
Model-Driven Performance Engineering for
Wireless Sensor Networks with

Feature Modeling and Event Calculus

Pruet Boonma
Department of Computer Engineering

Chiang Mai University
Chiang Mai, 50200, Thailand
pruet@eng.cmu.ac.th

Junichi Suzuki
Department of Computer Science

University of Massachusetts, Boston
Boston, MA 02125, USA

jxs@cs.umb.edu

ABSTRACT
This paper proposes and evaluates a model-driven perfor-
mance engineering framework for wireless sensor networks
(WSNs). The proposed framework, called Moppet, is de-
signed for application developers to rapidly implement WSN
applications and estimate their performance. It leverages
the notion of feature modeling so that it allows developers
to graphically and intuitively specify features (e.g., func-
tionalities and configuration policies) in their applications.
It also validates a set of constraints among features and gen-
erates application code. Moppet also uses event calculus in
order to estimate a WSN application’s performance without
generating its code nor running it on simulators and real
networks. Currently, it can estimate power consumption
and lifetime of each sensor node. Experimental results show
that, in a small-scale WSN of 16 iMote nodes, Moppet’s av-
erage performance estimation error is 8%. In a large-scale
simulated WSN of 400 nodes, its average estimation error
is 2%. Moppet scales well to the network size with respect
to estimation accuracy. Moppet generates lightweight nesC
code that can be deployed with TinyOS on resource-limited
nodes. The current experimental results show that Moppet
is well-applicable to implement biologically-inspired routing
protocols such as pheromone-based gradient routing proto-
cols and estimate their performance.

Categories and Subject Descriptors
C.2.1 [Computer Systems Organization]: Computer Com-
munication Networks; C.4.2 [Computer Systems Orga-
nization]: Performance of Systems; D.2.2 [Software]: Soft-
ware Engineering—Design Tools and Techniques; I.2.3 [
Computing Methodologies]: Artificial Intelligence—De-
duction and Theorem Proving

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
BADS’11, June 14, 2011, Karlsruhe, Germany.
Copyright 2011 ACM 978-1-4503-0733-8/11/06 ...$10.00.

General Terms
Algorithms, Design, Performance

1. INTRODUCTION
As wireless sensor networks (WSNs) have been growing in

their scale and complexity, it is complicated, error-prone and
time-consuming to rapidly develop and tune WSN applica-
tions. Application development and performance tuning can
be expensive even for simple applications. This stems from
two major issues.

The first issue is a lack of adequate abstractions in ap-
plication development and performance tuning. The level
of abstraction remains very low in developing and tuning
WSN applications. For example, a number of WSN appli-
cations are currently implemented in nesC, a dialect of the
C language, and deployed on the TinyOS operating system,
which provides low-level libraries for fundamental function-
alities such as sensor reading, node-to-node communication
and signal strength sensing. nesC and TinyOS abstract away
hardware-level details; however, they do not aid developers
to rapidly develop and tune their applications.

The second issue is a lack of sufficient integration between
application development and performance tuning. Perfor-
mance tuning is a process to examine an application’s per-
formance through mathematical models, simulations and/or
empirical experiments and customize its design/implemen-
tation against given performance requirements such as re-
source consumption. This process is often labor-intensive
because most WSN applications are performance sensitive.
Few methods and tools exist to seamlessly integrate applica-
tion development and performance tuning in order to feed-
back estimated/measured performance results for customiz-
ing WSN application design and implementation.

In order to address these two issues, this paper investigates
a new model-driven performance engineering framework for
WSN applications. The proposed framework, called Mop-
pet, is intended to improve the productivity of developing
WSN applications and engineering their performance. Mop-
pet consists of two components: feature modeler and per-
formance estimator (Figure 1). The Moppet feature mod-
eler (Moppet-FM) is a graphical modeling environment to
configure WSN applications. It leverages the notion of fea-
ture modeling [7], which is a simple yet powerful method
to graphically model an application’s features (e.g., func-
tionalities and configuration policies) and constraints among
them. Moppet-FM allows developers to specify each applica-

tion as a set of features and consistently validate constraints
among those features. Upon validation, Moppet-FM trans-
forms specified features to application code (nesC code and
deployment descriptions for the TinyDDS middleware1

The Moppet performance estimator (Moppet-PE) is de-
signed to approximate a WSN application’s performance
without generating its code nor running it on simulators
and real networks. It leverages event calculus [12] to ap-
proximate the power consumption on each node. Event cal-
culus is a first-order logical language to represent and reason
about events (or actions) and their effects. For example, it
can perform deductive inference, which infers what is true
when, given a set of events at certain time points (i.e., what
events occur when) and their effects (i.e., what events do).
By considering individual functionalities performed in each
duty cycle on each node as events and describing the power
consumption of those functionalities as the effects of the
events, Moppet-PE infers when each node runs out of its
battery (i.e., what is true when). It is intended to simplify
the trial-and-error process for evaluating a WSN applica-
tion’s performance and customizing its features to satisfy
performance requirements (Figure 1).

This paper overviews Moppet and evaluates it through
empirical and simulations experiments. Experimental re-
sults show that, in a small-scale WSN of 16 iMote nodes,
Moppet’s average performance estimation error is 8%. In
a large-scale simulated WSN of 400 nodes, its average es-
timation error is 2%. Moppet scales well to the network
size with respect to estimation accuracy. Moppet generates
lightweight nesC code that can be deployed with TinyOS on
resource-limited nodes.

!"#$%&"'()*"+"&'

!"#$%&'()*+,(
!"#$%&'(+*+,(
!"#$%&'(*%-."/(

,"&-)&.#/0"''

123.#$)&'

!"#$%&"''

4)/56%)/'

123.#$"*'

,"&-)&.#/0"'

TinyOS

TinyDDS

Middleware

Generated

Application

(7,,18'

4)*"'

9"/")/'

("#2%&"*'

,"&-)&.#/0"'

Figure 1: An Overview of Moppet

1TinyDDS is a publish/subscribe middleware that is
compliant with the standard Data Distribution Ser-
vice (DDS) specification [17]. See [4, 5] for its de-
sign and implementation. It is freely available at
http://code.google.com/p/tinydds/.

2. RELATED WORK
Several studies have investigated model-driven develop-

ment for WSN applications with Unified Modeling Language
(UML) [9,16,18,23–25] and domain-specific languages [1,6,
10,13,15]. Unlike them, Moppet considers performance engi-
neering as well as application development in a model-driven
manner. Moreover, it employs feature modeling so that de-
velopers (even non-programmers) can build their WSN ap-
plications.

Feature modeling has been used to configure the capabili-
ties/parameters in an embedded operating system [14] (e.g.,
concurrency and interruption policies) and WSN applica-
tions [19]. However, these work do not consider performance
engineering as Moppet does.

Thang and Geihs intend to augment model-driven de-
velopment of WSN applications with an evolutionary algo-
rithm [21]. Their approach is to evolve class diagram ele-
ments and seek the optimal class diagram with respect to
given performance metrics. Performance measures are ob-
tained through simulations. This work is similar to Moppet
in that both work generate nesC code from higher-level mod-
els and consider performance of WSN applications. How-
ever, Moppet is designed to estimate performance without
running simulations.

In the area of networks including WSNs, performance en-
gineering often focuses on transforming application designs
to program code to be evaluated with simulators [2,8,11,22,
26]. In contrast, Moppet focuses on simulator-less perfor-
mance estimation without generating program code in order
to improve the efficiency of performance estimation.

3. THE MOPPET FEATURE MODELER
Moppet-FM provides a feature model that defines a series

of features in WSN applications and constraints among the
features. The feature model is defined atop the feature meta-
model in the Feature Modeling Plug-in (fmp), which is an
Eclipse plug-in for editing and configuring feature models2.
Application developers graphically model a feature configu-
ration, which is an instance of Moppet-FM’s feature model.
It specifies a certain set of features used in a particular WSN
application. All modeling artifacts in Moppet-FM are built
and maintained with the metameta model (Ecore) in the
Eclipse Modeling Framework3.

Figure 2 shows the feature model in Moppet-FM. It con-
sists of three kinds of features: application-related, network-
related and hardware-related features. Application-related
features target application functionalities such as applica-
tion types, data aggregation and data persistence. Network-
related features focus on the network layer of applications;
e.g., routing. Hardware-related features are used to specify
the nodes that applications operate on.

White and black circle icons indicate optional and manda-
tory features, respectively. For example, Localization is
mandatory, and DataAggregation is optional. Half-filled cir-
cle icons represent the features with pre-defined values. A
feature can declare its type and have sub-features. When a
typed feature is selected in a feature configuration, its value
should be specified. In Figure 2, DataAggregation has three
mandatory sub-features. This means that, if data aggrega-
tion is selected in a feature configuration, those sub-features

2http://gsd.uwaterloo.ca/fmp/
3http://www.eclipse.org/modeling/emf/

Figure 2: Feature Model in the Moppet Feature Modeler

must be selected as well. One of the sub-features, DataAg-

gregationOperator, declares String as its type. Thus, if it
is selected, its value (e.g., AVERAGE or SUM) is specified in a
feature configuration.

A fork icon with a black sector in a feature model denotes
an inclusive-OR relationship among sub-features. It requires
to select one or more sub-features. In Figure 2, Moppet-FM
requires to select DataCollection and/or EventDetection as
the type of an application. A fork icon with a white sector
denotes an exclusive-OR relationship among sub-features.
For example, only one of sub-features is selected at a time
for Localization.

In addition to the hierarchical structure of features, Moppet-
FM uses two types of relationships (dotted lines) among fea-
tures: requires and after. A requires relationship indicates a
dependency among features. For example, when GPS-based is
selected under Localization, GPS must be selected as well in
a hardware-related feature. An after relationship indicates
precedence among features in code generation. It instructs
which feature’s code needs to be generated after which fea-
ture’s code. In other words, it describes the sequence of
features to be performed by generated code. For example,
Moppet-FM places the code of DataCollection and/or Event-

Detection after the code of Localization in code generation.
Figure 3 shows an example feature configuration that is

created with Moppet-FM’s feature model. As application
developers create their feature configurations, Moppet-FM
enforces the constraints among features. For example, when
GPS-Based is selected, Moppet-FM automatically deselects
(or deactivates) Network-Based and instructs developers to
select GPS as a required feature. It also warns developers if
a property is not defined for DataAggregationOperator even
when it is selected. Once all constraint violations are re-

solved, Moppet-FM uses a feature configuration as an input
for code generation and performance estimation.

Figure 3: An Example Feature Configuration

4. THE MOPPET PERFORMANCE ESTIMA-
TOR

Moppet-PE receives a feature configuration from Moppet-
FM and estimates the lifetime of each node with event cal-
culus. Key components in event calculus are events and
fluents. A fluent is a condition (i.e., logical state) that can

Listing 1: An Example Axiom on Power Consumption

1 Initiates(Start , Operating , t).
2 Terminates(Stop , Operating , t).
3 Release(Start , BattLevel(level), t).
4 HoldsAt(BattLevel (0), t) → Happens(Stop , t).
5 HoldsAt(BattLevel(level1), t1) ∧ level2 = level1 - offset →
6 Trajectory(Operating , t1, BattLevel(level2), offset).
7 HoldsAt(BattLevel(level1), t) ∧ HoldsAt(BattLevel(level2), t) → level1 = level2.
8 HoldsAt(BattLevel (100), 0).
9 !HoldsAt(Operating , 0).

10 Happens(Start , 0).
11 ?HoldsAt(Operating , 200).

Listing 2: A Snippet of the Axiom for the Initial Parameter Configuration

1 !HoldsAt(WakeUp(Mote) ,0).
2 !HoldsAt(EventDetect(Mote), 0).
3 HoldsAt(Level(Mote ,1500000) ,0).
4 !HoldsAt(EventDetectionApplication(Mote), 0).
5 !HoldsAt(DataOllectionApplication(Mote), 0).
6 HoldsAt(Gps(Mote), 0).
7 Happens(GpsOff(Mote), 6).
8 Happens(Start(Mote) ,0).

change over time. It can appear as an argument of predi-
cates. Basic predicates are shown below.

1. τ1 < τ2: Time point τ1 is before time point τ2.

2. Initiates(α, β, τ): The fluent β starts to hold (i.e.,
become true) after the event α occurs at time τ . After
τ , β holds until it is altered by any event.

3. Terminates(α,β,τ): The fluent β ceases to hold (be-
comes false) after the event α occurs at time τ . After
τ , β does not hold until it is altered by an event.

4. Happens(α, τ): The event α occurs at time τ .

5. HoldsAt(β, τ): The fluent β holds at time τ .

6. Releases(α, β, τ): The fluent β is changeable after
the event α occurs at time τ .

7. Trajectory(β1, τ, β2, δ): If the fluent β1 is initiated
at time τ , the fluent β2 holds at time τ + δ

Figure 4 categorizes predicates into three groups. A predi-
cate in the what happens when group (Happens) describes the
relationship between an event and time. The what actions
do group has the predicates that relate events and fluents. A
predicate in the what’s true when group (HoldsAt) describes
the relationship between a fluent and time.

Given a set of relationships among events, fluents and
time, event calculus can reason about the facts about events,
fluents and time. For example, Listing 1 shows an example
axiom that can be used to estimate the power consumption
of a node. The axiom can conclude whether the node can
still operate at the end of a given time period.

Event
Calculus
Reasoner

What happens when
Happens

What actions do
Initiates
Terminates
Releases
Trajectory

What true when
HoldsAt

Figure 4: Relationships among Predicates

Lines 1 and 2 describe that, if the Start and Stop events
occur at time t, the node starts and stops to operate, re-
spectively, by changing the fluent Operating. Upon the oc-
currence of Start at time t, the fluent on battery level, Bat-
tLevel(level)), becomes changeable. BattLevel() is a func-
tion that compares its argument with the current battery
level and returns true when they are equal. Line 4 de-
scribes that the first predicate (HoldsAt) becomes true if
BattLevel(0) is true at time t (i.e., if the current battery
level becomes zero at t). If this predicate is true, it implies
that the second predicate (Happens) becomes true as well.
As a result, the event Stop occurs, and in turn, the fluent
Operating becomes false due to Line 2.

Line 5 describes a continuous change of battery level over
time. If the current battery level is level1 at time t1 and
the battery level at the next measurement time is level2,
the fluent Operating and an updated battery level of level2
hold at time t1+offset. It is assumed that the battery level
decreases by one unit for a unit time period. Line 6 defines

!WakeUp ➔ Start

Event
Time

0
1
2
3
4
5
6
7
8
9

10
11
12

Duty
Cycle

Sleep
Wakeup

Sleep
Wakeup

Sleep
Wakeup

Sleep
Wakeup

Sleep
Wakeup

Sleep
Wakeup

Sleep

Event Fluents

Start Level(batt=1.5M), Gps, !EventDetectionApp,
!DataCollectinApp, !EventDetect, Operating

GpsOff
GpsOff ➔ !Gps, EventDetectionApp,

DataCollectinApp

WakeUp ➔Sleep
Sleep ➔ !WakeUp
Start ➔ Wakeup

EventOccurProb(sensor, eventprob1 = 0)
➔ EventDetect

... ...

Sleep ➔ !EventDetect

Figure 5: An Example Event Flow

Listing 3: A Snippet of the Axiom for Duty Cycling

1 HoldsAt(WakeUp(Mote),t) → Happens(Sleep(Mote),t)
2 Terminates(Sleep(Mote),WakeUp(Mote),t).
3 !HoldsAt(WakeUp(Mote),t)→ Happens(Start(Mote),t).
4 HoldsAt(Operating(Mote), t) → Initiates(Start(Mote),WakeUp(Mote),t).

a state constraint which guarantees that only one battery
level holds at each time point.

Line 7 defines the initial battery level (100) at the 0th
time point. Lines 8 and 9 state that a node in question does
not operate and fires the event Start at the 0th time point.
Line 10 evaluates whether the node can still operate (i.e.,
whether small Operating is true) at the 200th time point.

Figure 5 visualizes the event calculus specification that
Moppet-PE uses to estimate the lifetime of each node. It
shows how a node changes its state (sleep/off or wakeup/on)
over time. It also shows which events occur and which flu-
ents change their states at individual time points. Italic
terms indicate events, and non-italic terms indicate fluents.

At the 0th time point, several parameters are initialized
according to a feature configuration that Moppet-PE re-
ceives from Moppet-FM. For example, the initial battery
level is set to 1,500,000 µA/hr. The GPS feature is enabled
by making the fluent Gps hold. The EventDetectionAppli-

cation and DataCollectinoApplication features are disabled
by making their corresponding fluents to be false. This is
because of an after relationship that enforces data collection
and event detection after localization. (See Figure 2.) Fig-
ure 5 assumes GPS-based localization. Each node’s GPS is
turned off when Gps becomes false at the 6th time point.)
Listing 2 shows a snippet of the event calculus axiom that
describes the initial parameter configuration.

In Figure 5, the Wakeup fluent does not hold at the second
time point; a node is sleeping at that time. Accordingly, the
Start event is emitted. It allows the Wakeup fluent to hold
at the next time point. Conversely, when the Wakeup fluent
holds at the third time point, the Sleep event is emitted so
that Wakeup ceases to hold at the next time point. This true-

false switching of Wakeup controls the duty cycle of a node.
Listing 3 shows a snippet of the event calculus axiom that
controls each node’s duty cycle.

5. EVALUATION
This section evaluates Moppet through simulations and

empirical experiments. Simulations are carried out with the
TOSSIM simulator. Empirical experiments are conducted
with iMote2 nodes. Both simulations and empirical experi-
ments use the the feature configuration shown in Table 1.

This evaluation study considers an oil spill at the sea and
simulates a WSN application that detects a spill as an event
with sensor nodes, each of which equips a fluorometer. A
spill is emulated to contain 110 barrels (approximately 3,100
US gallons) of crude oil and to be spilled in the middle of
Dorchester Bay, Massachusetts, in the U.S. The spilled oil
moves and spreads out due to the water current and tide.
To describe this oil movement, a set of spatio-temporal em-
ulation data is generated with an oil spill trajectory model
implemented in the General NOAA Oil Modeling Environ-
ment4. The emulation data contains timestamped sensor
data (i.e., fluorescence reading) at each node. In each simu-
lation and empirical experiment, every node is supplied with
this emulation data and emulates its sensor reading in each
duty cycle.

This evaluation study uses three different WSNs that con-
sist of 16, 100 200, 300 and 400 nodes deployed uniformly in
an observation area. The observation area is 150 meters×150
meters for a WSN of 16 nodes, while 300 meters×300 me-
ters for WSNs of 100 and 400 nodes. An oil spill is emu-

4
http://response.restoration.noaa.gov/software/gnome/gnome.html

lated to occur at the north-western corner of the observa-
tion area. Each node’s communication range is 30 meters.
A base station is deployed at the center of the observation
area. Moppet-PE uses the same power consumption charac-
teristics as the one in TOSSIM [20].

Feature Name Configuration

Application Event Detection
- Event Probability Obtained from GNOME
- Event Prob. Distribution Gaussian Distribution
- Event Filter Fluorescence spectrum

> 300 nm
Localization GPS-based
Data/Event Archive Time: 1 hour
Data Aggregation
- Data Aggregation Operator Merge
- Data Aggregation Prob. 0.05
- Data Aggregation Prob. Dist. Gaussian Distribution
Persistence Storage External Storage
Concurrency Per-topic
OERP Spanning Tree
L3
- Packet Loss Rate 0.01
- Routing Single-Hop Routing
QosPolicy
- Latency-budget 300 seconds
- Retransmission 3
- Packet Duplication 2
Duty Cycle 300 seconds
Hardware-Profile iMote2
- GPS Enabled
- Battery Capacity 2800 mA/hour
- Flash Memory 512 KB
- Max Bandwidth 38 kbps

Table 1: A Feature Configuration Used in Simula-
tions and Empirical Experiments

Memory Footprint (KB) Moppet code Surge

RAM 7.6 4.9
Flash Memory 120.8 86.9

Table 2: Memory Footprint of Generated Code on
an iMote2 Node

Table 2 shows the memory footprint of nesC code that
Moppet-FM generates from a feature configuration in Ta-
ble 1. It consumes approximately 8 KB and 121 KB in
RAM and flash memory, respectively. Table 2 also shows the
memory footprint of Surge, a simple data collection applica-
tion bundled in TinyOS. (Serge implements a shortest-path
routing protocol based on a spanning tree.) The difference
in memory footprint between Moppet-generated code and
Surge is 2.7 KB in RAM and 33.9 KB in flash memory.
This difference is fairly small, given the fact that Serge does
not perform most of the functions of Moppet-generated code
(e.g., data aggregation, concurrency and data retransmis-
sion). Table 2 demonstrates that Moppet-FM successfully
generates lightweight code.

Figures 6 to 10 show the node lifetime that Moppet-PE
estimates for the WSNs of 16, 100, 200, 300 and 400 nodes,
respectively. Each figure also compares estimated lifetime

 25

 30

 35

 40

 45

 0 1 2 3 4 5

N
od

e
Li

fe
tim

e
(D

ay
s)

Node Location (Hop Count)

TOSSIM
Moppet

Empirical

Figure 6: Node Lifetime with 16 Nodes

 25

 30

 35

 40

 45

 0 1 2 3 4 5 6 7 8 9 10 11

No
de

 L
ife

tim
e

(D
ay

s)

Node Location (Hop Count)

TOSSIM
Moppet

Figure 7: Node Lifetime with 100 Nodes

results with the ones obtained from simulations and empir-
ical experiments. (Empirical experiments are carried out
only with 16 nodes.) The X-axis of each figure indicates
the location of nodes based on the hop count from the base
station. Each of simulated and empirical results shows the
average lifetime of nodes with the same hop count from the
base station. A range bar denotes a standard deviation.

Figure 6 demonstrates that Moppet’s node lifetime esti-
mation is accurate compared with simulated and empirical
results. The average estimation error is 5% and 9% against
simulated and empirical results, respectively. The maximum
estimation error is 8% and 11% against simulated and em-
pirical results, respectively.

Although the number of nodes in the network increases,
qualitative trends of estimation error remain similar to the
one obtained with the network of 16 nodes. In a WSN of 100
nodes, the average and maximum estimation errors are 5%
and 11% (Figure 7). With 400 nodes, the average and maxi-
mum estimation errors are 2% and 4% (Figure 10). Figures 6
to 10 illustrate that Moppet-PE scales well to the network
size; its node lifetime estimation is accurate and practical in
large-scale networks.

 15

 20

 25

 30

 35

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

No
de

 L
ife

tim
e

(D
ay

s)

Node Location (Hop Count)

TOSSIM
Moppet

Figure 8: Node Lifetime with 200 Nodes

 16

 18

 20

 22

 24

 26

 28

 30

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

No
de

 L
ife

tim
e

(D
ay

s)

Node Location (Hop Count)

TOSSIM
Moppet

Figure 9: Node Lifetime with 300 Nodes

6. CONCLUSION
This paper proposed and evaluated a model-driven devel-

opment framework, called Moppet, which aids to rapidly
build WSN applications and estimate their performance.
Moppet estimates power consumption and node lifetime with-
out generating its code nor running it on simulators and real
networks. Its estimation is accurate enough against simula-
tion and empirical experimental results. It scales well to the
network size with respect to estimation accuracy. Moppet
generates lightweight nesC code that can be deployed with
TinyOS on resource-limited nodes.

Several extensions are planned on Moppet. First, Moppet-
PE will be extended to support extra performance metrics in
its performance estimation, such as data yield, data trans-
mission latency and network lifetime. Secondly, Moppet will
be investigated to implement biologically-inspired WSN ap-
plications and estimate their performance. Potential appli-
cations include the ones using biologically-inspired routing
protocols (e.g., [3]).

7. REFERENCES
[1] B. Akbal-Delibas, P. Boonma, and J. Suzuki.

Extensible and precise modeling for wireless sensor

 16

 18

 20

 22

 24

 26

 28

 30

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

No
de

 L
ife

tim
e

(D
ay

s)

Node Location (Hop Count)

TOSSIM
Moppet

Figure 10: Node Lifetime with 400 Nodes

networks. In Proc. of the 2nd Int’l Workshop on
Model-Based Software and Data Integration, Sydney,
Australia, April 2009.

[2] M. Azgomi and A. Khalili. Performance Evaluation of
Sensor Medium Access Control Protocol Using
Coloured Petri Nets. Electronic Notes in Theoretical
Computer Science, 242(2):31–42, 2009.

[3] P. Boonma and J. Suzuki. BiSNET: A
biologically-inspired middleware architecture for
self-managing wireless sensor networks. Computer
Networks: The International Journal of Computer and
Telecommunications Networking, 51(16), 2007.

[4] P. Boonma and J. Suzuki. Middleware support for
pluggable non-functional properties in wireless sensor
networks. In Proc. of IEEE Int’l Workshop on
Methodologies for Non-functional Properties in
Services Computing, July 2008.

[5] P. Boonma and J. Suzuki. TinyDDS: An interoperable
and configurable publish/subscribe middleware for
wireless sensor networks. In A. Hinze and
A. Buchmann, editors, Principles and Applications of
Distributed Event-Based Systems, chapter 9. IGI
Global, 2010.

[6] E. Cheong, E. A. Lee, and Y. Zhao. Joint modeling
and design of wireless networks and sensor node
software. Technical Report UCB/EECS-2006-150,
University of California, Berkeley, November 2006.

[7] K. Czarnecki, U. Eisenecker, and K. Czarnecki.
Generative Programming: Methods, Tools, and
Applications. Addison-Wesley Professional, June 2000.

[8] C. Fok, G. Roman, and C. Lu. Rapid development and
flexible deployment of adaptive wireless sensor network
applications. In Proc. of IEEE Int’l Conference on
Distributed Computing Systems, June 2005.

[9] G. Fuchs and R. German. UML2 activity diagram
based programming of wireless sensor networks. In
Proc. of the 2010 ACM ICSE Workshop on Software
Engineering for Sensor Network Applications, Cape
Town, South Africa, May 2010.

[10] N. Glombitza, D. Pfisterer, and S. Fischer. Using state
machines for a model driven development of web
service-based sensor network applications. In Proc. of

the 2010 ACM ICSE Workshop on Software
Engineering for Sensor Network Applications, Cape
Town, South Africa, May 2010.

[11] Y. Huang, W. Luo, J. Sum, L. Chang, C. Chang, and
R. Chen. Lifetime Performance of an energy efficient
clustering algorithm for cluster-based wireless sensor
networks. In Proc. of Int’l Symposium on Parallel and
distributed Processing and Applications, August 2007.

[12] R. Kowalski and M. Sergot. A logic-based calculus of
events. New Generation Computing, 4(1):67–95, 1986.

[13] M. Kuorilehto, M. Hännikäinen, and T. D.
Hämäläinen. Rapid design and evaluation framework
for wireless sensor networks. Ad Hoc Networks, 6(6),
2008.

[14] D. Lohmann, F. Scheler, W. S. Preikchat, and
O. Spinczyk. PURE Embedded Operating Systems -
CiAO. In Proc. of IEEE Int’l Workshop on Operating
System Platforms for Embedded Real-Time
Applications, July 2006.

[15] F. Losilla, C. Vecente-Chicote, B. Alvarez, A. Iborra,
and P. Sanchez. Wireless sensor network application
development: An architecture-centric MDE approach.
In Proc. of the European Conference on Software
Architecture, September 2007.

[16] M. Mura and M. Sami. Code Generation from
Statecharts: Simulation of Wireless Sensor Networks.
In Proc. of EUROMICRO Conference on Digital
System Design Architectures, Methods and Tools,
September 2008.

[17] Object Management Group. Data Distribution Service
(DDS) for real-time systems, v1.2, 2007.

[18] D. A. Sadilek. Prototyping Domain-Specific
Languages for Wireless Sensor Networks. In Proc. of
Int’l Workshop on Software Language Engineering,
September 2007.

[19] W. Schröder-Preikschat, R. Kapitza, J. Kleinöder,
M. Felser, K. Karmeier, T. H. Labella, and
F. Dressler. Robust and efficient software management
in sensor networks. In Proc. of Int’l Workshop on
Software for Sensor Networks, January 2007.

[20] V. Shnayder, M. Hempstead, B. rong Chen, G. W.
Allen, and M. Welsh. Simulating the power
consumption of large-scale sensor network
applications. In Proc. of ACM Int’l Conference on
Embedded Networked Sensor Systems, November 2004.

[21] N. X. Thang and K. Geihs. Model-driven development
with optimization of non-functional constraints in
sensor network. In Proc. of the 2010 ACM ICSE
Workshop on Software Engineering for Sensor
Network Applications, Cape Town, South Africa, May
2010.

[22] C. Thompson, J. White, B. Dougherty, and D. C.
Schmidt. Optimizing mobile application performance
with model-driven engineering. In Proc. of IFIP Int’l
Workshop on Software Technologies for Future
Embedded and Ubiquitous Systems, November 2009.

[23] C. Vicente-Chicote, F. Loslla, B. Álvarez, and
A. Iborra. Applying MDE to the development of
flexible and reusable wireless sensor networks. Int’l
Journal of Cooperative Information Systems, 16(3/4),
2007.

[24] P. Volgyesi, M. Maroti, S. Dora, E. Osses, , and
A. Ledeczi. Software composition and verification for
sensor networks. Journal of Science of Computer
Programming, 56(1–2), 2005.

[25] H. Wada, P. Boonma, J. Suzuki, and K. Oba.
Modeling and executing adaptive sensor network
applications with the matilda uml virtual machine. In
Proc. of the 11th IASTED International Conference
on Software Engineering and Applications, Cambridge,
MA, November 2007.

[26] T. Yang, M. Ikeda, G. De Marco, and L. Barolli.
Performance Behavior of AODV, DSR and DSDV
Protocols for Different Radio Models in Ad-Hoc
Sensor Networks. In Proc. of IEEE Int’l Conference
on Parallel Processing, September 2007.

