == 6, retrieving bits at 6, 5, and 4

7 6 5 4 3 2 1 0

unsigned getBits(unsigned x, unsigned p, unsigned n) {

return (x >> (p - n + 1)) & ~(~0 << n);

}

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 40 / 47



Big Endian and Little Endian

Big endian: the 4 bytes of int is stored from the most significant
byte to the least significant

Little endian: reversed

We can test to see whether a machine is big or little endian

union {

int i;

char c[sizeof(int)];

} u;

u.i = 1;

if (u.c[0] == 1)

printf("little endian\n");

else

printf("big endian\n");

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 41 / 47



Binary File I/O

When we open files in "r", "w", or "a" modes, they are text files

Data for I/O are converted to ASCII codes

We can write binary data directly to files

Binary file I/O is faster than ASCII I/O

Binary files are more compact

Binary files preserve all bits — text files incur loss of precision

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 42 / 47



fread() and fwrite()

size_t fread(void *ptr, size_t size,

size_t howMany, FILE *fp);

size_t fwrite(const void *ptr, size_t size,

size_t howMany, FILE *fp);

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 43 / 47



Write a Binary File, fwrite()

We can use "rb", "wb", or "ab" modes to open binary files

uint32_t i;

FILE *fp;

fp = fopen("binaryFile", "wb");

if (!fp) {

fprintf(stderr, "fail to open file\n");

return 1;

}

for (i = 0; i < 20; i++)

fwrite(&i, sizeof(uint32_t), 1, fp);

fclose(fp);

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 44 / 47



Read a Binary File, fread()

fp = fopen("binaryFile", "rb");

if (!fp) {

fprintf(stderr, "fail to open file\n");

return 1;

}

fread(num, sizeof(uint32_t), 20, fp);

fclose(fp);

for (i = 0; i < 20; i++)

printf("%u\t%u\n", i, num[i]);

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 45 / 47



Save Data to a Binary File

Java: serialization

Python: pickle

C: write a large data structure to a binary file

Be careful with endianness

You should fully document the format and how to read/write to
ensure portability

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 46 / 47



How to View Binary Files

Use the command hexdump to examine a binary file

Do a hexdump of a small executable

ELF, executable and linkable format

Use the command locate to locate a file

Use the utility readelf to see what is in an ELF file, such as libc.so

J. Holly DeBlois CS 444 Operating Systems September 17, 2025 47 / 47


