
CS444: An Introduction to Operating Systems
SPRING 2026v3

Dr. J. Holly DeBlois
Office: McCormack, 3rd floor, room M-3-201-32

Office hours: Tues/Wed/Thurs 2:30-3:30pm

Lectures and Class Tuesday & Thursday, 4:00-5:15, W01-0005 section 02 (course 3891)
Tuesday & Thursday, 5:30-6:45, W01-0005 section 01 (course 3745)

Instructor Email jane.deblois@umb.edu
Instructor Website Lecture and assignments are at: https://www.cs.umb.edu/~hdeblois/cs444/s26

Grades are on canvas https://www.umb.edu/canvas/
Portal: Register for cs444 at https://portal.cs.umb.edu/ to create your course directory
Piazza: Join Piazza: https://piazza.com/umb/spring2026/cs444

Course Description: In CS444, we present the basic aspects of operating systems, a layer of
software between hardware and user software, and we code projects in C within the OS context.

Textbooks: The main reference in this course is Modern Operating Systems, 5th edition., (Pearson,
2023) by Andrew S. Tanenbaum and Herbert Bos. The C code reference is: The C Programming
Language, 2nd edition (Prentice Hall, 1978) by Brian W. Kernighan and Dennis M. Ritchie, which
presents coding in C in 8 chapters and has an appendix on grammar of C. For emacs editor:
https://www.gnu.org/software/emacs/refcards/pdf/refcard.pdf.

Attendance: Mandatory.
Note: If you miss more than 5 classes, your final grade will be lowered. If you miss 6 or 7,
lowered by 1 letter grade step. If you miss 8 or more, lowered by 2 letter grade steps. See
chart of scores and grade steps on last page.

Topics: We shall cover the following topics:
• Operating System definitions and features
• Processes and scheduling algorithms, threads, the critical region problem and semaphores
• Memory management, including cache memory, virtual memory, paging and segmentation
• File systems: implementation, management and optimization
• Input/Output control: buffering, spooling, disk management and disk access scheduling
• Deadlocks: detection, recovery, avoidance and prevention
• Virtualization and cloud computing
• Multiple processor systems
• Security threats and defenses
• Linux/Android/Windows: differences and similarities
• C Code Grammar: concise and lasting

In-Class Exercises: You must bring a computer to class and have a setup in place to access your
course directory on the CS Linux servers. We hand-write C code. We use emacs to create .c files on
the server. We compile and run on the server. Both kinds of exercises are graded. Since you are
allowed 5 missed classes, your 5 lowest scores of work for particular classes will be dropped.

Note: No courses required by the CS major, minor or certificate may be taken pass/fail.

mailto:jane.deblois@umb.edu
https://www.gnu.org/software/emacs/refcards/pdf/refcard.pdf
https://piazza.com/umb/spring2026/cs444
https://portal.cs.umb.edu/
https://www.umb.edu/canvas/
https://www.cs.umb.edu/~hdeblois/cs444/s26

Prerequisites: CS310 Algorithms and CS341 Computer Architecture. You need to describe and
implement algorithms in C. You need to draw timelines and architecture down to driver and
hardware level. You need skills from CS240 Programming in C and from probability distributions
in CS220 Applied Discrete Math. We offer optional ungraded hw0/0.5 to assure that you can work
on the servers and access your course directory without changing privacy settings (do not use a
linux move command to put files into it, use a copy command (cp -r -p <file>).

Evaluation: Your grade in the course is determined by: four C code programming projects (40%),
four homework assignments (30%), two tests (20%), class exercises (explained above) (10%) and
whether you miss more than 5 classes (explained above). Submit your programming and
homework by uploading files of the specified type to the server and placing them in your course
directory as directed. You lose points if permissions are incorrect on your course dir. You lose
points if scripts cannot find your files.

Programming projects: Design carefully and explain. Upload, edit, compile and run on the server
each time you work since C libraries on the server differ from those on your machine. Follow the
rules in the Academic integrity section below – give sources for and limit the amount of non-
original C code you copy, copy and modify or generate. Provide a minimum of three incremental
submissions of each project on the server starting at least two days before the assignment is due.
Name the files as directed. This shows your development process. We test your code using Measure
of Software Similarity (MOSS) provided by Stanford University. Software similarity to other
students’ code greater than 45% earns 0 points. We may call you in to explain your code.

Homework: Upload your homework to the server. Drawings in the homework are handwritten,
photographed, and included in your typeset document converted to PDF. Some are .txt files.

Tests: The two tests are oral exams, answering the instructor’s questions in a 30- or 15-minute
sessions. For test1, students form teams of two. For test2, each student is individually tested.

Collaboration policy: You are encouraged to ask questions in class and may consult with your
fellow students about assignments. When writing C code, do not stay “stuck” – ask for help via
piazza. Be careful not to help another student by giving code – keep your laptop closed while
conversing and don’t share videos that picture code – too high a MOSS similarity means 0 for both.

Late Penalties: In class exercises, homework, C code projects and tests are scheduled for precise
times. Late hwk or code submission loses 1% of the score per hour. Late test arrival means you
will be given less of the test. Late class arrival means you may miss hand-written or server work.

Academic integrity and Student Conduct will be strongly enforced. Your code and homework
must be your own product, may include some code copied or modified from outside sources or
generated by chatGPT or other large language models, but must be sufficiently original to pass the
MOSS criteria given in Programming projects above. See
https://www.umb.edu/academics/provost/academic-integrity. Since UMB does not have any
guidance for putting sources in code yet, we will use the MIT guidance. See
https://integrity.mit.edu/handbook/writing-code/ In addition, since neither has guidance for citing
chatGPT or other large language model generated code, document any code you generated and
used by marking START, citing the prompt you entered and further down marking END. We
recommend you take steps to not allow chatGPT or any large language model to store your results.
If you have a series of prompts, list them in your readMe.txt and put only the last one in the code.
Student Conduct: You must be honest in all your conduct. The University presupposes that work
for academic credit is the student’s own and complies with University policies above and here:
https://www.umb.edu/camp-life/dean-of-students/student-conduct-process/.

https://www.umb.edu/campus-life/dean-of-students/student-conduct-process/
https://integrity.mit.edu/handbook/writing-code/
https://www.umb.edu/academics/provost/academic-integrity

Accommodation: Section 504 of the Rehabilitation Act of 1973 offers guidelines and support for
curriculum modifications and adaptations for students with documented disabilities. Contact the
Ross Center at 617-287-7430 and please dcuss your accommodations with the instructor.

Syllabus and Schedule Subject to Change: The instructor reserves the right to change the syllabus
when necessary and will let you know. Here is the tentative Schedule (29 classes over 15 weeks):

week class/date chapter topic assignment

 1

 2

 3

 4

 5

 6

 7

 -
 8

 9

 10

 11

 12

 13

 14

 15

#1-Tue 1/27

#2-Thu 1/29
Thurs 2/5add/drop ends
#3-Tue 2/3
#4-Thurs 2/5
#5-Tue 2/10
#6-Thu 2/12
Mon 2/16 Holiday
#7-Tue 2/17
#8-Thu 2/19
#9-Tue 2/24
#10-Thu 2/26
Fri 2/27 N/A grades due
#11-Tue 3/3
#12-Thu 3/5
Mon-Wed 3/9-3/11
#14-Thu 3/12
3/15-3/22 Spring Break
#15-Tue 3/24
#16-Thu 3/26
#17-Tue 3/31
#18-Thu 4/2
#19-Tue 4/7

#20-Thu 4/9
#21-Tue 4/14
#22-Thu 4/16
Mon 4/20 Holiday
#23-Tue 4/21
#24-Thu 4/23
Fri-4/23

#25-Tue 4/28
#26-Thu 4/30
#27-Tue 5/5
Wed-Fri 5/6-5/8
#29-Tue 5/12

 Syllabus/ 1

 1

 2
 2
 3
 3

 4
 4
 5
 5

 12
 1-5,12
 testing
 6

 6
 7
 7
 8
 8

 9
 9
 10

 10
 10

 11
 11
 6-11
 testing

Introduction

OS, Huffman code

processes, threads
processes, threads
memory, Hamming code
memory

file systems
file systems
input/output
input/output

designing an OS/
review(Ch 1-5,12, C code)
test 1 (Ch 1-5, 12, C code)
deadlock

deadlock
virtualization
virtualization
multi-processor systems
queuing theory,
 posix threads
security
security
Unix, Linux, Android,

Unix, Linux, Android
Unix, Linux, Android
Pass/Fail/Withdraw
 deadline
Windows
Windows
review(Ch 6-11, C code)
test 2 (Ch 6-11, C code)
special topic

In class C code and grammar, hand-written
 and on server (c/g-h/s) part1, login, emacs
hw1 posted, in class C c/g-h/s part2, emacs

In class C c/g-h/s part3, passwordless login
In class C c/g-h/s part4, hw1 due, malloc
proj1 posted, in class C c/g-h/s part5
In class C c/g-h/s part6

In class C code readMe.txt design part1
In class C code readMe.txt design part2
hw2 posted, in class C code1, proj1 due
proj2 posted, in class C code2, test signup

In class C code3, hw2 due

no class Tues
In class C code4, proj2 due

hw3 posted, in class C code5
In class C code6
proj3 posted, in class C code7, hw3 due
In class C code8
In class C code9

In class C code10
hw4 posted, in class C code11, proj3 due
proj4 posted, in class C code12, test signup

In class C code read1 handwritten,hw4 due
In class C code read2 handwritten

In class C code read3 handwritten
In class C code read4 handwritten, proj4 due
review
no class Thurs
last class

Other References. Operating Systems Design and Implementation, 3rd edition (Pearson, 2006) by
Andrew S.Tanenbaum and Albert S. Woodhull, which includes 392 pages of C code for the MINIX
OS. C code of the OS of the server can be found in the file tree.

Revisions: Section numbers corrected. Posted 1/22/2026. Piazza link/add drop day corrected
3feb2026

Table of score to grade conversions (default grading scheme “UMB letter” in canvas):
93 <= S = A
90 <= S < 93 = A-
87 <= S < 90 = B+
83 <= S < 87 = B
80 <= S < 83 = B-
77 <= S < 80 = C+
73 <= S < 77 = C
70 <= S < 73 = C-
67 <= S < 70 = D+
63 <= S < 67 = D
60 <= S < 63 = D-
 S < 60 = F

