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Abstract— The BEYOND architecture applies biological prin-
ciples and mechanisms to design evolvable network applications
that autonomously adapt to dynamic environmental changes
in the network. This paper describes two key components in
BEYOND: (1) an evolutionary adaptation engine, called iNet, for
network applications and (2) an application development envi-
ronment, called BEYONDwork, for the adaptation engine. iNet
is designed after the mechanisms behind how the immune system
works. It models a set of environment conditions (e.g., network
traffic) as an antigen and a behavior of network applications
(e.g., migration and reproduction) as an antibody. iNet allows
each network application to autonomously sense its surrounding
environment conditions (i.e., antigens) and adaptively invoke
a behavior (i.e., antibody) suitable for the conditions. The
configuration of antibodies evolves via genetic operations such
as mutation and crossover. BEYONDwork provides visual and
textual languages to configure antigens and antibodies in iNet.
The languages increase the ease of specifying and modifying iNet
configurations. Simulation results show that iNet allows network
applications designed with BEYONDwork to evolve themselves
to adapt to changing network environments.

I. INTRODUCTION

Large-scale network applications such as grid computing ap-
plications and data center applications face several challenges,
particularly autonomy and adaptability, as they have been
increasing in complexity and scale [1]-[5]. They are expected
to autonomously adapt to dynamic environmental changes in
the network (e.g., workload surges and resource extinction)
in order to improve user experience, expand applications’
operational longevity and reduce maintenance cost.

As inspiration for a new design paradigm for network
applications, the authors of the paper observe that various bi-
ological systems have developed the mechanisms necessary to
meet the above requirements (i.e., autonomy and adaptability)
[6]. For example, bees act autonomously, influenced by local
conditions and local interactions with other bees. A bee colony
adapts to dynamic environmental conditions. When the amount
of honey in a hive is low, many bees leave the hive to gather
nectar from flowers. When the hive is full of honey, bees rest
in the hive. Based on this observation, the authors of the paper
believe that, if network applications are designed after certain
biological principles and mechanisms, they may be able to
increase their autonomy and adaptability.

The proposed architecture, called BEYOND!, applies bio-
logical principles and mechanisms to design autonomous and
adaptive network applications. In BEYOND, each application
is designed as a decentralized group of software agents. This is
analogous to a bee colony (application) consisting of multiple
bees (agents). Each agent provides a particular functionality
of a network application, and implements biological behaviors
such as migration, replication, reproduction and death.

This paper focuses on two key components in BEYOND:
(1) an evolutionary adaptation engine for agents and (2) an ap-
plication development environment for the adaptation engine.
The proposed adaptation engine, called iNet, is designed after
the mechanisms behind how the immune system specifically
produce antibodies to eliminate antigens (e.g., viruses) and
how it evolves antibodies to react a massive number of
antigens. iNet models a set of environment conditions (e.g.,
network traffic and resource availability) as an antigen and
an agent behavior as an antibody. Each agent contains its
own immune system (i.e., iNet), and the configuration of
iNet (antibodies) defines the agent’s behavior policy (i.e.,
when to invoke which behavior). iNet allows each agent to
autonomously sense its surrounding environment conditions
(i.e., an antigen) for evaluating whether it adapts well to the
sensed conditions, and if it does not, adaptively invoke a
behavior (i.e., an antibody) suitable for the conditions. For
example, agents may invoke the replication behavior at the
network hosts that accept a large number of user requests for
their services. This leads to the adaptation of agent population;
agents can improve their throughput performance. Also, agents
may invoke the migration behavior to move toward network
hosts that receive a large number of user requests for their
services. This results in the adaptation of agent locations;
agents can improve their response time performance.

iNet also allows each agent to dynamically evolve its own
antibody configuration (i.e., behavior policy) so that the con-
figuration becomes fine-tuned to environment conditions in the
network. This evolution process occurs via genetic operations
such as mutation and crossover, which alter antibody config-
urations during agent replications and reproductions. Agent
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evolution frees application developers (agent developers) from
anticipating all possible environmental changes and tuning
their agents’ antibody configurations (behavior policies) to the
changes at design time, thereby significantly simplifying the
implementation and configuration of agents.

The second focus of this paper is an application devel-
opment environment for iNet, called BEYONDwork. It pro-
vides visual and textual languages to configure antibodies
of each agent in an intuitive and easy-to-understand manner.
BEYONDwork accepts the visual models and textual programs
built with the proposed languages, and transforms them to Java
code that are compilable and runnable on a simulator in BE-
YOND. This code generation enables rapid development and
configuration of agents, thereby improving the productivity of
agent developers.

II. DESIGN PRINCIPLES

In BEYOND, agents are designed based on the three prin-
ciples described below.

e Decentralization: In various biological systems (e.g., bee
colony), there are no central leader entities to control or
coordinate individual entities in order to increase scalability
and survivability. Similarly, in BEYOND, there are no central
entities to control and coordinate agents so that they can be
scalable and simple by avoiding a single point of performance
bottlenecks [7] and failures [8] and by avoiding any central
coordination in deploying agents [9].

e Autonomy: Similar to biological entities (e.g., bees), agents
sense their local network environments, and based on the
sensed environmental conditions, they autonomously behave
and interact with each other without any intervention from/to
other agents and human users.

o Emergence: In biological systems, collective (group) be-
haviors emerge from local interactions of autonomous entities
[6]. In BEYOND, agents only interact with nearby agents.
They behave against dynamic environment conditions such
as user demands and resource availability. Through collective
behaviors and interactions of individual agents, desirable sys-
tem characteristics such as adaptability (e.g., load balancing
and resource efficiency) emerge in a swarm of agents.

e Lifecycle: Biological entities strive to seek and consume
food for living. Similarly, in BEYOND, agents store and ex-
pend energy for living. Each agent gains energy in exchange
for performing its service to other agents or human users,
and expends energy to use network and computing resources
(e.g., network bandwidth and memory space). The abundance
or scarcity of stored energy in agents affects their lifecycle.
For example, an abundance of stored energy indicates higher
demand to an agent; thus, the agent may be designed to
favor reproduction or replication to increase its availability.
A scarcity of stored energy (i.e., an indication of lack of
demand) causes death of the agent.

e Evolution: In addition to individual adaptation, in which
individual biological entities behave according to environ-
mental changes, they evolve as a species to increase the

fitness to the environment across generations. In BEYOND,
as described above, individual agents adapt to environmental
changes in the network by invoking their behaviors. In addi-
tion, agents evolve their antibody configurations as a species
(group) across generations. Agents perform this evolution
process by generating behavioral diversity and executing
natural selection. Behavioral diversity means that different
agents possess different antibody configurations (i.e., behav-
ior policies). This is generated via mutation and crossover
during agent replications and reproductions. Natural selection
retains the agents that adapt well to environment conditions
(i.e., the agents that have beneficial/effective behavior poli-
cies suitable for the environment conditions) and eliminate
the agents that does not adapt to the conditions (i.e., the
agents that have detrimental/ineffective behavior policies).

III. AGENT STRUCTURE AND BEHAVIORS

Each agent consists of attributes, body and behaviors. At-
tributes carry descriptive information regarding an agent (e.g.,
agent ID and energy level). Body implements a functional
service an agent provides. For example, an agent may imple-
ment a web service in a data center, while another agent may
implement a scientific simulation model in a grid computing
system. Behaviors implement the actions inherent to all agents:

e Migration: Agents may move between network hosts.

e Energy exchange and storage: Agents may gain energy
in exchange for providing their services to other agents or
users. They may also expend energy for services that they
receive from other agents and for resources available at the
local network host (e.g., memory space).

e Replications: Agents may make their copies in response
to higher energy level, which indicates higher demand for
the agents. A replicated agent is placed on the host that its
parent agent resides on, and it inherits the parent’s antibody
configuration (behavior policy) as well as the half amount
of the parent’s energy level. Mutation may occur on the
inherited antibody configuration.

e Reproduction: Agents may reproduce child agents with
other agents (mating partners) running on their local hosts. A
child agent is placed on the host that its parents reside on, and
it inherits, as crossover, antibody configurations (behavior
policies) from both parents. Each of two parents gives a child
agent the quarter amount of its energy level. Mutation may
occur on the antibody configuration of a child agent.

o Communication: Agents may communicate with each other
for the purposes of, for example, requesting services, ex-
changing energy units or reproducing child agents.

e Death: Agents die due to energy starvation. If an agent
cannot balance its energy expenditure with its energy gain,
the agent cannot pay for the resources it needs; thus, it
dies from lack of energy. When an agent dies, all resources
allocated to the agent are released.

Each agent expends energy to invoke behaviors (i.e., behav-
ior cost) except death behavior.



IV. DESIGN OF INET ADAPTATION ENGINE

This section overviews how the natural immune system
works (Section IV-A), describes how iNet is designed after
the natural immune system (Section IV-B).

A. Natural Immune System

The immune system is an adaptive defense mechanism to
regulate the body against dynamic environmental changes such
as antigen invasions. Through a number of interactions among
various white blood cells (e.g., macrophages and lymphocytes)
and molecules (e.g., antibodies), the immune system evokes
two responses to antigens: innate and adaptive responses.

In the innate response, the immune system performs
self/non-self discrimination. This response is initiated by
macrophages and T-cells, a type of lymphocytes. Macrophages
move around the body to ingest antigens and present them to
T-cells. T-cells are produced in thymus and trained through the
negative selection process. In this process, thymus removes T-
cells that react with the body’s own (self) cells. The remaining
T-cells are used as detectors to identify foreign (non-self) cells.
When a T-cell(s) detects a non-self antigen presented by a
macrophage, the T-cell(s) secrete chemical signals to activate
the second immune response: adaptive response.

In the adaptive response, B-cells, another type of lympho-
cytes, are activated by T-cells. Some of the activated B-cells
strongly react to an antigen, and they produce antibodies that
specifically kill the antigen. Antibodies form a network and
communicate with each other [10]. This immune network is
formed with stimulation and suppression relationships among
antibodies. With these relationships, antibodies dynamically
change their population and network structure. For example,
the population of specific antibodies rapidly increases follow-
ing the recognition of an antigen and, after eliminating the
antigen, decreases again. Through this self-regulation mecha-
nism, the adaptive immune response is an emergent product
of interactions among antibodies.

In order to react a variety of antigens, the immune system
needs to be able to generate a massive number of antibodies.
A primary repertoire of antibodies is approximately 10° using
immune genes. B-cells can increase this repertoire further
by mutating and recombining immune gene segments so that
antibodies can bind an unlimited number of antigens [11].

B. iNet Artificial Immune System

The iNet artificial immune system consists of the envi-
ronment evaluation (EE) facility and behavior selection (BS)
facility, which implement the innate and adaptive immune
responses, respectively (Figure 1). The EE facility allows
an agent to continuously sense a set of current environment
conditions as an antigen and classify the antigen to self or
non-self. A self antigen indicates that the agent adapts to the
current environment conditions well, and a non-self antigen
indicates it does not. When the EE facility detects a non-self
antigen, it activates the BS facility. The BS facility allows an
agent to choose a behavior as an antibody that specifically
matches with the detected non-self antigen.

1) Environment Evaluation Facility: The EE facility per-
forms two steps: initialization and self/non-self classification.
The initialization step produces detectors that identify self and
non-self antigens. Each antigen is represented as a feature
vector (X), which consists of a set of environment conditions,
or features, (F;) and a class value (C):

X = (R, By, ) 0

C indicates whether a given antigen (i.e., a set of envi-
ronment conditions) is self (0) or non-self (1). If an agent
senses resource utilization and workload (the number of user
requests) on the local host, an antigen is represented as
follows.

Xeurrent = ((Low : ResourceUtilization,Low : Workload),0) )

The initialization step in the EE facility is designed after
the negative selection process in the immune system (Figure
2). As the immune system randomly generates T-cells first,
the EE facility generates detectors (feature vectors) randomly.
Then, the EE facility separates the detectors into self detectors,
which closely match with self antigens, and non-self detectors,
which do not closely match with self antigens. This separation
is performed via similarity measurement between randomly
generated feature vectors (X) and self antigens (S) that human
users supply. After the vector matching, both self and non-self
detectors are stored in the feature table (Figure 2)>.

The second step in the EE facility is self/non-self classifi-
cation of an antigen (a set of current environment conditions).
It is performed with a decision tree built from detectors in the
feature table and classifies an antigen into self or non-self>.
Figure 3 shows an example decision tree. Each node in the tree
specifies which feature (environment condition) is considered.
Based on the feature values in a given antigen, the EE facility
travels through tree branches. If the EE facility classifies the
antigen to non-self, it activates the BS facility.

2) Behavior Selection Facility: The BS facility selects an
antibody (i.e., agent’s behavior) suitable for the detected non-
self antigen (i.e., environment conditions). Each antibody con-
sists of three parts: a precondition under which it is selected,
behavior ID and relationships to other antibodies. Antibodies
are linked with each other using stimulation and suppression
relationships. Each antibody has its own concentration value,
which represents its population. The BS facility identifies
candidate antibodies (behaviors) suitable for a given non-self
antigen (environment conditions), prioritizes them based on
their concentration values, and selects the most suitable one
from the candidates. When prioritizing antibodies (behaviors),
stimulation relationships between them contribute to increase

2The immune system removes non-self detectors through negative selection.
However, in iNet, both self and non-self detectors are used to perform self/non-
self classification.

3The reasons for using decision trees as an antigen classifier are im-
plementation simplicity and algorithmic efficiency. Decision trees perform
classification much faster than other algorithms such as clustering, support
vector machine and Markov model algorithms [12]. The efficiency of classi-
fication is one of the most important requirements in iNet because each agent
periodically senses and classifies its surrounding environment conditions.
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their concentration values, and suppression relationships con-
tribute to decrease it. Each relationship has an affinity value,
which indicates the degree of stimulation or suppression.
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Fig. 4. A Generalized Antibody Network

Figure 4 shows a generalized network of antibodies. The an-
tibody i stimulates M antibodies and suppresses N antibodies.
mj; and my; denote affinity values between antibody j and i,
and between antibody i and k. m; is an affinity value between
an antigen and antibody i. The concentration of antibody i,
denoted by q;, is calculated with the following equations.

N M
d[tlit(t) = (;]Emu “aj(t) - %I;mik “ax(t) +m; —k> ai(t) ()
1
T T+exp(0.5-Ai(1))

In Equation (3), the first and second terms in a bracket
denote the stimulation and suppression from other antibodies.
mj; and my are positive between 0 and 1. m; is 1 when
antibody i is stimulated directly by an antigen, otherwise 0. k
denotes the dissipation factor representing the natural death of
an antibody. Equation (4) is a sigmoid function used to squash
the A;(r) value between 0 and 1.

Every antibody’s concentration is calculated 200 times
repeatedly. This repeat count is obtained from a previous sim-
ulation experience [13]. If no antibody exceeds a predefined
threshold during the 200 calculation steps, the antibody whose
concentration value is the highest is selected (i.e., winner-
tales-all selection). If one or more antibodies’ concentration
values exceed the threshold, an antibody is selected based on
the probability proportional to the concentration values (i.e.,
roulette-wheel selection).

Figure 5 shows an example network of antibodies. It con-
tains four antibodies, which represent the migration, replica-
tion and death behaviors. Antibody 1 represents the migration
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An Example Decision Tree

behavior invoked when the distance to users is far from
an agent. Antibody 1 suppresses Antibody 3 and stimulate
Antibody 4. Now, suppose that a (non-self) antigen indicates
(1) the distance to users is far, (2) workload is heavy on
the local host and (3) resource utilization is low on a neigh-
boring platform. This antigen stimulates Antibodies 1, 2 and
4 simultaneously. Their populations increase, and Antibody
2’s concentration value becomes highest because Antibody 2
suppresses Antibody 4, which in turn suppresses Antibody 1.
As a result, the BS facility would select Antibody 2.

antibody 1 antibody 2
. . resource utilization .
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users is far toward a user host is low neighboring host I
antibody 3 i | l antibody 4 |
agent’s l workload on the Reproduce l
energy level die local host is a child agent
is very low heavy
¢
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Fig. 5.  An Example Antibody Network

3) Evolution of Antibodies: As Section IV-A describes, the
immune system diversifies antibodies by mutating immune
genes so that antibodies can react to unanticipated antigens.
Similarly, iNet diversifies antibodies via gene operations such
as mutation and crossover so that agents can adapt to unan-
ticipated environment conditions. In iNet, each agent encodes
and possesses its own antibody configuration (behavior policy)
as a set of genes (genotype). The agent genotype consists of
the antibody genes, which specify the presence of antibodies
and the affinity genes, which specify relationships among
antibodies and their affinity values. When a new agent is born
through a replication or reproduction process, it interprets a
genotype (genes) given by its parent(s) and form an antibody
network. Figure 6 shows an example genotype and phenotype.

Each agent periodically keeps track of its fitness, which
quantifies how much it adapts to the the current environment
conditions. Agents strive to increase their fitness values by
altering their genes (antibody configurations) through genera-
tions. Fitness is calculated as a weighted sum of fitness factors
(f):

Fitness = Zw,- - fi ©)

Currently, iNet considers the following six fitness factors.
Each factor value is non-negative between O and 1.
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e Response time (f;), the response time of an agent for users.
R is the time for each agent to process a single user request.

- R
" Response time

il 6

e Throughput (f>), indicates how many user requests agents
process.

__ # of user requests processed by agents

f2 @)

Total # of user requests

e Energy utility (f3), indicates the rate of agents’ energy
expenditure to their energy gain.

Energy expenditure

=1 ®)

Energy gain

e Resource efficiency (f;), indicates how much resources
agents consume against the workload they face.

Resource utilization on the local host
Workload on the local host

fa=1

©

Resource utilization is measured by the rate of the resource
consumption of agents on the local host to the total amount
of resources available on the local host. Workload is the rate
of the total number of user requests the local host receives
to the number of user requests agents can process in a unit
time on the local host.

e Age (f5) denotes the lifetime of an agent, L is the actual
age of an agent, divided by a costant S.

. 1 __Age of an agent
5= 1 —exp(—L+0.5)’ where L= N {10
e Load balancing (fs), indicates how agents distribute their
workload among them. N denotes the number of neighboring
hosts, and M denotes the maximum number of agents that

can run on the local host.

LB
fo=1— u where LB =# of agents on the local host (11)

# of agents on the local and negihboringhosts
N

When an agent invokes the reproduction behavior, it
searches the candidates of mating partner agents whose fitness
values are higher than the agent’s fitness value. The candidate
mating partners are searched on the local host. If the agent
cannot find such a partner, it replicates itself. This mating
partner selection contributes to increase the population of
agents that provide services in higher demand and maintains
higher fitness values than other agents.
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Antibody genes Affinity genes
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Fig. 7. An Example of Genetic Operation

In reproduction, two parent agents contribute their genes,
via crossover, to a child agent. The amount of their gene
contributions follow the ratio of their fitness values. For
example, in Figure 7, the fitness value ratio is 3:2 between
parent agent 1 and 2. Thus, parent agent 1 contributes 60%
of its genes to a child agent, and parent agent 2 contributes
the rest. In replication, a parent agent contribute its whole
genes to a child agent. Both in reproduction and replication,
mutation may occur on the genes of a child agent in a certain
probability.

V. BEYOND DEVELOPMENT ENVIRONMENT

BEYONDwork is an application development environment
for iNet. It provides a visual modeling language and a textual
programming language, collectively called iNet Configuration
Language (ICL). Both languages have the same level of
expressiveness, and the artifacts of the languages (models and
programs) are transparently translatable with each other. Agent
designers can configure the behavior policy (antibody config-
uration) of each agent through the use of either language.

Figure 8 shows the agent configuration process with BE-
YONDwork. BEYONDwork consists of two facilities: agent
configuration facility and code generator. The agent configu-
ration facility allows agent designers to configure their agents’
behavior policies with the visual or textual ICL. Once a
behavior policy is complete in the form of visual models or
textual programs, the code generator transforms the behavior
policy to compilable source code by following a transforma-
tion rule between ICL and source code. Through changing one
transformation rule to another, the code generator can generate
source code that are compatible with different deployment
environments such as simulators and real networks. Agent de-
signers do not have to write different ICL models/programs for
the same agent running on different deployment environments.
This flexible code generation feature improves the productivity
of agent designers. Currently, BEYONDwork supports Java
code generation for a simulator in BEYOND.

Figure 9 and 10 show the visual modeling and textual
programming environments in BEYONDwork, respectively.
As Figure 9 illustrates, the visual ICL visualizes an antibody
as a rounded rectangle. Each rectanble consists of three
compartments: (1) the name and the initial concentration
of an antibody, (2) an environment condition to which an
antibody reacts, and (3) an agent behavior and its properties.
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For example, in Figure 9, AntibodyAA’s initial concentration
value is 5, and it represents the reproduction behavior. The
behavior is invoked when workload is high. An stimula-
tion/suppression relationship between antibodies is visualized
as an solid arrow between rounded rectangles. Each arrow
has value, which represents affinity value of a relationship.
As Figure 9 demonstrates, the visual ICL supports all the
concepts in antibody configurations as built-in model elements,
and agent designers can configure antibodies (agent behavior
policies) in an intuitive and rapid manner. The visual modeling
environment of BEYONDwork is implemented on Eclipse
Graphical Modeling Framework (GMF)*. The transformations
from ICL models and Java source code are implemented with a
model-code transformation engine in openArchitectureware?.

In the textual ICL (Figure 10), each antibody is defined with
the built-in keyword ant ibody. The program in Figure 10 and
the model in Figure 9 define the semantically same antibody
configuration. As Figure 10 shows, the textual programming
environment in BEYONDwork shows built-in keywords in
boldface, automatically performs a syntax check, and reports
syntax errors while antibody designers configure antibodies.
In Figure 10, a syntax error is reported as a wavy underline.
(The textual ICL does not support keyword resources but
resource.) The textual programming environment in BE-
YONDwork is implemented on Eclipse. The transformations
from ICL programs and Java source code are implemented
with a model-code transformation engine in openArchitecture-
ware

The following is a fragment of Java source code generated
from the textual ICL program in Figure 10.

void setupAntibodiesOfINet () {
Antibody aa

new Antibody( "AntibodyAA", 5, "workload", "high",

new Reproduction( 2.3, "fitnessbased", "fitnessbased" )
Antibody bb =

new Antibody( "AntibodyBB", 10, "resource", "high",

new Mutation( 3 ) );

ImmuneNetwork inet
inet.add( aa );

getImmuneNetwork () ;
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inet.add( bb );
aa.addAffinity( bb,
}

1.5 );

Without ICL, agent designers need to know the details on
how to implement agents in Java (e.g., how to define new
agents, where to implement antibody configuration code, and
which iNet API to use.) For example, agent designers need
to define a new class extending the Agent class provided by
a simulator in BEYOND. Also, as the above code fragment
shows, they need to write the setupAntibodiesOfINet ()
method using iNet API in order to configure the agent’s
antibodies. ICL hides these implementation details and allows
agent designers to focus on the design of antibody configura-
tions. In addition, compared with the Java code shown above,
a model or program in ICL is easier to read and understand.



VI. SIMULATION RESULTS

This section presents several simulation results to evaluate
the autonomous adaptability of agents designed with BE-
YONDwork. The simulations are carried out on the BEYOND
simulator. Figure 11 shows a simulated network as a server
farm consisting of network hosts connected in a 10x10 grid
topology. BEYOND platform is running on each network
host, and each agent implements a web service. Service
requests travel from users to agents via user access point. This
simulation study assumes that a single (emulated) user runs on
the access point and sends service requests to agents. When a
user issues a service request, request messages are broadcasted
to search a target agent that can process the issued service

reqfﬁsst %simulation generates a random workload for web
service agents as described in figure 12. The workload trace is
designed based on a daily request rate for the www.ibm.com
site in February, 2001 [14]. The request rate peaks to about
5,500 requests per min in the morning and 9,000 requests per
min in the evening. At the beginning, four agents whose anti-
body network is randomly configured are randomly deployed.
In order to evaluate how the evolutionary process impacts the
adaptability of agents, two different types of agents-agents
with a reproduction behavior and without it, i.e. with evolution
and without evolution-are compared.

Figure 13 shows how agents autonomously adapt their pop-
ulation to workload changes. When agents receive requests,
they start to provide their service for users. Agents gain
more energy from users and try to perform replication or
reproduction behavior to increase their population. However,
agents without evolution cannot perform a replication behavior
appropriately; moreover, they may incorrectly invoke a death
behavior despite receiving user requests. It follows that ran-
domly configured agents do not have an antibody network
suitable for the environment. On the other hand, agents with
evolution successfully adjust the configuration of antibody net-
work and increase their population. They reproduce children
having the adaptive antibody network by which a replication
behavior is appropriately selected according to the workload.

Figure 14 shows how agents autonomously adapt response
time for a user. At the beginning of simulation, response time
becomes very high because only four agents process 2,000
requests a minute and a distance between the agent and users
is long. However, after the agents accumulate enough energy
from users and start to migrate towards users and replicating
themselves, they rapidly decrease response time. For agents
with evolution, when workload is generated, the response
time spikes up to 10 seconds (at 3:00), but they decrease it
to 2 seconds in 30 minutes. It follows that they reproduce
children who successfully invoke migration and replication
behaviors according to the workload. On the other hand, agents
without evolution cannot reduce their response time because
they did not properly migrate towards users and increase their
population.

Figure 12 also shows how two different types of agents
dynamically adapt their throughput to the workload changes.

It is measured as the number of responses that users receives
a minute from agents. Agents with evolution autonomously
maintain high throughput by dynamically adjusting their lo-
cations and population through migration and reproduction
behaviors while agents without evolution cannot achieve their
throughput to workload becasue some agents did not migrate
or replicate properly.

Figure 15 shows the average fitness value of agents (i.e.,
the degree of adaptation to the environment). While agents
without evolution do not improve their fitness value, agents
with evolution reproduce children who obtain the adaptive
antibody network and dynamically improve their fitness value
to about 0.6 0.7 by altering their antibody configuration.

Figure 16 shows the variance of agents’ fitness values, how
the fitness values are spread around the average. The variance
for agents without evolution has not converged well while the
variance for agents with evolution has gradually converged.
The lower variance implies that all agents’ fitness values
are close each other. Together with the results in figure 15,
figure 16 concludes that the optimal configuration (genes) of
antibody network is successfully spread out to other surviving
agents by evolutionary process; thus, agents adapts to the
environment conditions well through generations.

VII. RELATED WORK

This paper describes several extensions to the existing work
on iNet [13], [15]. [13] does not investigate the iNet evolution-
ary mechanism. Thus, agent designers needed to manually and
carefully configure antibodies in their agents at design time.
In contrast, the iNet evolutionary mechanism allows agents to
autonomously adjust their antibody configurations at runtime;
it does not require manual antibody configurations of agent
designers. [15] describes preliminary simulation results of the
iNet evolutionary mechanism; however, it does not investigate
ICL as well as the EE facility in iNet.

The Bio-Networking Architecture [16] is similar to BE-
YOND in that it applies biological principles and mecha-
nisms to allow network applications to autonomously adapt
to dynamic environmental changes in the network. However,
its adaptation engine is different from iNet. While iNet is
designed after immune responses, [16] employs a simple
weighted sum calculation for behavior selection. Although
[16] has an evolutionary mechanism that dynamically adjusts
weight values in the weighted sum calculation, agent design-
ers still need to manually define a weighted sum equation
for each behavior and configure a threshold value for each
weighted sum equation. In contrast, iNet requires no manual
configuration work for agent designers.

BEYONDwork provides visual and textual ICL to configure
antibodies (behavior policies) for agents. The work of ICL is
parallel to the existing research on domain specific languages
(DSLs) [17]. ICL is considered as a DSL in that ICL focuses
on directly capturing the concepts and mechanisms specific
to a particular problem domain. There are several DSLs to
model biological systems such as biochemical networks for
simulating and understanding biological systems (e.g., [18],
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[19]). However, the objective of ICL is different from theirs;
ICL aims to model biological (immunological) mechanisms
for building autonomous and adaptive network applications.
This work is the first attempt to investigate a DSL for
biologically-inspired networking.

VIII. CONCLUSION

This paper describes the BEYOND architecture, which ap-
plies biological principles and mechanisms to design evolvable
network applications that autonomously adapt to dynamic
environmental changes in the network. This paper focuses
on two key components in BEYOND: (1) an evolutionary
adaptation engine, called iNet, for network applications and
(2) an application development environment, called BEYOND-
work, for the adaptation engine. iNet is designed after the
mechanisms behind how the immune system works. It models
a set of environment conditions (e.g., network traffic) as
an antigen and a behavior of network applications (e.g.,
migration and reproduction) as an antibody. iNet allows each
network application to autonomously sense its surrounding
environment conditions (i.e., antigens) and adaptively invoke
a behavior (i.e., antibody) suitable for the conditions. The
configuration of antibodies evolves via genetic operations such
as mutation and crossover. BEYONDwork provides visual and
textual languages to configure antigens and antibodies in iNet.
The languages increase the ease of specifying and modifying
iNet configurations. Simulation results show that iNet allows
network applications designed with BEYONDwork to evolve
themselves to adapt to changing network environments.
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