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Autonomic and Coevolutionary Sensor
Networking with BiSNET/e

Pruet Boonma and Junichi Suzuki

Abstract Wireless sensor networks (WSNs) applications are often required to bal-
ance the tradeoffs among conflicting operational objectives (e.g., latency and power
consumption) and operate at an optimal tradeoff. This chapter proposes and evalu-
ates a biologically-inspired architecture, called BiSNET/e, which allows WSN ap-
plications to overcome this issue. BiSNET/e is designed to support three major types
of WSN applications: data collection, event detection and hybrid applications. Each
application is implemented as a decentralized group of software agents, which is
analogous to a bee colony (application) consisting of bees (agents). Agents collect
sensor data or detect an event (a significant change in sensor reading) on individual
nodes, and carry sensor data to base stations. They perform these data collection and
event detection functionalities by sensing their surrounding network conditions and
adaptively invoking behaviors such as pheromone emission, reproduction, migra-
tion, swarming and death. Each agent has its own behavior policy, as a set of genes,
which defines how to invoke its behaviors. BiSNET/e allows agents to evolve their
behavior policies (genes) across generations and autonomously adapt their perfor-
mance to given objectives. Simulation results demonstrate that, in all three types of
applications, agents evolve to find optimal tradeoffs among conflicting objectives
and adapt to dynamic network conditions such as traffic fluctuations and node fail-
ures/additions. Simulation results also illustrate that, in hybrid applications, data
collection agents and event detection agents coevolve to augment their adaptability
and performance .
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1.1 Introduction

Autonomous adaptability is a key challenge in wireless sensor networks (WSNs)
[1, 2, 6, 28, 33]. With minimal intervention to/from human operators, WSN appli-
cations are required to adapt their operations to dynamic changes in network con-
ditions such as traffic fluctuations and node failures/additions. A critical issue in
this challenge is that WSN applications have inherent tradeoffs among conflicting
operational objectives [22]. For example, success rate of data transmission from in-
dividual nodes to base stations is an important objective because higher success rate
ensures that base stations receive more sensor data for operators to better understand
the current situation in an observation area and make better informed decisions. At
the same time, latency of data transmission from individual nodes to base stations
is another important objective. Lower latency ensures that base stations can collect
sensor data for operators to understand the situation of an observation area more
quickly and make more timely decisions. Success rate and latency conflict with each
other. For improving success rate, hop-by-hop recovery is often applied; however,
this can degrade latency. For improving latency, nodes may transmit data to base
stations with the shortest paths; however, success rate can degrade because of traffic
congestion on the paths.

In order to address this issue, the authors of the chapter envision autonomic WSN
applications that understand their operational objectives, sense dynamic network
conditions and act autonomously to satisfy conflicting objectives simultaneously.
As inspiration for this vision, the authors observe that various biological systems
have developed the mechanisms to overcome the above adaptability issue. For ex-
ample, each bee colony autonomously satisfies conflicting objectives to maintain
its well-being [34]. Those objectives include maximizing the amount of collected
honey, maintaining temperature inside a nest and minimizing the number of dead
drones. If bees focus only on foraging, they fail to ventilate their nest and remove
dead drones. Based on this observation, the proposed application architecture, called
BiSNET/e (Biologically-inspired architecture for Sensor NETworks, evolutionary
edition), applies key biological mechanisms to design adaptive WSN applications.

Figure 1.1 shows the BiSNET/e runtime architecture. The BiSNET/e runtime op-
erates atop TinyOS on each node. It consists of two software components: agents

and middleware platforms, which are modeled after bees and flowers, respectively.
Each WSN application is designed as a decentralized group of agents. This is analo-
gous to a bee colony (application) consisting of bees (agents). Agents collect sensor
data and/or detect an event (a significant change in sensor reading) on platforms
(flowers) atop individual nodes. Then, they carry sensor data to base stations, in
turn, to the MONSOON server (Figure 1.1). The server is modeled after a nest
of bees. Agents perform these data collection and event detection functionalities
by autonomously sensing their surrounding network conditions and adaptively per-
forming biological behaviors such as pheromone emission, reproduction, migration,
swarming and death. A middleware platform runs on each node, and hosts an arbi-
trary number of agents (Figure 1.1). It provides a series of runtime services that
agents use to perform their functionalities and behaviors.



1 Autonomic and Coevolutionary Sensor Networking with BiSNET/e 3

Fig. 1.1 BiSNET/e Runtime Architecture

This chapter describes a key component in BiSNET/e, called MONSOON1,
which is an evolutionary adaptation framework for agents. Each agent has its own
behavior policy, as a set of genes, which defines when to and how to invoke its
behaviors. MONSOON allows agents to evolve their behavior policies via genetic
operations (mutation and crossover) across generations and simultaneously adapt
their performance to given objectives. Currently, MONSOON considers four objec-
tives: success rate, latency, power consumption and the degree of data aggregation.

The evolution process in MONSOON frees application developers from antici-
pating all possible network conditions and tuning their agents’ behavior policies to
the conditions at design time. Instead, agents are designed to autonomously evolve
and tune their behavior policies at runtime. This can significantly simplify the im-
plementation and maintenance of agents (i.e., WSN applications).

BiSNET/e supports three major types of WSN applications: data collection,
event detection and hybrid applications. Hybrid applications perform both data col-
lection and event detection in order to fulfill complex sensing requirements such
as target tracking [25], contour/edge detection [11] and spatiotemporal event detec-
tion/monitoring [39]. Different types of applications are implemented with different
types of agents. Data collection and event detection applications use data collection

agents (DAs) and event detection agents (EAs), respectively. Hybrid applications
use both DAs and EAs. DAs and EAs are designed as different biological species.
In hybrid applications, the two types of agents are intended to coevolve and adapt
their behavior policies in a symbiotic manner. EAs help DAs improve their behavior
policies, and vice versa.

This chapter is organized as follows. Section 1.2 overviews the structure and be-
haviors of agents in BiSNET/e. Section 1.3 describes the evolution and coevolution
processes in MONSOON. Section 1.4 evaluates MONSOON with a series of simu-
lation results. Simulation results demonstrate that, in all three types of applications,

1 Multiobjective Optimization for Network of Sensors using a cO-evOlutionary mechaNism
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agents are robust and adaptive against various dynamic network conditions such
as traffic fluctuations, node failures/additions and base station failures. Agents suc-
cessfully evolve their behavior policies to find optimal tradeoffs among conflicting
objectives. Simulation results also illustrate that, in hybrid applications, DAs and
EAs coevolve to augment their adaptability and performance with each other. Sec-
tions 1.5 and 1.6 conclude with some discussion on related work and future work.

1.2 BiSNET/e Agents

At the beginning of a WSN’s operation, one DA and one EA are deployed on each
node. They have randomly-generated behavior policies. A DA collects sensor data
on each node periodically (i.e., at each duty cycle) and carry the data to a base station
on a hop-by-hop basis. An EA collects sensor data on each node periodically, and if
it detects an event—a significant change in its sensor reading, carries the data to a
base station on a hop-by-hop basis. If an event is not detected, the EA discards the
data. (It is not transmitted to a base station.)

Agents are decentralized in a WSN. There are no centralized entities to control
and coordinate agents. Decentralization allows agents to be scalable and survivable
by avoiding a single point of performance bottlenecks and failures [3, 24].

1.2.1 Agent Structure and Behaviors

Each agent consists of attributes, body and behaviors. Attributes carry descriptive
information on an agent. They include agent type (DA or EA), behavior policy
(genes), sensor data to be reported to a base station, the data’s time stamp, and
the ID of a node where the data is collected.

Body implements the functionalities of an agent: collecting, processing, discard-
ing and processing sensor data.

Behaviors implement actions inherent to all agents. Inspired by biological en-
tities such as bees, agents sense their surrounding network conditions and behave
according to the sensed conditions without any intervention from/to other agents,
platforms, base stations and human operators. This chapter focuses on the following
seven behaviors.

1. Food gathering and consumption: Biological entities strive to seek food for
living. For example, bees gather nectar to produce honey. Similarly, in BiSNET/e,
each agent periodically reads sensor data (as nectar) to gain energy (as honey)2

and expends a constant amount of energy for living.

2 In BiSNET/e, the concept of energy does not represent the amount of physical battery in a node.
It is a logical concept to affect agent behaviors.
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2. Pheromone emission: Agents may emit different types of pheromones: migra-

tion and alert pheromones. They emit migration pheromones on their local nodes
when they migrate to neighboring nodes. Each migration pheromone references
the destination node an agent has migrated to. Agents also emit alert pheromones
when they fail migrations within a timeout period. Migration failures may occur
because of node failures due to depleted battery and physical damages as well
as link failures due to interference and congestion. Each alert pheromone refer-
ences the node that an agent could not migrate to. Each of migration and alert
pheromones has its own concentration, which decays by half at every duty cycle.
A pheromone disapears when its concentration becomes zero.

3. Replication: EAs may make a copy of themselves in response to the abundance
of stored energy, while DAs make a copy of themselves at each duty cycle. A
replicated (child) agent is placed on the node that its parent resides on, and it
inherits the parent’s agent type and behavior policy (a set of genes). Replicated
agents are intended to move toward base stations to report collected sensor data.

4. Migration: Agents may move from one node to another. Migration is used to
transmit agents (sensor data) toward base stations. On an intermediate node, each
agent chooses the next-hop node by sensing three types of available pheromones:
base station, migration and alert pheromones.
Each base station periodically propagates base station pheromones to individual
nodes. Their concentration decays on a hop-by-hop basis. Using base station
pheromones, agents can sense where base stations exist approximately, and they
can move toward the base stations by climbing a concentration gradient of base
station pheromones3.
An agent may move to a base station by following a migration pheromone trace
on which many other agents have traveled. The trace can be the shortest path
to a base station. Conversely, an agent may go off a migration pheromone trace
and follows another path to a base station when the concentration of migration
pheromones is too high on the trace (i.e., when too many agents have followed
the trace). This avoids separating the network into islands. The network can be
separated with the migration paths that too many agents follow, because the nodes
on the paths run out of their battery earlier than the others4.
An agent may also avoid moving to a node referenced by an alert pheromone.
This allows agents to reach base stations by bypassing failed nodes/links.

5. Swarming: Agents may swarm (or merge) with others at the nodes on their ways
to base stations. With this behavior, multiple agents become a single agent. (A
DA can merge with both DAs and EAs, and an EA can merge with both EAs
and DAs.) The resulting agent (swarm) aggregates sensor data contained in other
agents, and uses the behavioral policy of the best agent in the swarm in terms of
given operational objectives.

3 Base station pheromones are designed after the Nasonov gland pheromone, which guides bees to
move toward their nest [14].
4 Data transmission imposes the highest power consumption among all the operations that each
node performs [26].
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In order to increase the chances of swarming, at each intermediate node to-
ward a base station, an agent may wait for other agents. If an agent(s) arrives
at the node during a waiting period, the waiting agent merges with the arriv-
ing agent(s). The swarming behavior saves power consumption of nodes because
in-node data aggregation requires much less power consumption than data trans-
mission does [26].

6. Reproduction: Once agents arrive at the MONSOON server (Figure 1.1), they
are evaluated according to their four objectives. Then, MONSOON selects best-
performing (or elite) agents, and propagates them to individual nodes. An agent
running on each node performs reproduction with one of the propagated agents.
A reproduced agent inherits a behavior policy (gene) from its parents via crossover,
and mutation may occur on the inherited behavior policy. Reproduced agents
trigger a generation change by taking over existing agents running on individual
nodes.
Reproduction is intended to evolve agents so that the agents that fit better to
the environment become more abundant. It retains the agents whose fitness to
the current network conditions is high (i.e., the agents that have effective be-
havior policies, such as moving toward a base station in a short latency), and
eliminates the agents whose fitness is low (i.e., the agents that have ineffective
behavior policies, such as consuming too much power to reach a base station).
Through successive generations, effective behavior policies become abundant in
agent population while ineffective ones become dormant or extinct. This allows
agents to adapt to dynamic network conditions.

7. Death: Agents periodically consume energy for living and expend energy to in-
voke their behaviors. The energy costs to invoke behaviors are constant for all
agents. Agents die due to lack of energy when they cannot balance energy gain
and expenditure. The death behavior is intended to eliminate the agents that have
ineffective behavior policies. For example, an agent would die before arriving at
a base station if it follows a too long migration path. When an agent dies, the
local platform removes the agent and releases all resources allocated to it.

1.2.2 Behavior Sequence for DAs

Figures 1.2 shows the sequence of behaviors that each DA performs on a node at
each duty cycle. A DA reads sensor data with the underlying sensor device and gains
a constant amount of energy. Given the energy intake (EF ), each agent updates its
energy level as follows.

E(t) = E(t −1)+ EF (1.1)

E(t) and E(t − 1) denote a DA’s energy level at the current and previous duty
cycle. t is incremented by one at each duty cycle.
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for each duty cycle

do



























































































Read sensor data and gain energy (EF ).
Update energy level (E(t)).
if E(t) < the death threshold (TD)

then Invoke the death behavior.
Invoke the replication behavior to make a child agent.
Give the half of the current energy level to a replicated (child) agent.
for each migrating agent

do



































if not waiting

then



























Determine the destination node of migration.
Emit a migration pheromone on the local node.
Migrate to a neighboring node.
if Migration fails

then

{

Emit an alert pheromone on the local node.
Propagate it to neighboring nodes.

Fig. 1.2 Sequence of DA Behaviors

If a DA’s energy level (E(t)) goes below the death threshold (TD), the DA dies
due to starvation5.

A DA replicates itself at each duty cycle. A replicating (parent) agent splits its

energy units to halves (
E(t)−ER

2 ), gives a half to its child agent, and keeps the other
half. ER is the energy cost for an agent to perform the replication behavior. A child
agent contains the sensor data that its parent collected, and carries it to a base station.

Each replicated DA migrates toward a base station on a hop by hop basis. On
each intermediate node, it decides whether it migrates to a next-hop node or wait
for other agents to swarm (or merge) with them. This decision is made based on a
migration probability (pm). If the agent decides to migrate, it examines Equation 1.2
to determine which next-hop node it migrates to.

WS j =
3

∑
t=1

wt
Pt, j −Ptmin

Ptmax −Ptmin

(1.2)

A DA calculates this weighted sum (WS j) for each neighboring node j, and
moves to a node that generates the highest weighted sum. t denotes pheromone
type; P1 j, P2 j and P3 j represent the concentrations of base station, migration and
alert pheromones on the node j. Ptmax and Ptmin denote the maximum and minimum
concentrations of Pt among all neighboring nodes.

When a DA is migrating to a neighboring node, it emits a migration pheromone
on the local node. If the DA’s migration fails, it emits an alert pheromone, and it
spreads to one-hop away neighboring nodes.

5 If all agents are dying on a node at the same time, a randomly selected agent for each type (i.e.,
EA and DA) will survive. At least one agent of each type runs on each node.
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1.2.3 Behavior Sequence for EAs

Figures 1.3 shows the sequence of behaviors that each EA performs on a node at
each duty cycle. When an EA reads sensor data (as nectar) with the underlying
sensor device and gains energy (as honey), its current energy level (E(t)) is updated
with Equation 1.3.

E(t) = E(t −1)+ S ·M (1.3)

S denotes the absolute difference between the current and previous sensor data.
M is metabolic rate, which is a constant between 0 and 1.

Each EA replicates itself if its energy level exceeds the replication threshold:
TR(t). The replication threshold is continuously adjusted as an EWMA (Exponen-
tially Weighted Moving Average) of energy level:

TR(t) = (1−α)TR(t −1)+ αE(t) (1.4)

TR(t) and TR(t −1) denote the replication thresholds at the current and previous
duty cycle, respectively. EWMA is used to smooth out short-term minor oscillations
in the data series of E . It places more emphasis on the long-term transition trend of
E; only significant changes in E have the effects to change TR. The α value is a
constant to control the responsiveness of EWMA against the changes of E .

A parent EA splits its energy units to halves, gives a half to its child agent, and
keeps the other half. The parent EA keeps replicating itself until its energy level
becomes less than its TR. Each child agent contains the sensor data that its parent
collected, and carries it to a base station.

As DAs do, each migrating EA decides whether it performs the migration behav-
ior or the swarming behavior using its migration probability (pm). It performs the
migration behavior with Equation 1.2, followed by the pheromone emission behav-
ior, in the same way as DAs do.

1.2.4 Agent Behavior Policy

EAs and DAs have the same structure of behavior policies (genes). Each behavior
policy consists of two distinctive information: migration probability (pm) and a set
of weight values in Equation 1.2 (wt ,1 ≤ t ≤ 3). Migration probability is a non-
negative value between zero and one. With higher migration probability, an agent
has a higher chance to perform the migration behavior instead of the swarming be-
havior. With a lower migration probability, an agent has a higher chance to perform
the swarming behavior. Weight values govern how agents perform the migration be-
havior. For example, if an agent has zero for w2 and w3, the agent ignores migration
and alert pheromones, and moves toward the base stations by climbing the concen-
tration gradient of base station pheromones. If an agent has a positive value for w2,
it follows a migration pheromone trace on which many other agents have traveled. A
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for each duty cycle

do



































































































Read sensor data and gain energy (EF ).
Update energy level (E(t)).
if E(t) < the death threshold (TD)

then Invoke the death behavior.
while E(t) > the replication threshold (TR(t))

do

{

Invoke the replication behavior to make a child agent.
Give the half of the current energy level to the child agent.

for each migrating agent

do



































if not waiting

then



























Determine the destination node of migration.
Emit a migration pheromone on the local node.
Migrate to a neighboring node.
if Migration fails

then

{

Emit an alert pheromone on the local node.
Propagate it to neighboring nodes.

Fig. 1.3 Sequence of EA Behaviors

negative w2 value allows an agent to go off a migration pheromone trace and follow
another path toward a base station. If an agent has a negative value for w3, it moves
to a base station by bypassing failed nodes/links.

1.3 MONSOON

In order to drive agent evolution and coevolution, MONSOON performs elite se-

lection and genetic operations. The elite selection process evaluates each type of
agents (DAs and EAs) that arrive at base stations, based on given objectives, and
chooses the best (or elite) ones. Elite agents are propagated to individual nodes in
the network. Through genetic operations (crossover and mutation), an agent running
on each node performs the reproduction behavior with one of elite agents. A repro-
duced agent inherits a behavior policy (a set of genes) from its parents via crossover,
and mutation may occur on the inherited behavior policy. Reproduced agents trigger
a generation change by taking over parent agents. Elite selection is performed in the
MONSOON server (Figure 1.1), and genetic operations are performed in each node.

Reproduction is intended to evolve agents so that the agents that fit better to
the current network conditions become more abundant. It retains the agents that
have effective behavior policies, such as moving toward a base station in a short
latency, and eliminates the agents that have ineffective behavior policies, such as
consuming too much power to reach a base station. Through successive generations,
effective behavior policies become abundant in agent population while ineffective
ones become dormant or extinct. This allows agents to adapt to dynamic network
conditions.
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1.3.1 Operational Objectives

Each agent (DA or EA) considers four conflicting objectives: latency, cost, success

rate and data yield. MONSOON strives to minimize latency and cost and maximize
success rate and data yield.

1. Latency represents the time required for an agent (DA or EA) to travel to a
base station from a node where the agent is born (replicated). As depicted below,
latency (L) is measured as a ratio of this agent travel time (t) to the physical
distance (d) between a base station and a node where the agent is born. The
MONSOON server knows the location of each node with a certain localization
mechanism.

L =
t

d
(1.5)

2. Cost represents power consumption required for an agent (DA or EA) to travel to
a base station from a node where the agent is born. Cost (C) is measured with the
total number of node-to-node data transmissions required for an agent to arrive at
a base station (ntran), each node’s radio transmission range (rtran), and physical
distance (d).

C =
ntran

d/rtran
(1.6)

The total number of data transmissions include successful and unsuccessful
(failed) agent migrations as well as the transmissions of migration or alert
pheromones.

3. Success rate is measured differently for DAs and EAs. For DAs, it is measured
as follows.

SDA =
narrive

N
(1.7)

narrive indicates the number of agents that arrive at base stations, and N indicates
the total number of nodes in the network.
For EAs, success rate is measured as follows.

SEA =
msuccess

mtotal
(1.8)

msuccess indicates the number of successful migrations that an EA performs un-
til it arrives at a base station. mtotal indicates the total number of migration at-
tempts that an EA makes. This includes the number of successful migrations (i.e.,
msuccess) and the number of failed migrations.

4. Data yield is measured as the number of sensor data that an agent (DA or EA) ag-
gregates and carries to a base station. Its initial value is one; however, it increases
as the an agent swarms with other agents.
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1.3.2 Elite Selection

Figure 1.4 shows how elite selection occurs at the MONSOON server in each duty
cycle. The MONSOON server performs the same selection process for EAs and
DAs separately. The first step is to measure four objective values (i.e., latency, cost,
success rate and data yield) of each agent that reaches the MONSOON server via
base stations. Then, each agent is evaluated whether it is dominated by another one.
MONSOON determines that agent A dominates agent B iif:

• A’s objective values are better than, or equal to, B’s in all objectives, and
• A’s objective values are better than B’s in at least one objective.

Empty the archive
for each duty cycle

do



































































Empty the population pool.
Collect agents from the network.
Add collected agents to the population pool.
Move agents from the archive to the population pool.
Empty the archive
for each agent of the ones in the population pool

do







if not dominated by all other agents in
the population pool
then Add the agent to the archive.

Select elite agents from the archive.
Propagate elite agents to the network.

Fig. 1.4 Elite Selection in MONSOON

In the next step, a subset of non-dominated agents are selected as elite agents.
This is performed with a four dimensional hypercube space whose axes represent
four objectives. Each axis of the hypercube space is divided so that the space con-
tains small cubes. Non-nominated agents are plotted in this hypercube space based
on their objective values. If multiple non-dominated agents are plotted in a cube,
one of them is randomly selected as an elite agent. If no non-dominated agents are
plotted in a cube, no elite agent is selected from the cube. This elite selection is
designed to maintain the diversity of elite agents. Diversity of agents can improve
their adaptability to unanticipated network conditions.

Figure 1.5 shows an example hypercube space. For simplicity, it shows only
three of four objectives (i.e., cost, latency and data yield). Each axis is divided into
two ranges; therefore, eight cubes exist in total. In this example, six non-dominated
agents (A to F) are plotted in the hypercube space. Three agents (B, C, and D) are
plotted in a lower left cube, while the other three agents (A, E, and F) are plotted
in three different cubes. From the lower left cube, only one agent is randomly se-
lected as an elite agent. A, E, and F are selected as elite agents because they exist in
different cubes.

In addition to select elite agents, the MONSOON server adjusts the mutation rate
of agents based on performance improvement of non-dominated agents. The smaller
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Fig. 1.5 An Example Elite Selection

improvement they make in objective values, the higher mutation rage the MON-
SOON server assigns to agents, thereby accelerating agent evolution/coevolution.

The performance of non-dominated agents is measured as a set of performance
representative points in different objectives. Equation 1.9 shows how to obtain a
performance representative point (ōi) in each objective i.

ōi =
∑a∈A oi(a)

|A|
(1.9)

A denotes the set of non-dominated agents. oi(a) denotes the objective value that
agent a yields in objective i. oi is a value that a performance representative point is
projected on objective i. It is normalized between 0 and 1.

The improvement of performance is measured as the Euclidean distance (d) be-
tween the performance representative points at the current and previous duty cycles:

d =

√

∑i∈O(ōi(t)− ōi(t −1))2

|O|
(1.10)

O denotes the set of all objectives. ōi(t) and ōi(t − 1) denote the performance
representative points projected on objective i in the current and previous duty cycles,
respectively.

Mutation rate (m) is adjusted with Equation 1.11 where k is a constant and less
than one.

m = k(1−d) (1.11)
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1.3.3 Genetic Operations

Once elite DAs and EAs are selected, the MONSOON server propagates them and
adjusted mutation rate to each node in the network. They are propagated with a base
station pheromone.

Upon receiving a base station pheromone, an agent running on each node per-
forms the reproduction behavior with a certain reproduction rate through genetic
operations (crossover and mutation). It selects one of propagated elite agents, as a
mating partner, which has the most similar behavior policy (genes). This similarity
is measured with the Euclidean distance between the values of behavior policies. If
two or more elite agents have the same similarity to the local agent, one of them is
randomly selected. During reproduction, a child agent performs one-point half-and-
half crossover; it randomly inherits the half of its gene from its parent agent and the
other half from the parent’s mating partner.

DAs can mate with elite EAs, and EAs can mate with elite DAs. This cross-
mating allows DAs and EAs to coevolve their behavior policies; DAs can improve
EAs’ genes, and vice versa. This is particularly important when no events occur in
a WSN. In this case, EAs have no chance to evolve their genes because they do not
migrate toward the MONSOON server. Through cross-mating with DAs, EAs can
reproduce offspring and coevolve their genes even if no events occur.

Mutation occurs on a child agent’s gene with a certain mutation rate. Mutation
randomly changes gene values within a predefined value range. As discussed in
Section 1.3.2, the MONSOON server periodically adjusts mutation rate. After re-
production, a child agent takes over the local parent agent as the next generation
agent.

1.4 Simulation Results

This section shows a set of simulation results to evaluate BiSNET/e and MON-
SOON. Sections 1.4.1, 1.4.2 and 1.4.3 discuss the simulation results obtained with
a data collection application, event detection application and hybrid application.
Each application is used to monitor an oil spill at the sea. The spill is simulated as
100 barrels (approximately 3,100 gallons) of crude oil spreads at the middle of the
Dorchester Bay of Massachusetts. Simulation data of this spill is generated with an
oil spill trajectory model implemented in the General NOAA Oil Modeling Envi-
ronment [5].

A simulated WSN consists of 100 nodes uniformly deployed in an observation
area of 300x300 square meters. An oil spill starts at the middle of this observation
area. Each node’s communication range is 30 meters and equips a surface rough-
ness sensor to detect spilled oil. A base station is deployed on the observation area’s
northwestern corner. The base station links the MONSOON server via emulated
serial port connection. All software components in the BiSNET/e runtime are im-
plemented in nesC, and the MONSOON server is implemented in Java.
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Fig.6. Objective Values of DAs without EAs Fig.7. Objective Values of EAs without DAs
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Simulation time is counted with ticks. Each tick represents five minutes. For
genetic operations in MONSOON, reproduction probability and the maximum mu-
tation rate are configured as 0.75 and 0.2, respectively.

1.4.1 Data Collection Application

A data collection application is implemented with DAs that perform the sequence of
behaviors shown in Figure 1.2. No EAs are used in this application. The duty cycle
corresponds to a simulation tick (five minutes).

Figure 6 (a) shows the average objective values produced by DAs at each simu-
lation tick. Each objective value gradually improves and converges at the 22nd tick.
This simulation result shows that MONSOON allows DAs to simultaneously satisfy
conflicting objectives by evolving their behavior policies.

Figure 6 (b) shows how the performance of DAs changes against a dynamic node
addition. 25 nodes are added at random locations at the 30th tick. Upon this change
in the network environment, objective values degrade dramatically because DAs
have randomly-generated behavior policies on the new nodes. Those DAs cannot
migrate efficiently toward the base station. Also, enough pheromones are not avail-
able on new nodes; DAs cannot make proper migration decisions when they move to
the new nodes. However, DAs gradually improve their performance again, and ob-
jective values converge again at the 56th tick. Interestingly, after 50th tick, average
data yield is greater than that before 30th tick. Because there are more DAs from the
additional nodes, so DAs have higher chance to swarm. MONSOON allows DAs to
autonomously recover application performance despite dynamic node addition by
evolving their behavior policies.

Figure 6 (c) shows how the performance of DAs changes against dynamic node
failures. 25 nodes randomly fail at the 30th tick. Objective values degrade because
some DAs try to migrate to failed nodes referenced by migration pheromones. This
increases the number of unsuccessful agent migrations. However, DAs gradually
improve their performance again, and objective values converge again at the 56th
tick. MONSOON allows DAs to autonomously recover application performance
despite dynamic node failures by evolving their behavior policies.

Figure 6 (d) shows how the performance of DAs changes when nodes selectively
fail in a specific area. At the 30th tick, 20 nodes fail in the middle of WSN obser-
vation area. Hence, a WSN has a hole in its middle area. Compared with Figure
6 (c), it takes longer time for DAs to recover their performance. Objective values
converge at 66th tick again. The converged cost and latency are worse than the ones
at the 30th tick because DAs have to detour a hole (i.e., a set of failed nodes) and
take longer migration paths to the base station. This simulation results shows that
MONSOON allows DAs to survive selective node failures through evolution.

Figure 6 (e) shows how the performance of DAs changes against base station
failures. In this simulation scenario, two base stations are deployed at the north-
western and southeastern corners of WSN observation area. At the 30th tick, a base



16 Boonma and Suzuki

station at the southeastern corner fails. Objective values degrade because some DAs
try to migrate toward the failed base station referenced by base station pheromones.
This increases the number of unsuccessful agent migrations. However, DAs grad-
ually improve their performance again, and objective values converge again at the
56th tick. MONSOON allows DAs to autonomously evolve and recover application
performance despite dynamic base station failures.

1.4.2 Event Detection Application

An event detection application is implemented with EAs that perform the sequence
of behaviors shown in Figure 1.3. No DAs are used in this application. This simu-
lation study simulates an oil spill, which occurs in the middle of WSN observation
area at the 24th tick and radially spreads over time.

Figure 7 (a) shows the average objective values at each simulation tick. Upon an
event detection, objective values are low because EAs use random behavior policies
at first. However, each objective value gradually improves and converges at the 52nd
tick. This simulation result shows that MONSOON allows EAs to simultaneously
satisfy conflicting objectives by evolving their behavior policies.

Figure 7 (b) shows how the performance of EAs changes against a dynamic node
addition. 25 nodes are added at random locations at the 60th tick. Upon this envi-
ronmental change, objective values degrade slightly because EAs have randomly-
generated behavior policies on the new nodes. Those EAs cannot migrate efficiently
toward the base station. However, EAs gradually improve their performance imme-
diately, and objective values converge again at the 85th tick. MONSOON allows
EAs to autonomously recover application performance despite dynamic node addi-
tion by evolving their behavior policies.

Figure 7 (c) shows how the performance of EAs changes against dynamic
node failures. 25 nodes randomly fail at the 60th tick. Objective values degrade
slightly because some EAs try to migrate to failed nodes referenced by migration
pheromones. This increases the number of unsuccessful agent migrations. How-
ever, EAs gradually improve their performance again, and objective values converge
again at the 85th tick. MONSOON allows EAs to autonomously recover application
performance despite dynamic node failures by evolving their behavior policies.

Figure 7 (d) shows the result of a simulation when 20 sensor nodes are selected in
selective fashion, i.e. create a hole in the middle of network, to be deactivated at the
60th tick. Compared with the result in Figure 7 (c), MONSOON takes longer time
to improve the performance of the WSN. The success rate converges at about the
100th tick to approximately 48%. The cost and latency also show the similar trend.
Particularly, after the 52nd tick, the average value of cost and latency are higher than
the values just before the 20th tick because agents have to detour in a longer path to
avoid the hole in the middle of the network.
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The simulation results shows that MONSOON allows WSN to survives a se-
lective sensor nodes failure by adjusting the operational parameters of WSN to be
suitable to the changes in network condition.

Figure 7 (e) shows the result of a simulation which initially has two base stations
deployed at the northwestern and southeastern corner of the observation area. Then,
at the 60th tick, the base station at the southeastern corner is deactivated. In this
figure, at the 61st tick, the success rate drops to about 40% from around 50%. How-
ever, the success rate is improved successively and reach the same level as before
the base station is deactivated at the 85th tick. Cost and latency show the same trend.
MOSOON allows WSN to survives a base station failure by autonomously directing
all agents to the remaining base station.

1.4.3 Hybrid Application

This section represents simulation results from a sensor network with two applica-
tions deployed simultaneously. Figure 8 shows the average objective values from
collected DAs, i.e. for data collection application, in each simulation ticks. On the
other hand, Figure 9 shows the average objective values from collected EAs, i.e. for
event collection application, in each simulation ticks.

In Figure 9 (a), at the 24th simulation tick, oil spill happens and EAs start de-
tecting and moving to the base station. The impact of EAs on DAs can be observed
from Figure 8 (a) with the drop in success rate and the increase of cost and latency
around 24th tick. However, within thirty simulation ticks, MONOON allows DAs
to adapt to the EAs and retain their performance. The simulation results shows that
MONSOON allows a WSN application to adapt to the other application such that
they can co-exist tranquilly in a same sensor network.

Figure 9 (b), (c), (d) and (e) show the similar scenario as in Figure 7 (b), (c), (d)
and (e), respectively. The simulation result in the former set of the figures also show
the similar trend as in the later set of the figures; therefore, MONSOON allows a
WSN application to adapt to network changes, i.e. partial node failure or the base
station failure, even when it has to work simultaneously with another application on
the same network.

Figure 9 (a) portraits the same scenario as in Figure 7 (a). In Figure 9 (a), sensor
network hosts two applications, data collection and event detection. However, the
objective values of event detection application, i.e. EAs, in Figure 9 (a) are improved
faster than in Figure 7 (a). For example, the latency is reduced to lower than 0.5 at
around the 44th tick in Figure 9 (a) but it takes about the 58th tick in Figure 7
(a) to reduce to about 0.6. Thanks to cross-mating (see section 1.3.3) , MONSOON
allows event detection application, i.e., EAs, to improve its objective values by using
information from the other application. Figure 9 (b), (c), (d) and (e) also show the
similar results.
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1.4.4 Adaptive Mutation

Fig. 1.10 Objective Values of DAs without
EAs

Fig. 1.11 Objective Values of EAs without
DAs

In the current implementation of BiSNET/e, mutation rate of EAs and DAs is
adaptively adjusted by MONSOON server. Figure 1.10 and 1.11 show simulation
result from the same simulation setup as in Figure 6 (a) and 7 (a) respectively; how-
ever, in Figure 1.10 and 1.11, the BiSNET/e does not use adaptive mutation, a fix
mutation rate of 0.05 is used instead. It is clear that, without adaptive mutation,
MONSOON has to take about two times longer to archive the same optimized ob-
jective values. The simulation results shows that adaptive mutation in BiSNET/e
allow MONSOON to quickly adjust the WSN applications to suit to environment
condition.

1.4.5 Power Consumption

Figure 1.12 shows the impact of MONSOON and BiSNET/e on power consumption,
and compare between hybrid application and individual applications. The figure rep-
resents the power consumption on each simulation tick for the sensor network with
node addition scenario, e.g. as in Figure 6 (b). In this figure, individual applications
represents summation of the power consumption of data collection and event detec-
tion application when they are implemented separately, i.e. the summation of power
consumption from sensor network in Figures 6 (b) and 7 (b) in each simulation tick.
On the other hand, hybrid application represents the power consumption of a sen-
sor network which implements both data collection and event detection on the same
application, i.e. from Figure 8 (b). In this figure, MONSOON and BiSNET/e can
reduce the power consumption of WSN by optimizing the agent’s behavior policy.
Moreover, by implementing hybrid application on a same framework, the power
consumption can be further reduced which can be seen when compare the power
consumption of hybrid application and individual applications.
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Fig. 1.12 Average Power Consumption

1.4.6 Memory Footprint

Table 1.1 shows the memory footprint of the BiSNET/e runtime in a MICA2 mote,
and compares it with the footprint of Blink (an example program in TinyOS), which
periodically turns on and off an LED, and Agilla, which is a mobile agent plat-
form for WSNs [13]. The BiSNET/e runtime is lightweight in its footprint thanks
to the simplicity of the biologically-inspired mechanisms in BiSNET/e. BiSNET/e
can even run on a smaller-scale nodes, for example, TelosB, which has 48KB ROM.

Table 1.1 Memory Footprint in a MICA2 Node

RAM (KB) ROM (KB)

BiSNET 2.8 31.2

Blink 0.04 1.6

Agilla 3.59 41.6

1.5 Related Work

This chapter extends the authors’ prior work [7–9]. In [7], the authors proposed a
biologically-inspired WSN architecture, called BiSNET. BiSNET does not inves-
tigate evolutionary adaptation. Thus, agent behavior policies are manually config-
ured through trial-and-errors and fixed at runtime. Unlike BiSNET, BiSNET/e al-
lows agents to dynamically adapt their behavior policies to unanticipated network
conditions. In [8], MONSOON was proposed and studied with data collection appli-
cations. This chapter considers event detection applications and hybrid applications
as well as data collection applications. Moreover, this chapter evaluates how coevo-
lution between DAs and EAs augments agent adaptability. This is beyond the scope
of [8]. Compared with [9], this chapter investigates new operational objective (the
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degree of data aggregation) and new mechanisms in MONSOON (e.g., swarming
behavior, migration probability and adaptive mutation).

Agilla proposes a programming language to implement mobile agents for WSNs,
and provides an interpreter to operate agents on TinyOS [13]. Similarly, BiSNET/e
exploits mobile agents (DAs and EAs); however, this chapter does not focus on in-
vestigating a new programming language for those agents. While BiSNET/e and
Agilla implement a similar set of agent behaviors such as migration and replication,
BiSNET/e studies a wider range of agent behaviors. For example, Agilla does not
consider energy gain/expenditure, swarming and pheromone emission. Moreover,
Agilla does not consider evolutionary and coevolutionary adaptation of agents to
seek optimal tradeoffs among conflicting objectives. As shown in Table 1.1, BiS-
NET/e is implemented more lightweight than Agilla.

Virtual pheromone (VP) is a biologically-inspired node-to-node communication
primitive in TinyOS-based WSNs [37]. It has a generic set of properties such as
pheromone type, strength, source and payload. Therefore, VP can be used to imple-
ment base station, migration and alert pheromones in BiSNET/e. However, VP does
not address a research issue that BiSNET/e does: autonomous adaptability of WSN
applications.

Quasar is similar to BiSNET/e in that it proposes a data collection protocol that
balances the tradeoff between data accuracy and power efficiency [16]. Although
BiSNET/e does not focus on data accuracy as its operational objective, it studies ex-
tra objectives in data transmission such as success rate and latency. Also, it considers
not only data collection applications but also event detection and hybrid applications
in dynamic WSNs. (Quasar is considered and evaluated for static WSNs.) Quasar
and BiSNET/e employ different optimization/adaptation processes; BiSNET per-
forms a population-based evolutionary algorithm while Quasar employs time series
data analysis.

[4] proposes a cost function (or fitness function) that comprises conflicting ob-
jectives regarding data transmission cost, power consumption, latency, reliability
(the time between node/link failures) and link interference. These objectives are
similar to the ones BiSNET/e considers. However, in [4], the total cost (or fitness)
is calculated as a weighted sum of objective values. This means that application de-
signers need to manually configure every weight value in a fitness function through
trial-and-errors. In BiSNET/e, no manually-configured parameters exist for elite
selection because of a domination ranking mechanism. BiSNET/e minimizes the
number of manually-configured parameters to minimize configuration costs for ap-
plication designers. Moreover, BiSNET/e does not require each node to have global
network information as [4] does.

Genetic algorithms (GAs) have been investigated in various aspects in WSNs;
for example, routing [10, 12, 18, 20, 23], data processing [17], localization [38, 42],
node placement [15,43] and object tracking [10]. All of these work use fitness func-
tions, each of which combines multiple objective values as a weighted sum and rank
agents/genes in elite selection. As discussed above, it is always non-trivial to man-
ually configure weight values in a fitness function through. In contrast, BiSNET/e
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eliminates parameters in elite selection by design. Moreover, [10, 12, 15, 18, 23, 38,
43] do not assume dynamic WSNs, but static WSNs.

Beyond these classical GAs, multiobjective GAs (MOGAs) have also been in-
vestigated in WSNs; for example, for routing [30, 31, 35, 40], node placement [19,
21, 27, 29, 32] and duty cycle management [41]. In all of these work except [35], a
central server performs an evolutionary optimization process. This can lead to scala-
bility issue as network size increases. In contrast, MONSOON is carefully designed
to perform its optimization process in both the MONSOON server and individual
nodes. Moreover, all of these work do not assume dynamic WSNs, but static WSNs.

[30,31,40] investigates MOGAs that optimize migration routes for mobile agents
to travel from a base station to cluster head nodes and collect sensor data from
individual clusters. In BiSNET/e, agents make their migration and other behavior
decisions by themselves. MONSOON optimizes their behavior policies, not agents’
migration routes.

[35] is similar to BiSNET/e in that both follow the agent designs proposed in
BiSNET and exploit MOGAs to adapt agent behavior policies. Unlike [35], BiS-
NET/e studies coevolution between DAs and EAs as well as their regular evolution
(i.e., single-species evolution). [35] considers data collection applications only in
static WSNs. Also, BiSNET/e performs adaptive mutation and crossover, which [35]
does not consider.

Adaptive mutation was initially proposed in [36], and it has been used in
WSNs [10, 23]. In [10, 23, 36], mutation rate is dynamically adjusted based on the
current fitness that is a weighted sum of objective values. In MONSOON, mutation
rate is adjusted based on the progress of performance improvement by the non-
dominated individuals.

1.6 Conclusion

This chapter describes a coevolutionary multiobjective adaptation framework for
WSNs, called MONSOON. MONSOON allows WSN applications to simultane-
ously satisfy conflicting operational objectives by adapting to dynamic network con-
ditions (e.g., network traffic and node/link failures) through evolution. Thanks to a
set of simple biologically-inspired mechanisms, the BiSNET/e runtime is imple-
mented lightweight.

Some extensions to MONSOON and BiSNET/e are planed. The extensions in-
clude associating a constraint(s) with each operational objective. A constraint is de-
fined as an upper or lower bound for each objective. For example, a tolerable (upper)
bound may be defined for the latency objective. Constraints allow agent designers
to flexibly specify their specific requirements (or priorities) on objectives. They can
also improve evolution speed by dedicating agents to satisfy those constraints.
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