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ABSTRACT
This paper studies an evolutionary game theoretic mech-
anism for adaptive and stable application deployment in
cloud computing environments. The proposed mechanism,
called Nuage, allows applications to adapt their locations
and resource allocation to the environmental conditions in
a cloud (e.g., workload and resource availability) with re-
spect to given performance objectives such as response time.
Moreover, Nuage theoretically guarantees that every appli-
cation performs an evolutionarily stable deployment strat-
egy, which is an equilibrium solution under given environ-
mental conditions. Simulation results verify this theoreti-
cal analysis; applications seek equilibria to perform adaptive
and evolutionarily stable deployment strategies.

Categories and Subject Descriptors
C.2.4 [Computer Systems Organization]: Computer-
Communication Networks—Distributed Systems; I.2 [Computing
Methodologies]: Artificial Intelligence

Keywords
Cloud Computing, Adaptive and Stable Application Deploy-
ment, Evolutionary Game Theory

1. INTRODUCTION
One of key features in cloud computing (e.g., Infrastructure-
as-a-Service and Platform-as-a-Service) environments is elas-
tic scaling of their applications [1, 2, 3]. In order to provide
this feature, they are required to perform dynamic appli-
cation deployment for adjusting the locations and resource
allocation of cloud applications [4, 5, 6, 7]. For example,
they allocate different amounts of computing and network-

ing resources (e.g., CPU time, memory/disk space and band-
width) to each application according to the application’s
workload (i.e., the number of incoming messages). This al-
lows applications to operate by balancing different perfor-
mance objectives such as response time and resource con-
sumption. (Resource consumption implies operational costs
due to the pay-per-use models used in clouds.) Moreover,
cloud computing environments relocate an application from
one host to another and colocate multiple applications on
the same host according to the resource availability on hosts.
This allows applications to efficiently utilize resources and
avoid the risk of host crashes due to resource scarcity.

This paper investigates two important properties in appli-
cation deployment in clouds:

• Adaptability: allows applications to adapt their loca-
tions and resource allocation to workload and resource
availability under given performance objectives.

• Stability: allows applications to seek stable adaptation
decisions by minimizing oscillations (or non-deterministic
inconsistencies) in decision making.

Nuage is an evolutionary game theoretic mechanism for adap-
tive and stable application deployment in clouds. This pa-
per describes its design and evaluates its adaptability and
stability. In Nuage, each application contains a set (or a
population) of multiple players that represent different de-
ployment strategies. Randomly-paired players repeatedly
play games. Each game distinguishes a winning and a los-
ing player with respect to performance objectives. The win-
ner replicates itself and increases its share in the population.
The loser is eliminated from the population. Through multi-
ple games performed repeatedly in the population, the pop-
ulation state (or strategy distribution) changes. Through
theoretical analysis, Nuage guarantees that the population
state converges to an equilibrium where the population con-
tains a dominant strategy. Nuage performs the dominant
deployment strategy as the most rational strategy against
given workload and resource availability.

Nuage theoretically proves that the population state is evo-
lutionarily stable when it is on an equilibrium. An evolution-



arily stable state is the state that, regardless of the initial
population state, the population state always converges to.
(A dominant strategy in the evolutionarily stable popula-
tion state is called evolutionarily stable strategy.) Thanks
to this property, Nuage guarantees that every application
deterministically performs evolutionarily stable deployment
strategy. Simulation results verify this theoretical analysis;
applications seek equilibria to perform evolutionarily stable
deployment strategies and adapt their locations and resource
allocations to given workload and resource availability.

2. PROBLEM STATEMENT
This paper considers an application deployment problem
where M hosts are available to operate N applications. Each
application is designed and deployed as a set of three server
software, following the three-tier application architecture [8].
Using a hypervisor such as Xen [9], each server is deployed
on a virtual machine (VM) atop a host.

The goal of this problem is to find evolutionarily stable de-
ployment strategies that deploy N applications (i.e., N × 3
servers) on M hosts so that the applications adapt their
locations and resource allocation to given workload and re-
source availability with respect to performance objectives.
The placement of and the resource allocation to each ap-
plication are conducted on a per-server (or per-VM) basis.
This paper considers CPU time share (in percentage) as a
resource assigned to each server (i.e., VM).

2.1 Application Architecture
Each application consists of the following three servers:

• Web server: accepts HTTP messages from applica-
tion users, validates data in the messages and provides
Web-based user interface for users.

• Application server: performs functional application logic
and processes data transmitted from users.

• Database server: takes care of data access and storage.

Each message is sequentially processed from a Web server
to a database server through an application server. A reply
message is generated by the database server and forwarded
in the reverse order toward a user. This paper assumes
that different applications utilize different sets of servers.
(Servers are not shared by different applications.) Users
send different types of messages to different applications

A host can operate multiple VMs, each runs a server. Col-
located VMs share resources available on their local host.

2.2 Performance Objectives
This paper considers the following performance objectives
for each application to adapt its location and resource allo-
cation. All objectives are to be minimized.

• Response time: The response time of an application for
its users. It is estimated based on an M/M/1 queuing
model [10], in which message arrivals follow a Poisson
process and a server’s service time is exponentially dis-
tributed to process incoming messages.

• Resource consumption: The total CPU time share (in
percentage) assigned to three virtual machines in an
application.

• Distance: The average distance between VMs in an
application. It is computed as the hop count between
hosts running the VMs.

• Load balance: The variance of workload (the number
of incoming messages) among hosts running three VMs
in an application.

The response time of an application (the i-th application) is
estimated as follows.

Ri = T
(s)
i + T

(w)
i + T

(d)
i (1)

T
(s)
i denotes the time for the i-th application to process an

incoming message from a user. It is computed as follows.

T
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T
(s)
i,v denotes the service time of the v-th server in the i-th

application. It indicates how long it takes for the server to
process a message.

T
(w)
i denotes the total waiting time for a message to be

processed by three servers in the i-th application. It is com-
puted as follows.

T
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λi denotes the i-th application’s message arrival rate (i.e.,
the number of messages the i-th application receives during
the unit time). ρi,v denotes the utilization of the v-th server
in the i-th application. It is computed as follows.

ρi,v =
λi,v

Ci,v/T
(s)
i,v

(4)

Note that λi =
∑3

v=1 λi,v

3
. (Currently, λi = λi,1 = λi,2 =

λi,3) Ci,v denotes the CPU time share allocated to the v-th
server in the i-th application.

T
(d)
i is the total communication delay to transmit a message

among servers in the i-th application. It is obtained with the
size of a message and network bandwidth.

3. BACKGROUND: EVOLUTIONARY GAME
THEORY

Game theory studies strategic selection of behaviors in in-
teractions among rational players. In a game, given a set of
strategies, each player strives to find a strategy that op-
timizes its own payoff depending on the others’ strategy
choices. Game theory seeks such strategies for all players as
a solution, called Nash equilibrium (NE), where no players
can gain extra payoff by unilaterally changing his strategy.



Evolutionary game theory (EGT) is an application of game
theory to biological contexts to analyze population dynam-
ics and stability in biological systems. In EGT, games are
played repeatedly by players randomly drawn from the pop-
ulation [11, 12]. In general, EGT considers two major evo-
lutionary mechanisms: mutation, which injects varieties on
genes, and selection, which favors some varieties over oth-
ers based on their fitness to the environment. Mutation
is considered in the notion of evolutionarily stable strate-
gies (ESS), which is a refinement of NE. Selection is consid-
ered in the replicator dynamics (RD) model.

3.1 Evolutionarily Stable Strategies
ESS is a key concept in EGT. A population following such
a strategy is invincible. Specifically, suppose that the initial
population is programmed to play a certain pure or mixed
strategy x (the incumbent strategy). Then, let a small pop-
ulation share of players ε ∈ (0, 1) play a different pure or
mixed strategy y (the mutant strategy). Hence, if a player is
drawn to play the game, the probabilities that its opponent
plays the incumbent strategy x and the mutant strategy y
are 1 − ε and ε, respectively. The player’s payoff of such a
game is the same as that of a game where the player plays
the mixed strategy w = εy + (1 − ε)x. The payoffs of play-
ers with strategies x and y given that the opponent adopts
strategy w are denoted by U(x,w) and U(y, w), respectively.

Definition 1. A strategy x is called evolutionarily stable
if, for every strategy y 6= x, a certain ε̄ ∈ (0, 1) exists, such
that the inequality

U(x, εy + (1− ε)x) > U(y, εy + (1− ε)x) (5)

holds for all ε ∈ (0, ε̄).

In the special case where the payoff function is linear, U(x,w)
and U(y, w) can be written as the expected payoffs for play-
ers with strategies x and y, and Equation (5) yields

(1− ε)U(x, x) + εU(x, y) > (1− ε)U(y, x) + εU(y, y) (6)

If ε is close to zero, Equation (6) yields either

U(x, x) > U(y, x), or

U(x, x) = U(y, x) and U(x, y) > U(y, y) (7)

Hence, it becomes obvious that an ESS must be a NE; oth-
erwise, Equation (7) do not hold.

3.2 Replicator Dynamics
The replicator dynamics, first proposed by Taylor [13], spec-
ifies how population shares associated with different pure
strategies evolve over time. In replicator dynamics players
are programmed to play only pure strategies. To define the
replicator dynamics, consider a large but finite population of
players programmed to play pure strategy k ∈ K, where K
is the set of strategies. At any instant t, let λk(t) ≥ 0 be the
number of players programmed to play pure strategy k. The
total population of players is given by λ(t) =

∑
k∈K λk(t).

Let xk(t) = λk(t)/λ(t) be the fraction of players using pure
strategy k at time t. The associated population state is
defined by the vector x(t) = [x1(t), · · · , xk(t), · · · , xK(t)].
Then, the expected payoff of using pure strategy k given

that the population is in state x is U(k,x) and the popula-
tion average payoff, that is the payoff of a player drawn ran-
domly from the population, is U(x,x) =

∑K
k=1 xk · U(k,x).

Suppose that payoffs are proportional to the reproduction
rate of each player and, furthermore, that a strategy profile
is inherited. This leads to the following dynamics for the
population shares xk

ẋk = xk · [U(k,x)− U(x,x)] (8)

where xk is the time derivative of xk. The equation states
that populations with better (worse) strategies than average
grow (shrink). However, there are cases when even a strictly
dominated strategy may gain more than average. Hence, it
is not a priori clear whether if such strategies get wiped out
in the replicator dynamics. The following theorem answers
this question [11]:

Theorem 1. If a pure strategy k is strictly dominated
then ξk(t, x0)t→∞ → 0, where ξk(t, x0)is the population at
time t and x0 is the initial state.

On the other hand, it should be noted that the ratio xk/x` of
two population shares xk > 0 and x` > 0 increases with time
if the strictly dominated strategy k gains a higher payoff
than the strictly dominated strategy `. This is a direct result
of Equation (8) and may be expressed analytically via

d

dt

[
xk
x`

]
= [U(k,x)− U(`,x)]

xk
x`

(9)

From Equation (9), it is evident that even suboptimal strate-
gies could temporarily increase their share before being wiped
out in the long run. However, there is a close connection be-
tween NE and the steady states of the replicator dynamics,
which is states where the population shares do not change
their strategies over time. Thus, since in NE all strategies
have the same average payoff, every NE is a steady state.
The reverse is not always true: Steady states are not nec-
essarily NE, e.g., any state where all players use the same
pure strategy is a steady state, but, it is not stable [11].

In this paper, a single fixed-sized population model is used;
also, discrete time (i.e., generational) model is assumed.

4. NUAGE
4.1 A Design of Evolutionary Game in Nuage
Nuage executes an independent evolutionary game in each of
N different applications’ populations, {AP1, AP2, ..., APN}.
An application populationAPi containsM players {pi,1, pi,2,
..., pi,M}. A player has its own strategy S(pi,j) that repre-
sents a deployment of three virtual servers vti corresponding
to an application i, where t ∈ {1, 2, 3} (e.g., 1 for Web, 2
for App, and 3 for DB servers). Each virtual server is de-
ployed on a host h ∈ H. The strategy specifies placements
and resource allocations of the virtual servers. A placement
indicates which host a virtual server is deployed on. An al-
location indicates CPU time share assigned to the virtual
server. Thus, a strategy is described as a set of pairs of the
placement and allocation for three virtual servers vti where
t ∈ {1, 2, 3} and implemented as

S(pi,j) = {(h1
i , `

1
i ), (h

2
i , `

2
i ), (h

3
i , `

3
i )} (10)

where hti denotes a host ID running a virtual server vti for an
application i, and `ti denotes CPU time share (%) assigned
to the virtual server vti for an application i.



A game is repeatedly performed between randomly paired
players in an application population. According to their
fitness, a winning/losing player increases/decreases its sub-
population in an application population. A strategy of a
player whose subpopulation is the largest is used as the cur-
rent deployment of an application. Figure 1 shows example
strategies for two different applications (a1 and a2).

Web Web
Host 1

App30% 20% 30% 25% 45%
0%                                  100%  

Host 2 Host 3

Virtual Machines for Application a1; S(a1) = {(1, 30),(1, 30),(2, 45)}Virtual Machines for Application a2; S(a2) = {(1, 20),(2, 25),(3, 50)}

DBApp
CPU Time share

DB50%

Figure 1: An example allocation of two applications

A Nuage state can be described as a deployment state that
indicates an placements and allocations for all applications
(i.e., 3N virtual servers). It is denoted as a (3N x |H|)-
matrix X = [xrc] where xrc is an allocation of a virtual
server vr at a host c. The virtual server ID, r, is given by
r = 3 ∗ i+ t where i is an application ID, and t is an index
of virtual servers ∈ {1, 2, 3}.

X =


30 0 0
20 0 0
0 45 0
30 0 0
0 25 0
0 0 50

where
3N∑
r=1

xrc ≤ 100 (11)

4.2 A Procedure of Nuage
Applications evolve through generations by changing their
strategies (i.e., placements and resource allocations) and im-
prove their objective values (e.g., response time for users).
At each generation, each application repeatedly performs
games between randomly-paired players in the application
population. A winning player will make its copy, and a los-
ing player will be removed from the population. Then, a
mutation operation is performed on each copied player at
a certain probability to change its strategy. The mutation
occurs at one of virtual servers with (hti, `

t
i). One of avail-

able hosts is randomly assigned to hti, and the value of `ti is
assigned based on a normal distribution G(µ, σ) = G(`ti, 1).

A player wins/loses against the opponent according to their
fitness. In this paper, the fitness is given by a domination re-
lationship. The domination relationship is determined based
on objectives described in Section 2.2 and their priority. By
definition, it is said that Player A dominates Player B if all
objective values of A is smaller than that of B. It is said that
Player A is superior to Player B if the number of dominating
objectives of A is larger than that of B. If those numbers for
A and B are the same, then they consider the pre-defined
priority of objectives.

Figure 2 shows a pseudocode of the mechanism to explain
how Nuage works. InitializePopulation(AP ) initializes all

application populations by assigning randomly chosen strate-
gies to players; Randomize(O) permutates the elements of a
set O, which is a set of indexes of applications; Select(APi)
retrieves two players randomly from an application popula-
tionAPi; and PerformGame(px, py) determines winning/losing
players by evaluating their domination relationship.

Nuage()
// AP: a set of application populations
// O: a permutation ordering of applications’ indexes
// W: a set of winning players, R: a set of the mutated
// px: A player with a strategy x
main
InitializePopulation(AP )
O ← (1, 2, ..., N)
while (the termination condition is not satisfied)

do



O ← Randomize(O)
for r ← 0 to N

do



i← O(r)
W,R← φ, M ← |APi|/2
for j ← 0 to M

do


{p1, p2} ← Select(APi)
APi ← APi − {p1, p2}
winner ← PerformGame(p1, p2)
W ←W ∪ winner
R← R ∪Mutate(winner)

APi ←W ∪R

Figure 2: Evolutionary Games in Nuage

5. STABILITY ANALYSIS
This section analyzes the stability of Nuage by showing that
an application population state converges to an evolutionar-
ily stable state (or an asymptotically stable state) in three
steps: (1) The dynamics of the population state change over
time is formalized as a set of differential equations, (2) The
proposed evolutionary game has equilibrium points, (3) The
equilibrium points are asymptotically stable. First, in order
to construct the differential equations, following terminolo-
gies and variables are defined.

• S denotes a set of strategies. A strategy, s ∈ S, con-
sists of pairs of a placement and allocation for three
virtual servers as described in Section 4.1. S∗ denotes
a set of strategies that appear in an application popu-
lation.

• M denotes a population size. M =
∑
s∈S∗ ns where

ns is the number of players with a strategy s.

• X(t) denotes a population state at time t. X(t) =
{x1(t), x2(t), · · · , x|s∗|(t)} where xs is the population
share of players with a strategy s (xs = ns

|S∗| ;
∑
s∈S∗ xs =

1).

• Fs is the fitness of a player with a strategy b.

• psk denotes the probability that a player with a strategy
s is replicated by winning a game against the player
with a strategy k. It is computed by psk = xs·φ(Fs−Fk)
where φ(Fb−Fk) is the conditional probability that the
fitness of a player with a strategy s is larger than that
of a strategy k.

How players with a strategy s change their population share
is considered as the sum of difference between the number
of players which are replicated (win) and eliminated (lose)



at a time; then it is formalized as follows (using a brevity
csk = φ(Fs − Fk)− φ(Fk − Fs)).

ẋs =
∑

k∈S∗,k 6=s

{xkpsk − xspks}

= xs
∑

k∈S∗,k 6=s

xk{φ(Fs − Fk)− φ(Fk − Fs)}

= xs
∑

k∈B,k 6=s

xk · csk (12)

Theorem 2. If a player with a strategy s is strictly dom-
inated, then xs(t)→ 0 as t→∞.

In game theory, it is said that a strategy is strictly dominant
if, regardless of what any other players select, a player with
the strategy gains a strictly higher fitness than any others.
If a player has a strictly dominant strategy, than it is always
better than any others in terms of fitness (i.e., a domination
relationship). It increases its population share and occupies
a population over time. So, if a player is strictly dominated,
then the player disappears in a population over time.

Theorem 3. The population state of an application pop-
ulation converges to an equilibrium.

Proof. It is true that, players with different strategies
have different domination factors under the same network
conditions. In other words, under the particular network
conditions, only one player has the highest domination rank
among the others. Assume that F1 > F2 > · · · > F|s∗|,
and by Theorem 1, a population state eventually converges
to X(t) = {x1(t), x2(t), · · · , x|s∗|(t)} = {1, 0, · · · , 0} as an
equilibrium. Differential equations should satisfy the con-
straint

∑
s∈s∗ xs = 1.

Theorem 4. The equilibrium of Nuage is evolutionarily
stable (i.e., asymptotically stable).

Proof. At the equilibrium where X = {1, 0, · · · , 0}, a set
of differential equations can be rewritten in the downsized
by substituting x1 = 1− x2 − · · · − x|s∗|

żs = zs[cs1(1− zs) +

|s∗|∑
i=2,i 6=s

zi · csi] (13)

where s, k = 2, ..., |s∗|

where Z(t) = {z2(t), z3(t), · · · , z|s∗|(t)} denotes the corre-
sponding downsized population state, which is an equilib-
rium Zeq = {0, 0, · · · , 0} of (|s∗| − 1)-dimension based on
Theorem 1.

To verify that a state at the equilibrium is an asymptotically
stable state, show that all the Eigenvalues of Jaccobian ma-
trix of the downsized population state has negative Real
parts. The elements of Jaccobian matrix J are

Jbk =

[
∂żb
∂zk

]
|Z=Zeq

=

[
∂zs[cs1(1− zs) +

∑|s∗|
i=2,i 6=s zi · csi]

∂zk

]
|Z=Zeq

(14)

where s, k = 2, ..., |s∗|

Therefore, Jaccobian matrix J is given by

J =


c21 0 · · · 0
0 c31 · · · 0
...

...
. . .

...
0 0 · · · cM1

 (15)

where c21, c31, · · · , c|s∗|1 are the Eigenvalues of J . According
to Theorem 2, cs1 = −φ(F1−Fs) < 0 for every s; therefore,
Zeq = {0, 0, · · · , 0} is asymptotically stable.

6. EVALUATION
This section evaluates the proposed Nuage in simulation
studies and shows how applications change their objective
values over time by changing their strategies (i.e., applica-
tion deployments).

6.1 Simulation Configurations
This simulation considers 5 types of applications on 5 hosts
(or machines) which are fully-connected or linearly-connected.
When a distance objective is considered, the linearly-connected
hosts are used. Table 1 shows message arrival rate (# of re-
quests/sec) and service time (sec) for the applications, which
are pre-defined based on Zipf’s law [14, 15]. The service time
for applications are defined as 0.1, 0.15, 0.2, 0.25, and 0.3
sec respectively. An entry for the service time indicates the
expected processing time for a single message on a virtual
server.

Table 1: Message Arrival Rate (# of messages/sec)
and Service Time (sec)

Application type 1 2 3 4 5

Arrival rate 110 70 40 20 10
Web server 0.02 0.02 0.04 0.04 0.08
App server 0.03 0.08 0.04 0.13 0.11
DB server 0.05 0.05 0.12 0.08 0.11

Application 1 is assumed to be an application whose com-
putational operations and data management operations are
light. Application 2 is assumed to be an application whose
computational operations are heavier than Application 1.
Application 3 is assumed to be an application whose data
management operations are heavier than Application 1. Ap-
plication 4 is assumed to be an application whose operations
is computationally more intensive than Application 2. Ap-
plication 5 is assumed to be an application whose all opera-
tions are heavy.

For the proposed evolutionary game described in Section 4.2,
a population size for each application is set to 50, a mutation
probability is set to 0.02, and the communication delay T (d)

is set to 0.05 sec. All simulation results are average results
of 100 independent runs.

6.2 Simulation Results
Simulation results shows how applications’ strategies (i.e.,
deployments) impact to objective values. Traces of the ob-
jective values are shown in Figure 4 - 7. Each subfigure
shows traces of objective values when applications consider



Table 2: Objective Combinations
Combination C1 C2 C3 C4 C5 C6 C7 C8

Response time X X X X X
Resource

consumption X X X X X
Distance X X X

Load balancing X X X

a particular combination of those objectives. The evaluated
objective combinations are described in Table 2.

First, in order to investigate how applications change their
strategies (i.e., deployments) during their evolutionary games,
Figure 3 shows population states of applications over gener-
ations in a case C8. Different lines represent the normalized
number of agents with different strategies. Each applica-
tion selects a strategy of the agent whose population share
is the largest in the application population (Labeled num-
bers in the figure represent strategy IDs). The right bottom
subfigure in Figure 3 shows a deployment state at genera-
tion 100 in a case C8. For example, App1 selects a strategy
S62 = {(1, 6)(1, 7)(1, 10)} at generation 100.

Figure 4 shows the average response time for applications.
The response time successfully decreases over generations
for applications by changing their deployments. Especially,
cases C1 and C3 result in shorter response time than the
others. Placing virtual servers at the same host contributes
to reduce response time. In cases C5, C7, C8, the response
time does not decrease as C1 and C3 do due to multiple ob-
jectives. In a case C6, the response time is relatively shorter
than C5, C7, C8 because it considers a distance objective.

Figure 5 shows the resource consumption (i.e., assigned CPU
time share in %) for applications. Applications try to reduce
resource consumption as much as they can for the efficient
use of resources. However, in cases C1, C3, C4, applications
does not care for minimizing resource consumption and they
require more resource to process their messages.

Figure 6 shows the average distance (hop counts) among
hosts running virtual servers for applications. These results
are evaluated in linearly-connected hosts. Cases C1 and C3

result in shorter distance than the others similar to the re-
sponse time results. Placing virtual servers at the same hosts
or closer to each other contributes to reduce response time.
A case C6 shows a relatively shorter distance compared to
C5, C7, C8 because it considers a distance objective.

Figure 7 evaluates load balancing among hosts running vir-
tual servers for applications. Load balancing index (LBI) is
computed as the variance of workload (the number of user
messages) among hosts running virtual servers. The smaller
is the better. A case C4 successfully reduces LBI to around
20, which is smaller than the other cases (around 24-28).
All the other cases could not reduce LBI as C4 although C8

shows a relatively smaller LBI.

7. RELATED WORK
Several game theoretic approaches have been proposed for
adaptive application placement in clouds [7, 16, 17]. They

formulate equilibria in application placement and use greedy
algorithms to seek equilibrium solutions under multiple per-
formance objectives. This means they do not focus on sta-
bility in application placement. In contrast, Nuage employs
an evolutionary game theoretic approach and theoretically
guarantees its stability in finding adaptive strategies for re-
source allocation as well as application placement under mul-
tiple performance objectives. Nuage also considers multi-tier
application architecture, while [7, 16, 17] do not .

[18, 19] and [20] seek the optimal placement of a single ap-
plication and multi-server applications, respectively, under
a single performance objective. It is out of their scope to
seek equilibrium solutions and attain stability in finding so-
lutions. In contrast, Nuage considers the placement of and
the resource allocation to multiple multi-server applications.
It is designed to find stable equilibrium solutions.

[21, 22, 23] propose task/job scheduling mechanisms that as-
sign resources and orders to process tasks, and they assume
that the tasks are independent each other. Those algorithms
can still work with many loose coupling service-integrated
applications. However, most cloud-based applications con-
sist of multiple subtasks and require communications among
tasks [16]. In this paper, Nuage considers communications
among virtual servers where tasks (i.e., messages) are re-
quired to be sequentially processed on.

8. CONCLUSIONS
This paper describes Nuage, an evolutionary game theoretic
mechanism for adaptive and stable application deployment
in clouds. Nuage theoretically guarantees that every appli-
cation performs an evolutionarily stable deployment strat-
egy, which is an equilibrium solution under given workload
and resource availability. Simulation results verify this theo-
retical analysis; applications seek equilibria to perform adap-
tive and evolutionarily stable deployment strategies.

As future work, the authors of the paper plan to carry out
extended simulation studies that consider not only CPU
time share but also memory space and network bandwidth as
resources. It is also planned to compare Nuage with existing
optimization algorithms in order to evaluate the optimality
as well as stability in Nuage.
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Figure 4: Average response time for users (sec) over 100 generations (x-axis)
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Figure 5: Resource consumption (%) over 100 generations (x-axis)
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Figure 6: Average distance among hosts running virtual servers (hop counts) over 100 generations (x-axis)
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Figure 7: Load balancing index (LBI) over 100 generations (x-axis)


