Seminar in Differential Geometry and General Relativity Suggested Problem Set 1 (Draft) 5 June 2007

- (1) Look up the axioms that define a vector space. Then show that if V is a vector space and $v \in V$ then $(-1) \cdot v = -v$ using on the axioms. There is actually something to prove here. On the left-hand side of the equation, we have a scalar multiplied by a vector. On the right-hand, there's only a vector. The minus sign is part of the symbol -v that means "the additive inverse of a vector named v."
- (2) Recall the vector space $C[0,1] = \{f : [0,1] \to \mathbb{R} \mid f \text{ is continuous}\}$. For each $c \in \mathbb{R}$, consider the set of vectors defined by

$$V_c = \{f : [0,1] \to \mathbb{R} \mid f \text{ is continuous and } f(0) = c\}.$$

For which values of c is V_c a subspace of C[0,1]? Explain.

- (3) Consider the map $e_p : C[0,1] \to \mathbb{R}$ that evaluates a function f at p, that is, $e_p(f) = f(p)$. For which values of p, if any, is the evaluation map e_p linear?
- (4) Find an infinite set of linearly independent vectors in C[0,1], not including polynomials. If you can, prove that your set is indeed linearly independent. Short of that, explain what you need to do in order to prove such a claim.
- (5) Show that any two vectors $v = (v_1, v_2)$, $w = (w_1, w_2)$ in \mathbb{R}^2 form a basis if and only if the components of those vectors satisfy $v_1w_2 v_2w_1 \neq 0$. How is this statement related to invertibility of a change of basis operator?
- (6) Let P_3 denote the vector space consisting of polynomials of degree less than or equal to 3, with real coefficients. Let $D: P_3 \to P_3$ denote the usual derivitive operator, and let $\mathrm{Id}: P_3 \to P_3$ be the identity operator; that is $\mathrm{Id}: p \mapsto p$ for all $p \in P_3$.

Now consider the following three bases of P_3 : $\mathcal{B}_1 = \{1, x, x^2, x^3\}$, $\mathcal{B}_2 = \{1, 1 + x, 1 + x^2, 1 + x^3\}$, $\mathcal{B}_3 = \{1 + x, 1 - x, x^2 - x^3, x^2 + x^3\}$.

- (a) Convince yourself that P_3 is a vector space and that \mathcal{B}_i are each a basis for it.
- (b) Write down the matrix of D with respect to each of the three bases.
- (c) Write down the matrix for Id where the domain and range both have \mathcal{B}_3 as a basis.
- (d) Write down the matrix for Id where the domain has basis \mathcal{B}_1 and the range has basis \mathcal{B}_2 .

1