
SymbioticSphere: A Biologically-Inspired Autonomic Architecture
for Self-Adaptive and Self-Healing Server Farms

Paskorn Champrasert and Junichi Suzuki

Department of Computer Science
University of Massachusetts, Boston

{paskorn, jxs}@cs.umb.edu

Abstract

This paper describes a biologically-inspired architecture,
called SymbioticSphere, which allows large-scale server
farms to autonomously adapt to dynamic environmental
changes and survive partial system failures. Symbiotic-
Sphere follows biological principles such as decentraliza-
tion, autonomy, natural selection, emergence and symbio-
sis to design server farms (application services and mid-
dleware platforms). Each application service and mid-
dleware platform is designed as a biological entity,
analogous to an individual bee in a bee colony. Simula-
tion results show that, like in biological systems, Symbiot-
icSphere exhibits emergence of desirable system charac-
teristics such as adaptability and survivability.

1. Introduction
Server farms such as Internet data centers and grid clus-

ters have become integral components to operate Internet
services and scientific computation. Since they are rapidly
increasing in complexity and scale, they face critical chal-
lenges, particularly adaptability and survivability. Server
farms are expected to autonomously adapt to dynamic
environmental changes such as demand surges and re-
source exhaustion [1]. They are also expected to autono-
mously survive partial system failures due to, for example,
errors by administrators and physical damage to server
farm fabric as a result of unexpected events (e.g., hurri-
canes and blackouts) [2].

Based on the observation that various biological sys-
tems have already developed necessary mechanisms to
overcome the above challenges (i.e., adaptability and sur-
vivability), the proposed architecture, called Symbiotic-
Sphere, applies biological principles to design server
farms (application services and middleware platforms).
We believe if server farms adopt certain biological princi-
ples, they may be able to overcome these challenges.

In SymbioticSphere, each application service and mid-
dleware platform is modeled as a biological entity, analo-
gous to an individual bee in a bee colony. Application
services and middleware platforms are designed to follow
several biological principles such as decentralization,
autonomy, natural selection, emergence and symbiosis.
An application service is designed as a software agent.
Each agent implements a functional service and biological
behaviors such as energy exchange, replication, death and

migration. A middleware platform runs on a network host
and operates agents. Each platform provides runtime ser-
vices that agents use to perform their services and behav-
iors, and implements biological behaviors such as health
monitoring, energy exchange, replication and death.

This paper describes and evaluates SymbioticSphere
their impacts on adaptability and survivability of server
farms. Simulation results demonstrate that agents and
platforms autonomously adapt to dynamic environmental
changes (e.g., demand surges) and survive host failures to
retain their performance. Simulation results also show that
agents and platforms spontaneously cooperate in certain
circumstances to pursue their mutual benefits and im-
prove their adaptability and survivability.

2. Design Principles in SymbioticSphere
SymbioticSphere consists of two components: agents

and middleware platforms. Agents run on platforms,
which in turn run on network hosts. Agents and platforms
are designed based on the following principles.

(1) Decentralization: There are no central entities to
control and coordinate agents/platforms (i.e., no directo-
ries and no resource managers). Decentralization allows
agents/platforms to be scalable and survivable by avoid-
ing a single point of performance bottlenecks and failures.

(2) Autonomy: Agents and platforms sense their local
network environments, and based on the sensed environ-
mental conditions, they autonomously behave, and inter-
act with each other without any intervention from/to other
agents, platforms and human users/administrators.

(3) Natural selection: Agents and platforms store and
expend energy for living. Each agent gains energy in ex-
change for performing its service to other agents or hu-
man users, and expends energy to use network and com-
puting resources. Each platform gains energy in exchange
for providing resources to agents, and periodically evapo-
rates energy. The abundance or scarcity of stored energy
triggers natural selection of agents/platforms. For exam-
ple, an abundance of stored energy indicates higher de-
mand for an agent/platform; thus the agent/platform repli-
cates itself to increase its availability. A scarcity of stored
energy (an indication of lack of demand) causes death of
the agent/platform. Like in biological natural selection
where more favorable species in an environment becomes
more abundant, the population of agents/platforms dy-
namically changes based on the demands for them.

(4) Emergence: Agents and platforms behave against
dynamic environmental conditions (e.g. user demands and
resource availability). For example, an agent may invoke
migration behavior to move towards a platform that for-
wards a large number of request messages for its services.
Also, a platform may replicate itself on a neighboring host
whose resource availability is high. Through collective
behaviors and interactions of individual agents and plat-
forms, desirable system characteristics such as adaptabil-
ity and survivability emerge in a swarm of agents and
platforms. Please note that the desirable characteristics are
not present in any single agent/platform.

Platform

Host

SymbioticSphere

Environment

Service

Energy

Energy
evaporation

ResourceEnergy

Agent

Service

Platform

Host Host

Energy

Service request

User

Fig. 1 Energy Exchange in SymbioticSphere (5) Symbiosis: Agents and platforms are modeled as
different species. In certain circumstances, agents and
platforms spontaneously cooperate to pursue their mutual
benefits and improve their adaptability and survivability,
although each of them is not explicitly designed to do so.

3. SymbioticSphere
This section describes the design of SymbioticSphere.

3.1 The Architecture of SymbioticSphere
Fig. 1 shows the architecture of SymbioticSphere.

Agents and platforms are modeled as different biological
species. As a living entity, the ultimate goal of each spe-
cies is to survive for a long time by balancing its energy
gain and population. SymbioticSphere follows ecological
principles to design energy exchange among agents, plat-
forms and environment. It models a user as the Sun,
agents as producers, and platforms as consumers1. Similar
to the Sun, users have unlimited amount of energy. Each
agent gains energy from users2 and transfers 10% of its
energy level to an underlying platform for consuming
resources provided by the platform. Each platform gains
energy from agents and evaporates 10 % of its energy
level to the environment. This energy exchange rule fol-
lows an ecological fact that about 10% of the energy
maintained by producer species goes to consumer species
[3]. Due to space limitation, see [4] for more details on
energy exchange in SymbioticSphere.

3.2 Agents
Each agent consists of three parts: attributes, body and

behaviors. Attributes carry descriptive information re-
garding the agent, such as agent ID, energy level and de-
scription of a service it provides. Body implements a ser-
vice that the agent provides. For example, an agent may
implement a web service, while another agent may im-
plement a physical model for scientific simulations. Be-
haviors implement actions that are inherent to all agents.
Although SymbioticSphere defines nine standard agent
behaviors [5], this paper focuses on three of them.

1 In the ecological system, producers (e.g., shrubs) convert the Sun light
energy to chemical energy. The chemical energy is transferred to con-
sumers (e.g., hares) as consumers consume producers.
2 Each agent specifies the price (in energy units) of its service.

• Replication: Agents may make a copy of themselves as
a result of abundance of energy. A replicated (child)
agent is placed on the platform that its parent agent re-
sides on, and it receives the half amount of the parent’s
energy level.

• Death: Agents die due to energy starvation. When an
agent dies, an underlying platform removes the agent
and releases all resources allocated to the agent.

• Migration: Agents may move from one platform to
another.

3.3 Platforms
Each platform runs on a network host and operates

agents. It consists of attributes, behaviors and runtime
services. Attributes carry descriptive information regard-
ing the platform, such as platform ID, energy level and
health level. Health level indicates how healthy an under-
lying host is. It is defined as a function of three properties:
resource availability on, age of and freshness of a host.
Resource availability indicates how much resources are
available for agents and platforms on a host. Age indi-
cates how long a host has been alive (i.e., how much sta-
ble a host is). Freshness indicates how recently a host
joined the network. After a new host joined the network,
its freshness gradually decreases from the maximum
value. When an unstable host resumes from a failure, its
freshness starts with the value that the host has when it
went down. Using age and freshness, unstable hosts and
new hosts can be distinguished (Table 1). Health level
affects behaviors of each platform and agent. For example,
higher health level indicates higher stability of and/or
higher resource availability on a host that a platform re-
sides on. Thus, the platform may replicate itself on a
healthier neighboring host.

Table 1.Freshness and Age in Different Types of Hosts

Host Type Freshness Age
Unstable host Lower Lower
New host Higher Lower
Stable host Lower Higher

Behaviors are the actions inherent to all platforms.

• Replication. Platforms may make a copy of themselves
as a result of abundance of energy (i.e., higher demand

for resources available on the platforms). The child
platform inherits the half of the parent’s energy level.

• Death. Platforms die due to lack of energy. A dying
platform uninstalls itself and releases all resources the
platform uses. Despite the death of a platform, an un-
derlying host remains active so that another platform
can run on it in the future.
Runtime services are middleware services that agents

and platforms use to perform their behaviors.

3.4 Behavior Policies of Agents and Platforms
Each agent/platform has policies for its behaviors. A

behavior policy defines when to and how to invoke a par-
ticular behavior. Each behavior policy consists of factors
(Fi), which evaluate environment conditions (e.g. network
traffic) or agent/platform/host status (e.g. energy level and
health level). Each factor is given a weight (Wi) relative to
its importance. Behaviors are invoked if the weighted sum
of factor values (Σ Fi*Wi) exceeds a threshold.

The factors in agent migration behavior policy include:
• Energy Level: Agent energy level, which encourages

agents to move in response to higher energy level.
• Health Level Ratio: The ratio of health level on a re-

mote host to the local host, which encourages agents to
move to platforms running on healthier hosts. This ra-
tio is calculated with three health level properties (i.e.,
resource availability, freshness or age) as follows:

)1(...
Pr

PrPr3

∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

=

i i

ii

hostlocalonopertylHealthLeve
hostlocalonopertylHealthLevehostremoteonopertylHealthLeve

RatioLevelHealth

• Service Request Ratio: The ratio of # of incoming ser-

vice requests on a remote platform to the local plat-
form, which encourages agents to move towards users.

• Migration Interval: Time interval to perform migra-
tion, which discourages agents to migrate too often.
If there are multiple neighboring platforms that an

agent can migrate to, the agent calculates a weighted sum
of the above factors for each of the platforms, and moves
to a platform that generates the highest weighted sum.

The factors in agent replication behavior policy include:
• Energy Level: Agent energy level, which encourages

agents to replicate themselves in response to higher en-
ergy level.

• Request Queue Length: The length of service request
queue, which the local platform maintains to queue in-
coming service requests. This factor encourages agents
to replicate themselves in response to higher demands.
The factors in agent death behavior policy include:

• Energy Level: Agent energy level. Agents die when
they run out of their energy.

• Energy Loss Rate: The rate of energy loss in between
the current and previous simulation cycles. This factor
is calculated with the following equation, where Et and
Et-1 are the energy levels in the current and previous

simulation cycles. Agents have higher risk to die in re-
sponse to sharp drop in demands for their services.

1

1

−

− −
=

t

tt

E
EE

RateLossEnergy …… (2)

The factors in platform replication behavior include:
• Energy Level: Platform energy level, which encourages

platforms to replicate themselves in response to higher
energy level.

• Health Level Ratio: The ratio of health level on a re-
mote host to the local host, which encourages plat-
forms to replicate themselves on healthier neighboring
hosts. This ratio is calculated with Equation (1).

• The Number of Agents: The number of agents working
on each platform. This factor encourages platforms to
replicate themselves in response to higher agent popu-
lation on them.
If there are multiple neighboring hosts that a platform

can replicate itself on, the platform places a child platform
on a host whose health ratio is highest among others.

The factors in platform death behavior include:
• The Number of Agents: The number of agents running

on each platform. This factor discourages platforms to
die when agents run on them.

• Energy Loss Rate: The rate of energy loss in plat-
forms. This factor is calculated with Equation 2. Plat-
forms have higher risk to die in response to sharp drop
in demands for their resources.

Each agent/platform expends energy to invoke behav-
iors (i.e., behavior cost) except death behavior. When the
energy level of an agent/platform goes over the cost of a
behavior, the agent/platform decides whether it performs
the behavior by calculating a weighted sum of factors.

4. Simulation Results
This section shows simulation results to evaluate how

biologically-inspired mechanisms in SymbioticSphere
impact adaptability and survivability of server farms3. Fig.
2 shows a pseudo code of each simulation cycle.

While (not the last simulation cycle)

For each user do
 send service requests to each of available agents according to

 a configured service request rate.
End For
If (simulation cycle mod an interval = 0) do

For each platform do
 make a decision on performing a behavior.
 update healthy level.
 expend (evaporate) energy.
End For

End If
For each agent do

While (not exceeds the max # of msgs an agent can process) do
 If (a service request(s) arrived) do

 process the request(s) and gain energy.
 End If

End While
If (simulation cycle mod an interval = 0) do

3 Simulations were carried out with the SymbioticSphere simulator,
which contains 14,600 lines of Java code.

 make a decision on performing a behavior.
 transfer energy to the local platform.
End If

End For
End While

Fig. 2 Pseudo Code of Simulation Cycle

Fig. 3 shows a simulated network. A server farm con-
sists of hosts connected in a N x N grid topology, and us-
ers send service requests to agents via user access point.
This paper assumes that a single (virtual) user runs on the
access point and it emulates multiple users to send service
requests. Each host has 320 MB or 256 MB memory
space4. Out of the space, an operating system and Java
VM consume 128 and 64 MB, respectively. The remain-
ing space is available for a platform and agents on each
host. Each agent and platform consumes 5 and 20 MB,
respectively. This assumption is obtained from a prior
empirical experiment [5].

Each simulation runs for 24 hours in simulation time.

4.1. Adaptability of SymbioticSphere

 The first simulation study is carried out to evaluate
the adaptability of SymbioticSphere. Adaptability is
evaluated as service adaptation and resource adaptation.
Service adaptation is the activities to adaptively improve
the quality and availability of services provided by agents.
Quality of service is measured as response time of agents
to respond service requests from users. Service availabil-
ity is measured as the number of available agents. Re-
source adaptation is the activities to adaptively improve
resource availability and resource efficiency. Resource
availability is measured as the number of platforms that
make resources available for agents. Resource efficiency
indicates how many service requests are processed per
resource utilization.

Service request rate starts with 3,000 requests/min,
spikes to 210,000 requests/min at 8:00, and drops to 3,000
requests/min at 16:30 (Fig. 5). The peak demand and
spike ratio (1:70) are taken from a workload trace of the
1998 World Cup web site [6]. A simulated server farm is
7x7 (49 hosts) from 0:00 to 12:00 and 15x15 (225 hosts)
from 12:00 to 24:00. 30% of the hosts (resource rich
hosts) have 320MB memory space. The other 70% are
resource poor hosts, which have 128MB. Both types of
hosts are placed randomly. At the beginning of a simula-
tion, a single agent and platform is deployed on each host.

4 Currently, memory availability represents resource availability.

Fig. 4 shows how service availability (i.e., the number

of agents) and resource availability (i.e., the number of
platforms) change dynamically. Starting with 49 agents
and 49 platforms at 0:00, they autonomously adapt their
populations to demand changes. When service request
rate spikes at 8:00, agents gain more energy form users
and replicate themselves more often. In response to higher
energy intake, they also transfer more energy to plat-
forms. As a result, platforms also increase their popula-
tion through replications. From 10:00 to 12:00, the popu-
lations of agents and platforms do not grow due to physi-
cal limitation of available hosts. When the size of a server
farm expands at 12:00, agents and platforms recognize the
environmental change and rapidly increase their popula-
tions. When service request rate drops at 16:30, most
agents die because they cannot balance their energy gain
and expenditure. Also, the population of platforms gradu-
ally decreases due to less energy transfer from agents.
Fig. 4 shows that biological mechanisms contribute for
agents and platforms to adaptively adjust their availability
to dynamic demand changes.

0

500

1000

1500

2000

0 2 4 6 8 10 12 14 16 18 20 22
0

50

100

150

200

250
The Number of Agents
The number of Platforms

Th
e

nu
m

be
r o

f a
ge

nt
s

Simulation time (hour)

Th
e

nu
m

be
r o

f p
la

tfo
rm

s

Fig 4 The Number of Agents and Platforms

se
rv

ic
e

re
qu

es
ts

User
access point

Server Farm

Host

(Simulated User)se
rv

ic
e

re
qu

es
ts

User
access point

Server Farm

Host

(Simulated User)

Fig 3 Simulated Network

Fig. 5 shows the rate of service requests from users and
the throughput achieved by agents. It depicts that agents
and platforms collectively adapt throughput performance
to dynamic changes in demand (8:00 and 16:30) and
server farm size (12:00). Fig. 5 also shows that the bio-
logical mechanisms in SymbioticSphere scales well to
demand volume, spike ratio and server farm size.

m

es
sa

ge
 /

m
in

ut
e

Simulation time (hour)

0

50000

100000

150000

200000

250000

0 2 4 6 8 10 12 14 16 18 20 22 24

Service Request Rate Throughput

Fig. 5 Service Request Rate and Throughput

Fig. 6 shows the quality of service (i.e., the average re-
sponse time for agents to respond users). This includes the
message transmission latency between a user and agent
and the processing overhead for an agent to process a ser-
vice request. From 0:00 to 8:00, response time decrease
because agents migrate towards users. At 8:00, response
time spikes because service request rate spikes. Response
time starts decreasing at 12:00 when agents/platforms

replicate on the hosts that newly joins the server farm. At
18:00, response time spikes because some agents die near
from users due to energy starvation caused by a drop in
service request rate. Fig. 6 shows the biological mecha-
nisms in SymbioticSphere contribute for agents and plat-
forms to keep response time low despite demand surges.

Fig. 7 shows resource utilization balancing index

(RUBI). RUBI is measured with Equation 3.
Ri represents resource utilization rate on the host i: (the

amount of resources a platform and agents utilize on the
host i) / (the total amount of resources the host i has). N is
the number of hosts that platforms reside on. μR repre-
sents the expected average of resource utilization rate on
N hosts. The lower RUBI is, the more resource utilization
is distributed over hosts in proportion to the amount of
resources the hosts have. This means that more agents and
platforms run on resource righ hosts, and less agents run
on resource poor hosts. From 0:00 to 8:00, RUBI
gradually decrease. This means that agents move to and
platforms replicate themselves on resource rich (i.e.,
healthier) hosts. At 8:00, RUBI increases because more
agents and platforms start running on both resource rich
and poor hosts when service request rate spikes. After that,
agents and platforms seek resource rich hosts through
migration and replication, resulting in lower RUBI. At
12:00, RUBI spikes because agents and platforms rapidly
spread over both resource rich and poor hosts to handle
high service request rate when new hosts join the server
farm. However, agents and platforms decrease RUBI
again by preferentially residing on resource rich hosts. Fig.
7 shows that the biological mechanisms in Symbiotic-
Sphere contribute for agents and platforms to adaptively
balance resource utilization over heterogeneous hosts.

Fig. 7 also shows an example of symbiotic emergence
between agents and platforms. Agent migration behavior
policy encourages agents to move towards platforms on
healthier hosts. Platform replication behavior policy en-
courages platforms to replicate themselves on healthier
hosts. Therefore, when new hosts join a server farm at
12:00, platforms perform replications on the new hosts
and agents migrate to the replicated platforms. As a result,
service requests are processed by agents that are spread
over the platforms running on healthy hosts. This contrib-
utes to balance workload and resource utilization on each
platform, although agent migration policy and platform
replication policy do not consider agent population, plat-
form population, load balancing, and resource utilization
balancing. This results in a mutual benefit for both agents
and platforms. Platforms help agents decrease response
time by making more resources available for them.
Agents help platforms to keep their stability by avoiding
excessive resource utilization on them.

A
ve

ra
ge

 re
sp

on
se

 ti
m

e
(s

ec
)

Simulation time (hour)

0

5

10

15

20

25

30

0 2 4 6 8 10 12 14 16 18 20 22 24

Fig. 6 Average Response Time

N

R
IndexBalancingnUtilizatiosource

N

i
Ri∑ −

=

2)(
Re

 (3) μ

Fig. 8 shows resource efficiency, which indicates how
many service requests are processed per resource utiliza-
tion. It is measured as (the total # of service requests
processed by agents) / (the total amount of resources con-
sumed by all agents and platforms). Until 8:00, agents and
platforms keep increasing resource efficiency by adjusting
their populations to service demand and decreasing re-
sponse time for users (see Figs. 4 and 6). Fig. 8 shows
biological mechanisms in SymbioticSphere contribute for
agents and platforms to adaptively improve resource effi-
ciency by using available resources effectively.

R
es

ou
rc

e
Ef

fic
ie

nc
y

Simulation time (hour)

0

5

10

15

20

0 2 4 6 8 10 12 14 16 18 20 22 24

Fig. 8 Resource Efficiency

4.2. Survivability of SymbioticSphere
The second set of simulations is carried out to evaluate

the survivability of SymbioticSphere. Service request rate
is constantly 7,200 requests/min, which is taken from a
workload trace of the IBM web site in 2001 [7]. The
server farm size is 7x7 (49 hosts). Each host has 256MB
memory space. In each simulation, randomly chosen 30%
or 60% of hosts go down at 9:00 for 90 minutes.

Simulation time (hour)

R
U

B
I

0

0.5

1

1.5

2

2.5

0 2 4 6 8 10 12 14 16 18 20 22 24

Fig. 7 Resource Utilization Balancing Index (RUBI)

Figs. 9 and 10 show how resource availability (i.e., the
number of platforms) and service availability (i.e., the
number of agents) dynamically change, respectively.
When hosts go down at 9:00, agents and platforms die on
the failed hosts, resulting in a drop in agent/platform
population. However, after the host failure, agents and
platforms replicate themselves on remaining hosts in or-

der to keep (or increase) their populations. Therefore,
agents improve their throughput during the period of host
failure (Fig. 11). Figs. 9, 10 and 11 show that biological
mechanisms in SymbioticSphere contribute for agents and
platforms to increase their populations and increase agent
throughput despite significant host failures.

5. Related Work

The Bio-Networking Architecture [5] proposes biologi-
cally-inspired agents to achieve service adaptation in a
decentralized and collective manner. However, platforms
do not achieve resource adaptation because they are static
and non-biological entities. In SymbioticSphere, both
agents and platforms are biological entities, and they
achieve service adaptation and resource adaptation simul-
taneously. SymbioticSphere also exhibits a new from of
adaptation, symbiotic emergence, which does not appear
in the Bio-Networking Architecture.

Resource Broker [8] and Muse [7] achieve resource ad-
aptation for server clusters via centralized system monitor.
Resource Broker inspects the stability and resource avail-
ability of each host, and adjusts resource allocation for
applications. Muse inspects electric power consumption
of a server cluster and adjusts resource allocation for ap-
plications. Rather than following centralized architectures,
SymbioticSphere achieves both service adaptation and
resource adaptation with decentralized agents and plat-
forms. Also, Muse does not consider survivability against
host failures.

Rainbow achieves both service adaptation and resource
adaptation in server clusters [9]. A centralized system
monitor inspects the current environment conditions, and
performs an adaptation strategy (e.g. service migration
and platform replication/death). SymbioticSphere imple-
ments more adaptation strategies such as agent replication
and agent death. It also addresses survivability as well as
adaptability with the same set of agent/platform behaviors.
Rainbow does not consider survivability from failures.

[10] proposes a decentralized design for server clusters
to guarantee response time. SymbioticSphere does not
guarantee any system measures including response time
because the dynamic improvement of those measures is
an emergent result from collective behaviors and interac-
tions of agents and platforms. As a result, agents and plat-
forms can adapt to unexpected environmental changes
(e.g., system failures) and survive them without changing
any behaviors and their policies. [10] does not consider
survivability from system failures.

6. Conclusion
This paper overviews SymbioticSphere, and presents

how it implements biological mechanisms to improve the
adaptability and survivability of server farms. Simulation
results show SymbioticSphere allows server farms to
autonomously adapt to dynamic environmental changes
and survive partial system failures.

Reference
[1] J. Rolia and S. Singhal and R. Friedrich, “Adaptive Internet Data

Centers,” Proc. SSGRR’00, July 2000.
[2] A. Nguyen-Tuong, A. S. Grimshaw, G. Wasson, M. Humphrey,

J.C. Knight, “Towards Dependable Grids,” University of Virginia,
TR-CS-2004-11, 2004.

[3] R. M. Alexander, “Energy for Animal Life,” Oxford University
Press, May 1999.

[4] P. Chaprasert and J. Suzuki, “SymbioticSphere: A Biologically-
inspired Network Architecture for Autonomic Grid Systems,”
Proc. of IASTED CIIT, October 2005.

[5] J. Suzuki and T. Suda, “A Middleware Platform for a Biologically-
inspired Network Architecture Supporting Autonomous and Adap-
tive Applications” IEEE J. on Selected Areas in Comm. Feb. 2005.

[6] M.F. Arlitt and T. Jin, “A Workload Characterization Study of the
1998 World Cup Web Site,” IEEE Network, May/June 2000

[7] J. Chase, D. Anderson, P. Thakar, and A. Vahdat, “Managing
Energy and Server Resources in Hosting Centers,” Proc. of ACM
SOSP, October 2001

[8] A. Othman, P. Dew, K. Djemame, I, Gourlay, “Adaptive Grid
Resource Brokering,” Proc. of IEEE Cluster, Dec. 2003.

[9] S. Cheng, D. Garlan, B. Schmerl, P. Steenkiste, and N. Hu, “Soft-
ware Architecture-based Adaptation for Grid Computing,” Proc.
of IEEE HPDC, July 2002.

[10] C. Adam, R. Stadler, “Adaptable Server Clusters with QoS Objec-
tives,” Proc. of IFIP/IEEE IM, May, 2005.

Th
e

nu
m

be
r o

f p
la

tfo
rm

s

Simulation time (hour)

0

5

10

15

20

25

30

7.00 8.00 9.00 10.00 11.00 12.00 13.00

0% down
30% down
60% down

Fig. 9 The Number of Platforms

Th
e

nu
m

be
r o

f a
ge

nt
s

Simulation time (hour)

0

20

40

60

80

7.00 8.00 9.00 10.00 11.00 12.00 13.00

0% down
30% down
60% down

Fig. 10 The Number of Agents

Th
ro

ug
hp

ut

Simulation time (hour)

2000

3000

4000

5000

6000

7000

7.00 8.00 9.00 10.00 11.00 12.00 13.00

0% down
30% down
60% down

Fig. 11 Throughput

