
UMass Boston CS 444

Project 4

Posted Tuesday, April 15, 2025

Due Wednesday, April 30, 2025 at 11:59pm

1 Overview

Proj4 builds a simulation of a queueing system, implemented as a C program named q.c. This proj4 description
includes 7 sections:

� Introduction

� Command Line Arguments

� Grading Rubric

� Implement M/M/1

� Implement Statistics

� Implement M/M/n

� Appendix A: Code Snippets to Include.

Since writing code is a process, please start by reading the proj4 description many times, until you understand it.
Then sit and think about the overall design of your q.c.

Incremental deliveries are required. Each time you work on your code on the server (or plan an upload), please
copy your existing q.c, q and readMe.txt to q.c ¡date¿, q ¡date¿ and readMe.txt ¡date¿. Then update the q.c and
readMe.txt and recompile to get q. Please be sure you create at least two prior increments. Note: Your first
increment must be created at least 2 days before proj4 is due. You also are required to copy the supplied files to
your course directory.

2 Introduction

The simulator q.c is one process that contains several threads. Various components of the queueing system are
simulated by the threads.

1. You write C code that makes use of the POSIX thread (pthread) library. The simulation is a REAL-TIME
system so the unit of time is ONE second.

2. POSIX threads were discussed in class. See instructor website entry ”posixthreads slides”.

3. Queueing theory was discussed in class. See instructor website entry ”queuing slides” (Note: both spellings
queuing and queueing are correct!).

1

4. Arrivals in the Queueing System. The arrival of customers follows an exponential distribution, which is
characterized by a parameter λ. This λ is understood as the arrival rate. For example, if λ = 5, it means
that five customers will arrive per second on average. An incoming customer enters the FIFO queue.

5. Servers in the Queueing System. The system has one or more servers. When a server is available, it fetches
a customer from the queue and spends some amount of time to provide service to the customer. The service
time is determined by another exponential distribution, characterized by µ, the service rate. For example, if
µ = 7, it means that a server can service seven customers per second on average.

NOTE: If there is only one server, a stable queueing system requires that λ be less than µ. Otherwise,
customers arrive faster than service can be provided.

NOTE2: If there are multiple servers, λ must be less than the number of servers times µ.

3 Command Line Arguments

Using getopt.h code, implement the following command line arguments:

� -l lambda: lambda is the arrival rate — default is 5.0

� -m mu: mu is the service rate — default is 7.0

� -c numCustomer: number of customers — default is 1000

� -s numServer: number of servers, between 1 and 5 — default is 1

NOTE3: Your code should check that lambda is less than mu times numServer
because otherwise the queueing system is unstable.

4 Grading Rubric

Create a directory called proj4 in the cs444 folder. Put all files there, including the files you were given, your
source code, a Makefile, an executable called q, and readMe.txt. You must recompile your code on the server.

� (30 points) readMe.txt: Describe your high level design progress, any tough stretches that occurred in your
work for thread1, thread2, thread3, statistics and multiple servers and any outside sources that helped you.
Make sure your code has the items in it that you talk about in your readMe.

� (10 points) Command line arguments and citing sources: It is required that you use getopt.h to create your
command line arguments in your q.c and if you include any code (copied or copied and modified) from an
outside source, please follow the MIT guideline and show start and end markers for each section. Keep in
mind that we run MOSS to check similarity. You may be asked to come in and explain your code.

� (10 points) Incremental delivery was done as requested.

� (30 points) the M/M/1 system ./q (same as ./q -l 5 -m 7 -c 1000 -s 1) runs well as explained above.

� (10 points) The M/M/n system ./q -l 5 -m 2 -c 1000 -s 4 runs well as explained above.

� (10 points) Statistics are done correctly in M/M/n.

You can run the reference executable /home/hdeblois/cs444/proj4/ref to see the statistics generated by the
code of the instructor. The observed results will change from run to run. You can also use the analytical formulas
in the lecture notes on queueing theory to calculate theoretical prediction. For grading, the instructor or TA will
run your code three times. You lose points if all three runs produce erroneous numbers that are more than thirty
percent away from the reference numbers. The simulation is real-time. If λ is 5 and there are 1000 customers, the
simulation is expected to take 200 seconds. During code development, you can get results faster by using fewer
customers, such as ./q -c 200.

2

5 Implement M/M/1 System

The arrival rate (λ) is 5 and the service rate (µ) is 7. There is one server. You write C code for the three
threads that use the pthread library. You can copy sample code that uses pthread from the instructor’s directory
/home/hdeblois/cs444/proj4/*.

� Thread 1 generates the customers. It first draws a pseudorandom number tc from the exponential distribution
with parameter λ. This number tc is the arrival time of the next customer. To simulate this arrival event,
thread 1 will sleep for tc seconds. When it wakes up, it inserts the new customer into the queue. If the queue
was empty before the insertion, thread 1 will signal thread 2 that there is a customer now. Thread 1 repeats
this process: draw tc, sleep for tc seconds, wake up, insert the customer into the queue, and signal thread 2
if necessary.

� Thread 2 simulates the server. It checks the queue to see if there is a customer. If there is no customer, thread
2 waits for a signal from thread 1. If there is a customer, thread 2 removes the customer from the queue to
provide service. The service time ts is drawn from the exponential distribution with parameter µ. To simulate
providing service to a customer, thread 2 will sleep for ts seconds. When it wakes up, it has finished with
the customer. So it checks the queue again for the next customer. Thread 2 repeats this process: check the
queue, if the queue is empty, go to sleep and wait for a signal, else remove a customer from the queue, draw
ts, and sleep for t seconds.

� Thread 3 observes the queue length. It repeats this process: record the queue length, and sleep for 0.005
seconds.

The main program initializes the three threads and waits for them to finish. To reach the steady state of this
M/M/1 Markov process, we will run the simulation for 1,000 customers. Thus, thread 2 can terminate as soon as it
has finished the 1,000th customers. However, threads 1 and 3 need to keep going until the 1,000th customer has left
the system. The thread 1 keeps generating customers to maintain the steady state, and thread 3 keeps observing
the queue length. You need to find a way to tell threads 1 and 3 to stop after thread 2 has stopped. After all
threads have stopped and joined the main program, your code should print the following statistics:

� 1. The mean and standard deviation of inter-arrival time

� 2. The mean and standard deviation of waiting time

� 3. The mean and standard deviation of service time

� 4. The mean and standard deviation of queue length

� 5. Server utilization, which is busy time divided by total time

5.1 Implement Statistics: Online Average and Standard Deviation and Server Uti-
lization

It is straightforward to calculate the average and standard deviation of the numbers in an array. However, there
are situations when the numbers are coming in one by one, but we do not know how many will eventually come.
We cannot save them in an array to be analyzed later when we do not have the length of the array beforehand.
Therefore, we must do the calculation in an online fashion. That is, we calculate avg/std cumulatively without
saving the individual numbers. See the code in onlineAvgStd.c. This should take care the first four statistics.

� 1. The mean and standard deviation of inter-arrival time

� 2. The mean and standard deviation of waiting time

� 3. The mean and standard deviation of service time

� 4. The mean and standard deviation of queue length

3

� 5. Server utilization, which is busy time divided by total time

To get the last number, we can use two timestamps, one at the beginning of the simulation and the other the end.
Their difference is total time. Busy time is the sum of service time for all customers.

6 Implement M/M/n System

Expand the capabilities of the simulator by providing up to five servers. If the code for one server works well, it
is just a matter of spawning additional threads to run the server code. The output of this part is the same as in
M/M/1, except that utilization is the average utilization of all servers.

7 Appendix A: Code Snippets to Include

This section explains useful snippets:

� How to sleep to implement a time interval

� How to create reentrant code that can generate pseudorandom numbers

� How to draw from an exponential distribution

� How to implement the queue

7.1 How to Sleep to Implement a Time Interval

An important aspect of the project is to sleep well. The classic Unix sleep() takes an integer argument and sleeps
for that number of seconds. The threads in this project, however, need to sleep for fractional seconds. This can be
done with nanosleep(). The following code shows how to sleep for 0.005 second.

#include <sys/time.h>

struct timespec sleepTime;

sleepTime.tv_sec = 0;

sleepTime.tv_nsec = 5000000L;

nanosleep(&sleepTime, NULL);

7.2 How to Create Reentrant Code that can Generate Pseudorandom Numbers

The classic Unix rand() is poorly random. The newer drand48() has better randomness but is not reentrant —
only one thread can run drand48() at a time. In this project, both threads 1 and 2 must generate pseudorandom
numbers simultaneously and independently. You can use srand48 r() and drand48 r() for this purpose.

#include <stdlib.h>

#include <sys/time.h>

void *threadXYZ(void *p) {

struct drand48_data randData;

struct timeval tv;

double result;

gettimeofday(&tv, NULL);

4

//to seed the generator

srand48_r(tv.tv_sec + tv.tv_usec, &randData);

//to draw a number from [0, 1) uniformly and store it in "result"

drand48_r(&randData, &result);

}

The above code snippet should be present in both threads 1 and 2 so that they have local (private) sequences of
pseudorandom numbers. These pseudorandom numbers are uniformly distributed between 0 and 1.

7.3 How to Draw from an Exponential Distribution

Having generated a pseudorandom number between 0 and 1 uniformly, you can transform it to follow the exponential
distribution with parameter λ as follows.

#include <math.h>

double rndExp(struct drand48_data *randData, double lambda) {

double tmp;

drand48_r(randData, &tmp);

return -log(1.0 - tmp) / lambda;

}

Note that the above code is reentrant as long as the private randData of a thread is passed as the parameter.
Threads 1 and 2 can share this function. Therefore, only one copy of this function is needed.

7.4 How to Implement the Queue

The FIFO queue should be implemented as a linked list. A pthread mutex is used to coordinate exclusive access to
the queue by the threads.

#include <pthread.h>

#include <sys/time.h>

typedef struct customer customer;

struct customer {

struct timeval arrivalTime;

customer *next;

};

customer *qHead, *qTail;

unsigned qLength;

pthread_mutex_t qMutex;

The variables qHead, qTail, qLength, and qMutex are global variables shared by all threads. Thread 1 inserts a
new customer at the tail. Thread 2 removes a customer from the head.

void *thread1(void *p) {

customer *newCustomer;

loop

//draw inter-arrival time from exponential distribution

//sleep for that much time

newCustomer = (customer *) malloc(sizeof(customer));

//gettimeofday() timestamp the arrival time

5

/*lock qMutex

*consider 2 cases:

*1. insert into a nonempty queue

*2. insert into an empty queue -- signal thread 2

*unlock qMutex

*/

endLoop

}

void *thread2(void *p) {

customer *aCustomer;

struct timeval tv;

double waitingTime;

loop

/*lock qMutex

*consider 2 cases:

*1. a nonempty queue: remove from head

*2. an empty queue: wait for signal

*unlock qMutex

*/

gettimeofday(&tv, NULL); //timestamp the departure time

waitingTime = tv.tv_sec - aCustomer->arrivalTime.tv_sec +

(tv.tv_usec - aCustomer->arrivalTime.tv_usec) / 1000000.0;

/*draw service time from exponential distribution

*sleep for that much time

*/

free(aCustomer);

endLoop

}

When thread 1 inserts a new customer to an empty queue, it should signal thread 2 via a conditional variable. The
above snippet also shows how to calculate the waiting time of a customer. Thread 3 can safely inspect the value of
qLength without using the mutex.

6

	Overview
	Introduction
	Command Line Arguments
	Grading Rubric
	Implement M/M/1 System
	Implement Statistics: Online Average and Standard Deviation and Server Utilization

	Implement M/M/n System
	Appendix A: Code Snippets to Include
	How to Sleep to Implement a Time Interval
	How to Create Reentrant Code that can Generate Pseudorandom Numbers
	How to Draw from an Exponential Distribution
	How to Implement the Queue

