
Welcome to CS410!

Tue Thu 2pm - 3:15pm

W-2-200

Who am I?
• Academics

– Associate Professor, UMass Boston (2010–)
– Assistant Professor, UMass Boston (2004–2010)

• Distributed systems, software engineering and AI
• www.cs.umb.edu/~jxs/; dssg.cs.umb.edu

– Post-doctoral Research Fellow, UC Irvine, CA (2000–2004)
– Ph.D. in Comp Sci from Keio University, Japan (2001)

• Industrial
– Consultant, cloud computing platform vendor, supply chain

mgt. company, automotive companies
– Tech Director, Object Management Group Japan
– Co-founder and CTO, TechAtlas Comm Corp, Austin, TX
– Programmer Analyst, Goldman Sachs Japan

• Professional
– Member, ISO SC7/WG 19
– Specification co-lead, OMG Super Dist. Objects SIG

2

Course Work
• Lectures and home work

– First half of the semester
– HW: coding in Java

• Group project
– Second half of the semester
– Each team works for/with a “customer.”

• 3 to 5 students a team.

– Understand what your customer wants.
• Requirement gathering

– Deliver a system/product that your customer wants.

– More details: TBA
3 4

Lecture Topics
• Object-oriented design

– Design patterns

– Refactoring

• Testing
• Particularly, unit testing

• Basics in functional programming with Java

• You are assumed to be familiar with object-oriented
programming
– Classes, methods, interface, inheritance, collections, etc.

• Key topics in CS410
– Design and organization of object-oriented programs

– An example scenario
• Your team is expected to develop a navigation app like G

Maps.
– For users to drive and walk (2 navigation features)

• How can two groups of team members develop the 2
features independently?

– How can those 2 features be implemented in a loosely-coupled
manner?

5 6

Textbooks
• No official textbooks.

• Recommended textbooks
– Object-Oriented Analysis and Design with Applications

(3rd edition)
• by Grady Booch et al. (Addison Wesley)
• General intro to OOAD.

– Refactoring: Improving the Design of Existing Code
• by Martin Fowler
• Addison-Wesley

– Head Start Design Patterns
• by Elizabeth Freeman et al.
• O'Reilly

• The most authoritative and Bible-like book on
design patterns:
– Design Patterns: Elements of Reusable Object-

Oriented Software
• By Eric Gamma et al.

• Addison-Wesley

7 8

Grading
• Grading factors

– Homework (45-50%)

– Quizzes (0-5%)
• Occasionally, at the beginning of a lecture

– Project work (50%)

• No midterm and final exams.

My Email Addresses
• jxs@cs.umb.edu

9

How to Turn in HW Solutions
• Submit source code only.

– No binaries (No .jar and .class files)

– More details: TBA

• Where to submit your HW solutions: TBA

10

Preliminaries:
Unified Modeling Language

(UML)

11

Unified Modeling Language (UML)
• A language to visually model software

– Intuitively, it is a set of icons, symbols and diagrams
that denote particular elements in software designs.

12

Customer

- firstName: String
- lastname: String

+ getFirstName(): String
+ getLastName(): String

Employee
- name: String
- age: Integer
- annualSalary: Real

+ setAge(age: Integer): Integer

13

Classes in UML

Customer
- firstName: String
- lastname: String
- id: int

+ getId(): int

Address
- street: String
- city: String
- state: String
- zipCode: int
+ getStreet(): String
+ setStreet(street: String): void

14

Packages in UML
cs680

edu

umb

cs680

Customer Address

cs680

edu::umb::cs680

Customer Address

edu::umb::cs680::Customer

Customer
(from edu::umb::cs680)

15

Java’s Attribute/Op Visibility in UML

Address
+ city: String

+ getCity(): String

• Defines who can access a data field or method
– Public (+), private (-) or protected (#)

Customer

cs680

SpecialAddress

cs681

Customer

accessible

16

Address
- city: String

+ getCity(): String

Customer

cs680

SpecialAddress

cs681

Customer

Encapsulation principle: Use private/protected visibility as often as possible to
encapsulate/hide the internal attrs/ops of a class.

accessible

Not accessible

17

Address
city: String

+getCity(): String

Customer

cs680

SpecialAddress

cs681

Customer

Not accessible

accessible

18

Address
city: String

+ getCity(): String

Customer

cs680

SpecialAddress

cs681

Customer

Not accessible

accessible

Default visibility (package private) to be used when no modifier is specified.

• Specify the modifier for every data field and
every method.

• Do not to skip specifying it. (Do not use
package-private.)

• It is important to be always aware of the
visibility of each data field and method.

19 20

Association
Customer

- firstName: String
- lastname: String
- id: int

+ getAddress(): Address

Address
- Street: String
- city: String
- state: String
- zipCode: int

+ getCity(): String

1

- homeAddr

Customer
- firstName: String
- Lastname: String
- id: int
- homeAddr: Address

+ getAddress(): Address

Equivalent semantics

21

Customer
- firstName: String
- lastname: String
- id: int

+ getHomeAddress(): Address
+ getOfficeAddress(): Address

Address
- street: String
- city: String
- state: String
- zipCode: int

+ getCity(): String

1

- homeAddr

Customer
- firstName: String
- lastname: String
- id: int
- homeAddr: Address
- officeAddr: Address
+ getHomeAddress(): Address
+ getOfficeAddress(): Address

1

- officeAddr

22

Customer
- firstName: String
- lastname: String
- id: int

+ getAddress(): Address [1..2]

Address
- street: String
- city: String
- state: String
- zipCode: int

+ getCity(): String

Customer

- firstName: String
- lastname: String
- id: int
- addresses: Address [1..2]
+ getAddress(): Address [1..2]

1..2

- addresses

23

Customer
- firstName: String
- lastname: String
- id: int

+ getAddress(): Address[*]

Address
- street: String
- city: String
- state: String
- zipCode: int

+ getCity(): String

Customer

- firstName: String
- lastname: String
- id: int
- addresses: Address [*]

+getAddress(): Address [*]

*

- addresses

24

Customer
- firstName: String
- lastname: String
- id: int = “0”

+ getId(): int

Class Inheritance

25

Superclass

Subclass2 Sublcass3Subclass1

Interface-Class Implementation

26

ImplClass1 ImplClass2 ImplClass3

<<interface>>
ExampleInterface

Preliminaries:
Road to Object-Oriented Design

(OOD)

27

Brief History
• In good, old days… programs had no structures.

– One dimensional code.
• From the first line to the last line on a line-by-line basis.

• “Go to” statements to control program flows.
– Produced a lot of “spaghetti” code

» “Go to” statements considered harmful.

– No notion of structures (or modularity)
• Modularity: Making a chunk of code (module) self-contained

and independent from the other code
– Improve reusability and maintainability

» Higher reusability à higher productivity, less production costs

» Higher maintainability à higher productivity and quality, less
maintenance costs

28

Modules in SD and OOD
• Modules in Structured Design (SD)

– Structure = a set of variables (data fields)

– Function = a block of code

• Modules in OOD
– Class = a set of data fields and functions

– Interface = a set of abstract functions

• Key design questions/challenges:
– how to define modules

– how to separate a module from others

– how to let modules interact with each other
29

SD v.s. OOD
• OOD

– Intends coarse-grained modularity
• The size of each code chuck is often bigger.

– Extensibility in mind in addition to reusability and
maintainability

• How easy (cost effective) to add and revise existing
modules (classes and interfaces) to accommodate
new/modified requirements.

• How to make software more flexible/robust against
changes in the future.

– How to gain reusability, maintainability and
extensibility?

30

Looking Ahead: AOP, etc.
• OOD does a pretty good job in terms of modularity,

but it is not perfect.

• OOD still has some modularity issues
– Aspect Oriented Programming (AOP)

• Dependency injection

• Handles cross-cutting concerns well.
– e.g. logging, security, DB access, transactional access to a DB

• Highly modular code sometimes look redundant.
– Functional programming

• Makes code less redundant.

– Lambda expressions in Java
• Intended to make modular code less redundant.

31

Encapsulation

What is Encapsulation?
• Hiding each class’s internal details from its

clients (other classes)
– To improve its modularity, robustness and ease of

understanding

• Things to do:
– Always make your data fields private or protected.

– Make your methods private or protected as often as
possible.

– Avoid public accessor (getter/setter) methods
whenever possible.

– Make your classes final as often as possible.

33

Why Encapsulation?
• Encapsulation makes classes modular (or black box).

– final public class Person{
private int ssn;
Person(int ssn){ this.ssn = ssn; }
public int getSSN(){ return this.ssn; } }

– Person person = new Person(123456789);
int ssn = person.getSSN();
…

• What if you find a runtime error about a person’s SSN?
(e.g., the SSN is wrong or null)… Where is the source of
the error, inside or outside Person?

– You can tell it should be outside Person.
• A bug(s) should exist before calling Person’s constructor or after

calling getSSN().

– You can narrow the scope of your debugging effort.
• You can be more confident about your debugging.

34

Recap
• Specify the modifier for every data field and

every method.

• Do not to skip specifying it. (Do not use
package-private.)

• It is important to be always aware of the
visibility of each data field and method.

35

Violation of Encapsulation
• However, if the Person class looks like this, you

cannot be so sure about where to find a bug.
– final public class Person{

private int ssn;
Person(int ssn){ this.ssn = ssn; }
public String getSSN(){ return this.ssn; }
public setSSN(int ssn){ this.ssn = ssn; } }

36

• However, if the Person class looks like this, you
cannot be so sure about where to find a bug.
– final public class Person{

private int ssn;
Person(int ssn){ this.ssn = ssn; }
public String getSSN(){ return this.ssn; }
public setSSN(int ssn){ this.ssn = ssn; } }

– Person person = new Person(123456789);
int ssn = person.getSSN();
……
person.setSSN(987654321);

– You or your team mates may write this by accident.
• It looks like a stupid error, but it is common in a large-scale project.

– Don’t define public setter methods whenever possible.
37

• There are a good number of data that don’t
have to be modified once they are generated.
– e.g., globally-unique IDs (GUIDs), MAC addresses,

customer IDs, product IDs, etc.

• Define them as private/protected data fields.

• No need to define setter methods.

38

In a Modern Software Dev Project…
• No single engineer can read, understand and

remember the entire code base.

• Every engineer faces time pressure.

• Any smart engineers can make unbelievable
errors VERY EASILY under a time pressure.

• Your code should be preventive for potential
errors.

39

Scale of Modern Software
• All-in-one copier (printer, copier, fax, etc.)

– 3M+ lines

• Passenger vehicle
– 7M+ lines (‘07)

• 10 CPUs/car in ‘96
• 20 CPUs/car in ‘99
• 40 CPUs/car in ‘02
• 80+ CPUs/car in ‘05

– Engine control, transmission, light, wipers, audio, power window, door mirror,
ABS, etc.

– Drive-by-wire: replacing the traditional mechanical and hydraulic control
systems with electronic control systems

– Car navigation, automated wipers, built-in iPod support, automatic parking,
automatic collision avoidance, etc… hybrid cars! autonomous car!!! (e.g.
Google’s)

• Cell phone (not a smart phone)
– 10M+ lines

40

• In my experience…
– 32K, 28K, 25K, 23K, 22K, 20K, 18K, 15K, 12K, 8K, 4K, 3K and 2K

lines of Java code for research software
– 11K and 9K lines of C++ code at an investment bank
– 7K and 5K lines of C code for research software

• Cannot fully manage (i.e., precisely remember) the entire
code base when its size exceeds 10K lines of Java code.
– What is this class for?
– Which classes interact with each other to implement that

algorithm?
– Why is this method designed like this?
– Cannot be fully confident which classes/methods I should modify

according to a code revision.

– Need UML class diagrams for all classes and sequence diagrams
for some key methods.

– Need comments, memos and/or documents about design
rationales

41

Why Encapsulation? (cont’d)
• Assume you are the provider (or API designer)

of Person
– Your team mates will use your class for their

programming.

– final public class Person{
private int ssn;
Person(int ssn){ this.ssn = ssn; }
public int getSSN(){ return this.ssn; } }

• You can be sure/confident that your class will
never mess up SSNs.

42

• However, if you define Person like this,
– final public class Person{

public int ssn;
Person(int ssn){ this.ssn = ssn; }
public int getSSN(){ return this.ssn; }
public void setSSN(int ssn){ this.ssn = ssn;} }

• You cannot be so sure about potential bugs.

43

• If you define Person like this,
– public class Person{

protected int ssn;
Person(int ssn){ this.ssn = ssn; }
public int getSSN(){ return this.ssn; } }

• You cannot be so sure about potential bugs.

44

• However, if you define Person like this,
– public class Person{

protected int ssn;
Person(int ssn){ this.ssn = ssn; }
public int getSSN(){ return this.ssn; } }

• You cannot be so sure about potential bugs.

• Your team mates can define:
– public class MyPerson extends Person{

MyPerson(int ssn){ super(ssn); }
public void setSSN(int ssn){ this.ssn = ssn; } }

• Your class should be preventive for potential
misuses.
– Do not use “protected.” Use “private” instead.

– Turn the class to be “final.”
45

Be Preventive!
• Encapsulation

– looks very trivial.

– is not that important in small-scale (toy) software
• because you can manage (i.e., read, understand and

remember) every aspect of the code base.

– is very important in large-scale (real-world) software
• because you cannot manage (i.e., read, understand and

remember) every aspect of the code base.

46

Sounds Trivial?
• public class Person{

private int ssn;
Person(int ssn){ this.ssn = ssn; }
public int getSSN(){ return this.ssn; } }

• Once you finish up writing these 4 lines, wouldn’t
you define a setter method automatically (i.e.
without thinking about it carefully)?
– “I always define both getter and setter methods for a

data field. I can delete unnecessary ones anytime later.”

– “Well, let’s define a setter just in case.”

– Think twice. Fight that temptation.
• Just define the setter method you absolutely need.

47

Setters and Getters
• Auto-implemented properties in C# allow you to

skip implementing setters/getters explicitly.

• class Person{
public int ssn{get;}
public String name{get;set;}
Person(int ssn, String name){

this.ssn = ssn;
this.name=name; } }

• Person p = new Person(12345567);
p.ssn;
p.name=”Jane Doe”;

48

• “Access methods” in Ruby allows you to skip
implementing setters/getters explicitly.

• class Person
def initialize(ssn, name)

@ssn = ssn
@name = name

end
attr_reader :ssn
sttr_accessor: name

end

• p = Person.new(12345567, “John Doe”)
p.ssn
p.name=“Jane Doe”

49

• A similar feature is not available in Java. Use
lombok (https://projectlombok.org/) if you want
it.

• import lombok.AccessLevel;
import lombok.Getter;
import lombok.Setter;
class Person{

@Getter
private int ssn;
@Getter @Setter
private String name;
Person(int ssn, String name){

this.ssn = ssn;
this.name = name;} }

• Person p = new Person(12345567, “John Doe”);
p.getSsn();
p.setName(“Jane Doe”);

50

Eclipse Tips
• Generate getter and setter methods for a data

field.
– Select a data field’s declaration and perform Quick

Assist (Ctrl + 1)

51

• Encapsulate a public data field.
– Turn a data field’s visibility from public to private

– Generate getter/setter methods for the data field.

52

• Delete a method

53

• Generate a constructor that accepts a data
field(s)

54

• Delete a data field AND its getter/setter
methods

55

Exercise
• Write a program based on a given UML

diagram
– Understand a mapping between UML and Java

– Understand the concept of visibility

– Understand other keywords in Java (e.g. final)

• An exercise is not a HW. No need to turn in
anything for that.

56

