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ABSTRACT
Wireless sensor applications (WSNs) are often required to si-
multaneously satisfy conflicting operational objectives (e.g.,
latency and power consumption). Based on an observation
that various biological systems have developed the mecha-
nisms to overcome this issue, this paper proposes a biologically-
inspired adaptation mechanism, called MONSOON. With
MONSOON, each application is designed as a decentralized
group of software agents. This is analogous to a bee colony
(application) consisting of bees (agents). Agents collect sen-
sor data on individual nodes, and carry the data to base
stations. They perform this data collection functionality by
autonomously sensing their local and surrounding environ-
ment conditions and adaptively invoking biological behav-
iors such as pheromone emission, replication, reproduction
and migration. Each agent has its own behavior policy, as
a gene, which defines how to invoke its behaviors. MON-
SOON allows agents to evolve their behavior policies (i.e.,
genes) and simultaneously adapt to conflicting objectives.
In addition to consider multiple objectives equally, MON-
SOON also allows agents to evolve in a constraint-based (or
intentionally-biased) manner. A constraint is defined as an
upper or lower bound for each objective. Simulation results
show that MONSOON allows agents (WSN applications) to
adapt to dynamics of the network (e.g., node/link failures)
through evolution and simultaneously satisfy conflicting ob-
jectives in a self-organizing manner.

Keywords
Biologically-inspired networking, evolutionary and adaptive
sensor networks, self-organizing sensor networks

1. INTRODUCTION
Autonomous adaptability is a key challenge in wireless

sensor networks (WSNs) [1, 3, 2, 21]. With minimal in-
tervention to/from human operators, WSN applications are
required to adapt their operations to dynamic conditions in
the network (e.g., network traffic and node/link failures). A
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critical issue in this challenge is that each WSN application
tends to have conflicting operational objectives. For exam-
ple, in data collection applications, the success rate of data
transmissions from individual nodes to base stations is an
important operational objective because higher success rate
ensures that base stations have more data for operators to
better understand operational environments and make bet-
ter informed decisions. At the same time, the latency of
data transmissions from individual nodes to base stations is
another important operational objective. Lower latency en-
sures that base stations can collect sensor data for operators
to understand operational environments quickly and make
timely decisions. Success rate and latency conflict with each
other. For improving success rate, hop-by-hop recovery is
often applied; however, this can degrade latency. For im-
proving latency, nodes may transmit data to base stations
with the shortest paths; however, success rate can degrade
because of traffic congestion on the paths.

In order to address this adaptability issue, the authors of
the paper envision self-organizing1 WSN applications that
understand operational objectives and simultaneously sat-
isfy them against the dynamics of network environments.
The authors observe that various biological systems have
developed the mechanisms necessary to realize this vision.
For example, a bee colony self-organizes to satisfy conflict-
ing objectives simultaneously [22]. Those objectives include
maximizing the amount of collected honey, maintaining the
temperature in a nest and minimizing the number of dead
drones. If bees focus only on foraging, they fail to venti-
late their nest and remove dead drones. Given this obser-
vation, the proposed application architecture, called BiS-
NET/e (Biologically-inspired architecture for Sensor NET-
works, evolutionary edition), applies key biological mecha-
nisms to design self-organizing adaptive WSN applications.

Figure 1 shows the BiSNET/e runtime architecture. The
BiSNET/e runtime operates atop TinyOS on each node. It
consists of two software components: agents and middleware
platforms, which are modeled after bees and flowers, respec-
tively. Each WSN application is designed as a decentralized
group of agents. This is analogous to a bee colony (applica-
tion) consisting of bees (agents). Agents read/collect sensor
data on platforms (flowers) atop individual nodes, and carry
the data to base stations on a hop-by-hop basis, in turn, to a
backend server (the MONSOON server in Figure 1), which is

1Self-organization is a process in which a system’s internal com-
ponents autonomously react to environmental changes, interact
with each other and create an ordered/stable state (equilibrium
point) without being guided by any outside sources [5, 9].



modeled after a nest of bees. Agents perform this data col-
lection functionality by autonomously sensing their local and
surrounding network conditions and adaptively invoking bi-
ological behaviors such as pheromone emission, replication,
reproduction, migration and death. A middleware platform
runs on each node, and hosts one or more agents (Figure 1).
It provides a series of runtime services that agents use to
perform their functionalities and behaviors.

This paper focuses on a key mechanism in BiSNET/e,
called MONSOON2, which is an evolutionary adaptation
mechanism for agents. Each agent possesses its own behav-
ior policy, as a gene, which defines how to invoke its behav-
iors. MONSOON allows agents to evolve their behavior poli-
cies via genetic operations (e.g., mutation and crossover) and
simultaneously adapt them to conflicting objectives (success
rate, latency and power consumption) in dynamic netowrk
environments. MONSOON also frees application designers
from anticipating all possible network conditions and tuning
their agents to the conditions at design time. Instead, agents
can autonomously evolve and tune their behavior policies.
This significantly simplifies the implementation and mainte-
nance of agents (i.e., WSN applications).

In addition to consider multiple objectives equally, MON-
SOON allows agents to adapt their behavior policies in a
constraint-based (or intentionally-biased) manner. A con-
straint is defined as an upper or lower bound for each objec-
tive. For example, a tolerable (upper) bound may be defined
for the latency objective. This feature allows agent designers
to flexibly specify their specific requirements (or priorities)
on objectives. Also, constraints can often improve evolution
speed by dedicating agents to satisfy the constraints.

This paper is organized as follows. Section 2 overviews the
BiSNET/e runtime, particularly agent behaviors, and Sec-
tion 3 describes the design of MONSOON. Section 4 evalu-
ates MONSOON with a series of simulation results. Sections
5 and 6 conclude with some discussion on related work.

Figure 1: BiSNET/e Runtime Architecture

2. THE BISNET/E RUNTIME
BiSNET/e is currently designed to implement data collec-

tion applications. Every node reports its sensor reading to a
base station periodically (i.e., at each data collection cycle).
At the beginning of a WSN operation, an agent is deployed
on each node. It has a randomly-generated behavior policy.

2.1 BiSNET/e Agent
Each agent consists of attributes, body and behaviors. At-

tributes carry descriptive information on an agent. They
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include agent’s behavior policy (gene), sensor data to be re-
ported to a base station, time stamp of the sensor data, and
ID of a node where the sensor data is captured.

Body implements the functionalities of an agent: collecting
and reporting sensor data to a base station.

Behaviors are the actions inherent to all agents. Inspired
by biological entities (e.g., bees), agents sense their local and
surrounding environment conditions, and behave according
to the conditions without any intervention from/to other
agents. This paper considers the following six behaviors.

(1) Food gathering and consumption: Biological en-
tities strive to seek food for living. For example, bees gather
nectar to produce honey. In BiSNET/e, each agent collects
sensor data (as nectar) on the local platform and gains en-
ergy (as honey)3 in each data collection cycle. Agents peri-
odically consumes a constant amount of energy for living.

(2) Pheromone emission: Agents may emit different
types of pheromones: migration and alert pheromones. They
emit migration pheromones on their local nodes when they
migrate to neighboring nodes. Each migration pheromone
references the destination node an agent has migrated to.
Agents also emit alert pheromones when they fail migra-
tions within a timeout period. Each alert pheromone refer-
ences a possibly failed node that an agent could not migrate
to. Each pheromone has its own concentration. The con-
centration decays by half at every data collection cycle. A
pheromone disapears when its concentration becomes zero.

(3) Replication: Agents make a copy of themselves when
they gain energy in each data collection cycle. A child agent
is placed on the platform that its parent resides on, and
it inherits the parent’s gene (behavior policy). Replicated
agents are intended to move toward base stations to report
collected sensor data.

(4) Migration: Agents may move from one node to an-
other. Migration is used to transmit agents (sensor data) to
base stations. Each agent chooses a migration destination
node by sensing three types of pheromones available on the
local node: base station, migration and alert pheromones.

Each base station periodically propagates base station
pheromones to individual nodes in the network. Their con-
centration decays on a hop-by-hop basis. Using base station
pheromones, agents can sense where base stations exist ap-
proximately, and move toward the base stations by climbing
pheromone’s concentration gradient4.

An agent may move to a base station by following a migra-
tion pheromone trace on which many other agents have trav-
eled. The trace can be the shortest path to the base station.
Conversely, an agent may goes off a migration pheromone
trace and follows another path to a base station when the
concentration of migration pheromones is too high on the
trace (i.e., when too many agents have followed the trace).
This avoids separating the network into islands. The net-
work can be separated with the migration paths that too
many agents follow, because the nodes on the paths con-
sume more power and go down earlier than the others.

An agent may also avoid moving to a node referenced
by an alert pheromone. This allows agents to reach base
stations by bypassing link/node failures.

(5) Reproduction: Once agents arrive at the MON-

3In BiSNET/e, the concept of energy does not represent the
amount of physical power, but logically affects agent behaviors.
4Base station pheromones are designed after the Nasonov gland
pheromone, which guides bees to move toward their nest [8].



SOON server (a nest for agents; see Figure 1), they may
produce their offspring with other agents (mating partners).
A reproduced agent inherits a gene (behavior policy) from
its parents via crossover, and mutation may occur on the
inherited gene. Some of reproduced agents that adapt to
the current network conditions are dispatched to the net-
work, and they perform a generation change by taking over
existing agents running on individual nodes.

Reproduction is intended to evolve agents so that the bi-
ological entities that fit better to the environment become
more abundant. It retains the agents whose fitness to the
current network conditions is high (i.e., the agents that have
effective behavior policies, such as moving toward a base
station in a short latency), and eliminates the agents whose
fitness is low (i.e., the agents that have ineffective behavior
policies, such as consuming too much power to reach a base
station). Through successive generations, effective behavior
policies become abundant in agent population while ineffec-
tive ones become dormant or extinct. This allows agents to
adapt to dynamic network conditions.

(6) Death: Agents periodically consume energy for liv-
ing, and expend energy to invoke their behaviors. (The en-
ergy costs to invoke behaviors are constant for all agents.)
Agents die due to lack of energy when they cannot balance
energy gain and expenditure. The death behavior is in-
tended to eliminate the agents that have ineffective behavior
policies. For example, an agent would die before arriving at
a base station if it follows a too long migration path. When
an agent dies, the local platform removes the agent and re-
leases all resources allocated to the agent.

2.2 A Sequence of Agent Behaviors
Figure 2 shows a sequence of behaviors that each agent

performs on a node in each data collection cycle. An agent
reads sensor data (as nectar) with the underlying sensor
device and gains a constant amount of energy (as honey).
Given the energy intake (EF ), each agent updates its energy
level as follows.

E(t) = E(t − 1) + EF (1)

E(t) is the current energy level of the agent, and E(t− 1)
is the agent’s energy level in the previous data collection
cycle. t is incremented by one at each data collection cycle.
If an agent’s energy level (E(t)) becomes very low (below
the death threshold: TD), the agent dies due to starvation5.

An agent replicates itself in each data collection cycle. A
replicating (parent) agent splits its energy units to halves

( E(t)−ER
2

), gives a half to its child agent, and keeps the
other half. ER is the energy cost for an agent to perform
the replication behavior. A child agent contains the sensor
data that its parent collected, and carries it to a base station.

Each replicated agent migrates toward a base station on
a hop by hop basis. On each intermediate node, it examines
Equation 2 to determine which next node it migrates to.

WSj =
3X

t=1

wt
Pt,j − Ptmin

Ptmax − Ptmin

(2)

An agent calculates this weighted sum (WSj) for each
neighboring node j, and moves to a node that generates

5If all agents are dying on a node at the same time, a randomly
selected agent will survive. At least one agent runs on each node.

the highest weighted sum. t denotes pheromone type; P1j ,
P2j and P3j represent the concentrations of base station,
migration and alert pheromones on the node j. Ptmax and
Ptmin denote the maximum and minimum concentration of
Pt among neighboring nodes.

When an agent is migrating to a neighboring node, it
emits a migration pheromone on the local node. If the
agent’s migration fails, it emits an alert pheromone. Each
alert pheromone spreads to one-hop away neighboring nodes.

for each data collection cycle

do

8>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>:

Read sensor data and gain energy (EF ).
Update energy level (E(t)).
if E(t) < the death threshold (TD)
then Invoke the death behavior.

Invoke the replication behavior to make a child agent.
Give the half of the current energy level to
a replicated (child) agent.
for each migrating agent

do

8>>>>><>>>>>:

Determine the destination node of migration.
Emit a migration pheromone on the local node.
Migrate to a neighboring node.
if Migration fails

then


Emit an alert pheromone on the local node
Propagate it to neighboring nodes.

Figure 2: A Sequence of Agent Behaviors in Each
Data Collection Cycle

2.3 Agent Behavior Policy
Each agent’s behavior policy (gene) contains a set of weight

values in Equation 2 (wt, 1 ≤ t ≤ 3). w1 and w3 are non neg-
ative, and w2 can be negative. These weight values govern
how agents perform the migration behavior. For example,
if an agent has zero for w2 and w3, the agent ignores mi-
gration and alert pheromones, and moves toward the base
stations by climbing the concentration gradient of base sta-
tion pheromones. If an agent has a positive value for w2, it
follows a migration pheromone trace on which many other
agents have traveled. A negative w2 value allows an agent
to go off a migration pheromone trace and follow another
path toward a base station. If an agent has a positive w3, it
moves to a base station by bypassing link/node failures.

Agents have randomly-generated behavior policies at the
beginning of WSN operation. MONSOON allows them to
dynamically evolve their behavior policies according to the
current network conditions.

3. MONSOON
MONSOON is a constraint-based evolutionary multiob-

jective adaptation mechanism designed for agents in BiS-
NET/e. It allows agents to heuristically adapt to multiple
objectives simultaneously. This adaptation process is per-
formed through elite selection and genetic operations. The
elite selection process evaluates the agents that arrive at base
stations, based on given objectives, and chooses the best (or
elite) ones. Then, elite agents are propagated to the network
in order to to perform genetic operations and reproduce an
offspring (next generation) agent on each node. Elite selec-
tion is performed in the MONSOON server (see Figure 1),
and genetic operations are performed in each node.

3.1 Adaptation Objectives



With MONSOON, agents consider three conflicting objec-
tives: latency, cost and success rate of their migration (i.e.,
data transmission) from individual nodes to base stations.

(1) Latency represents the time required for an agent
to travel to a base station from a node where the agent is
born (replicated). In this paper, as depicted in Equation 3,
latency is measured as a ratio of this agent travel time to the
physical distance (PD) between a base station and a node
where the agent is born. The MONSOON server knows the
location of each node with a certain localization mechanism.

Latency =
agent travel time

PD
(3)

(2) Cost represents the amount of energy required for an
agent to travel to a base station from a node where the agent
is born. In this paper, cost is measured with the topological
distance between between a base station and a node where
the agent is born (TD), the transmission range (radius) of
each node, and TD.

Cost = TD ·
transmission range

PD
(4)

(3) Success Rate is measured as the ratio of the number
of agents that arrive at base stations to the number of nodes.

MONSOON allows agents to evolve their behavior policies
so that they maximize success rate and minimize latency and
cost.

3.2 Elite Selection
Figure 3 shows how elite selection occurs at the MON-

SOON server in each data collection cycle. The first step
is to obtain three objective values (i.e., latency, cost and
success rate) from each of the agents that reach the MON-
SOON server via base stations. If an agent’s objective value
does not meet a given constraint, the agent is eliminated.
Then, each of the remaining agents is evaluated whether it
is dominated by another agent. An agent is considered to
be dominated if another agent outperforms it in all of the
three objectives.

In the next step, a subset of non-dominated agents are
selected as elite agents. This is performed with a hypercube
space, which a three dimensional space whose axes represent
three objectives (i.e., latency, cost and success rate). Each
axis of the hypercube space is divided so that the space is
divided into small cubes. Each non-nominated agent is plot-
ted in this hypercube space based on their objective values.
A single agent is randomly selected from each cube as an
elite agent. This elite agent selection is designed to main-
tain the diversity of elite agents’ genes. The diversification
of agent genes contribute to improve agents’ adaptation even
to unanticipated network conditions.

Figure 4 shows an example hypercube space. Each axis is
divided into two ranges; therefore, eight cubes exist. Thus,
the maximum number of elite agents is eight. In this exam-
ple, six (A to F) non-dominated agents are plotted in the
hypercube space. Three agents (B, C, and D) are plotted in
the lower left cube, while the other three agents (A, E, and
F) are plotted in three different cubes. From the lower left
cube, only one agent is randomly selected as an elite agent.
A, E, and F are selected as elite agents because they are in
different cubes.

3.3 Genetic Operations

Once elite agents are selected, the MONSOON server prop-
agates them to each node in the network. They are propa-
gated with base station pheromones.

An agent performs the reproduction behavior on each
node through genetic operations (crossover and mutation)
when elite agents arrive at the node. As a mating partner,
the agent selects one of the elite agents that has the most
similar gene. Gene similarity is measured with the Euclidean
distance between the values of two genes.

Reproduction occurs with a certain reproduction proba-
bility. During reproduction, a child agent inherits the half of
its gene from its parent agent and the other half from its par-
ent’s mating partner. Mutation occurs on the child agent’s
gene with a certain mutation probability by randomly chang-
ing gene values within a predefined value range.

4. SIMULATION RESULTS
This section shows a set of simulation results to evaluate

MONSOON and BiSNET/e. MONSOON is implemented
in Java and connects to BiSNET/e which is implemented in
TinyOS and simulated in TOSSIM.

In each simulation, a WSN consists of 100 sensor nodes
uniformly deployed in a 300x300 meters observation area.
Sensor nodes’ communication range is 30 meters. A base
station is deployed on the northwestern corner of the obser-
vation area. The base station connects to MONSOON via
emulated serial port connection. This simulation assumes
that each sensor node has to report a sensor reading ev-
ery 5 minutes; thus, a generation of MONSOON is also in
5 minutes period. For genetic operation, the reproduction
probability is set to 0.75 and mutation probability is 0.025.

To measure the degree of self-organization of sensor net-
work, a system entropy is measured for each generation.
Generally speaking, entropy represents the disorderedness
of the system. Therefore, when the entropy becomes lower,
system becomes more self-organized. In this paper, entropy
is measured from the probability that agents’ performance
becomes similar, i.e. self-organized, or dissimilar, i.e. dis-
ordered. To evaluate the similarity of agents’ performance,
the performance of agent is presented as a set of states, or
cubes, in a hyper-cube, which each axis of the hypercube
represents each objective. Each state, or cube, has objec-
tive values’ range assigned from hypercube. The probability

Empty the archive

while true

do

8>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>:

Empty the population pool.
Collect agents from the network.
Add collected agents to the population pool.
Move agents from the archive to the population pool.
Empty the archive
for each agent of the ones in the population pool

do

8<:Obtain each objective value.
if An objective value breaks a constraint
then Remove the agent from the population pool.

for each agent of the ones in the population pool

do

8<:if not dominated by all other agents in
the population pool
then Add the agent to the archive.

Select elite agents from the archive.
Propagate elite agents to the network.

Figure 3: Elite Selection in the MONSOON server
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Figure 4: An Example Elite Selection

of each state is measured from the number of agents whose
objectives values are according to state’s objectives range
over the total number of collected agents. Thus, entropy
can be measured from following equation;

H =
X
i∈S

pi log(pi) (5)

Where S is the set of system state, pi of the probability
of the state i.

In each figure in this section, the X-axis depicts the sim-
ulation time, in generations. The left Y-axis shows average
cost, latency, and entropy while the right Y-axis shows the
success rate. The average cost is presented in a unit of topo-
logical over physical distance, i.e., hop count over 30 meters.
The unit of latency is second over physical distance, i.e., 30
meters and the unit of success rate is percentage. The value
of entropy is normalized to be between zero and one.

4.1 Simulation Results without Constraints
Figure 5 (a) shows the average value of each objectives

from collected agents and the entropy of the system in each
generation when all sensor nodes are performed without
malfunction. From the figure, After six generations, MON-
SOON starts improve the performance of the WSN; it can be
observed from increasing of success rate, and decreasing of
latency and cost. With in 16 generations, the performance
is converged such that the latency is close to zero second
over 30 meters, cost is close to one hop over 30 meters and
the success rate is 100%. Moreover, MONSOON allows the
sensor network to become more self-organized which can be
observed from the decreasing of entropy value. The simu-
lation result shows that MONSOON can autonomously im-
prove the performance, i.e. objective values, of WSN, and
allows WSN to becomes more self-organized.

Figure 5 (b) portraits a scenario when 25 nodes are added
randomly into the network at the 20th generation. At first,
after deploy the new sensor nodes, the success rate are dropped
dramatically because the gene of the agents on the new sen-
sor nodes are random; therefore, agent from the new sensor
nodes cannot migrate efficiently toward the base station.
Also, the agents from new sensor nodes disturb agents from
the other nodes such that some agents from the other node

cannot successfully move to the base station. This can be
observed from the increasing of cost and latency as well.
However, sooner or later, the gene of the new sensor nodes
is improved and the success rate becomes higher while net-
work cost and latency become lower.

From the figure 5 (b), the entropy value also increases at
21st generation from 0.6 to almost 1.0, which indicates the
increasing of disorderedness of the sensor network. However,
the entropy level decreases continuously between 22nd and
38th generation and stay the same lowest level as before 20th
generation. MONSOON is able to autonomously adjusts the
operational parameters of redeployed sensor nodes to retain
the performance and order of WSN.

From the figure 5 (c), at 20th generation, 25 sensor nodes
are randomly selected and deactivated to simulate sensor
node failure. Therefore, only 75 nodes are working properly.
At 20th generation, the success rate of the WSN drops dra-
matically because of the sudden change in the WSN, similar
to latency and cost.

Agents on sensor nodes close to deactivated nodes still try
to migrate to the deactivated nodes; hence, the migration
may be unsuccessful or taking longer time and/or distance.
However, after 21st generation, the three objective values
are improved continuously and converge at the 30th genera-
tion. the For the entropy value, at 21st generation, entropy
increases because of changes in sensor network, then it con-
tinuously decreases again until reach the lowest level at 40th
generation. The simulation results shows that MONSOON
allows WSN to survives a partial sensor network failure by
adjusting the operational parameters of WSN to be suitable
to the changes in network condition.

Figure 5 (d) shows the result of a simulation when 20 sen-
sor nodes are deactivated at the 20th generation. In contrast
with the simulation in Figure 5 (c) which the sensor nodes to
be deactivated are selected randomly, the sensor nodes are
selected in spatially-correlated fashion such that the sensor
nodes who are located in the middle of observation area are
selectively deactivated. Hence, the sensor network contains
a hole in the middle of the network. Compared with the re-
sult in figure 5 (c), MONSOON takes longer time to improve
the success rate of the WSN. The success rate converges at
about 52nd generation to approximately 98%. The cost and
latency also show the similar trend. Particularly, after 52nd
generation, the average value of cost and latency are higher
than the values just before 20th generation because agents
have to detour in a longer path to avoid the hole in the mid-
dle of the network. Nevertheless, the entropy level shows
the same trend as the previous simulations. The simula-
tion results shows that MONSOON allows WSN to survives
a spatially-correlated sensor nodes failure by adjusting the
operational parameters of WSN to be suitable to the changes
in network condition.

Figure 5 (e) shows the result of a simulation which has
two base stations deployed at the northwestern and south-
eastern corner of the observation area initially. Then, at the
20th generation, the base station at the southeastern corner
is deactivated. From the figure, at the 21st generation, the
success rate drops sharply to about 45% from about 100% in
the 20th generation because more than a half of the agents
still try to move to the base station at the southeastern cor-
ner. However, the success rate is improved successively and
reach the same level as before the base station is deactivated
at the 37th generation.
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(b) Node Addition
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(c) Random Node Failure
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(e) Base Station Failure

Figure 5: Objective Values without
Constraints
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(b) Node Addition
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(e) Base Station Failure

Figure 6: Objective Values with a
Latency Constraint
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Figure 7: Objective Values with
Latency and Cost Constraints



Network cost, latency, and entropy level show the same
trend. MOSOON allows WSN to survives a base station
failure by autonomously directing all agents to remaining
base station.

4.2 Simulation Results with a Latency Con-
straint

In this section, a user-defined constraint is assigned to the
latency such that the average latency of agents is expected
to be lower than 0.05 second.

Figure 6 (a) shows the average value of each objectives
from agents collected in each generation. From the figure,
MONSOON focuses on decreasing the latency to meet the
constraint. Hence, the average latency is decreased faster
than the other objectives. In particular, the latency is opti-
mized at 11th generation, compared with 15th generation in
figure 5 (a) while cost is optimized at 18th generation, com-
pared with 16th generation in figure 5 (a). The success rate
shows the same trend as cost. Nevertheless, after 16 gener-
ation, all objectives are converged close to optimized value,
i.e. minimum or maximum bound. Moreover, MONSOON
allows the sensor network to become more self-organized
which can be observed from the decreasing of entropy. This
simulation result shows that MONSOON is able to optimize
the operational parameters regarding to user-defined con-
straint.

Figure 6 (b) has the same simulation parameter as the
simulation in figure 5 (b). Similar to figure 6 (a), latency is
improved faster than cost and success rate both before and
after node redeployment. The entropy level also decreases
after the 21st generations. This simulation result shows that
MONSOON allows WSN to adapt to changes in network
condition and is able to optimize the operational parameters
regarding to user-defined constraint.

Figure 6 (c), 6 (d), and 6 (e) have the same simulation
parameter as in the simulation in figure 5 (c), 5 (d) and
5 (e), respectively. The simulation results in those three
figures show similar trend as in figure 6 (b); thus, the simu-
lation results show that MONSOON allows WSN to adapt
to changes in network condition and is able to optimize the
operational parameters regarding to user-defined constraint.

4.3 Simulation Results with Latency and Cost
Constraints

In this section,constraints are assigned to both latency and
cost. The latency is expected to be lower than 0.05 second
over 30 meters while the cost is expected to be lower than
1.05 hop over 30 meters.

From the figure 7 (a), MONSOON focuses on decreasing
the latency and cost concurrently to meet the constraints.
Hence, the average latency and cost are decreased faster
than the success rate. Particularly, the success rate remains
unimproved till 10th generation, in contrast with the success
rate in figure 5 (a), which is improved since 6th generation.
However, all objective values are optimized at 17th genera-
tion. Thus, MONSOON is able to optimize the operational
parameters regarding to multiple user-defined constraint.

Figure 7 (b) has the same simulation parameter as the
simulation in figure 5 (b). From the figure, after 21st gen-
eration, latency and cost are improved rapidly while success
rate improved slowly because of MONSOON gives more pri-
ority on latency and cost. Particularly, latency and cost
become optimized at about 40th generation, compared with

43rd generation in figure 7 (b). Figure 7 (c), 7 (d) and 7 (e)
show similar trends as in figure 7 (b). The simulation results
show that MONSOON allows WSN to adapt to changes in
network condition and is able to optimize the operational
parameters regarding to multiple user-defined constraint.

4.4 Memory Footprint
Table 1 shows the memory footprint of the BiSNET/e run-

time in a MICA2 mote, and compares it with the footprint
of Blink (an example program in TinyOS), which periodi-
cally turns on and off an LED and Agilla, which is a mobile
agent platform for WSNs [7]. The BiSNET/e runtime is
lightweight in its footprint thanks to the simplicity of the
biologically-inspired mechanisms in BiSNET/e. BiSNET/e
can even run on a smaller-scale nodes, for example, TelosB,
which has 48KB ROM.

Table 1: Memory Footprint in a MICA2 Mote
RAM (KB) ROM (KB)

BiSNET 2.0 26.0
Blink 0.04 1.6
Agilla 3.59 41.6

5. RELATED WORK
This work is an extension to the authors’ prior work,

BiSNET [4]. [4] shows that BiSNET allows agents to au-
tonomously adapt to network conditions. However, it did
not investigate evolutionary adaptation (i.e., MONSOON);
agent behavior policies were manually configured and fixed.
Unlike BiSNET, BiSNET/e allows agents to dynamically
adapt their behavior policies even to unanticipated network
conditions such as node failures, base station failures and
node additions.

Agilla proposes a programming language to implement
mobile agents for sensor networks, and provides a runtime
system (interpreter) to operate agents on TinyOS [7]. On
the other hand, BiSNET/e does not focus on investigating a
new programming language for sensor networks. BiSNET/e
agents and Agilla agents have a similar set of behaviors such
as migration and replication. Both of them are also intended
to be used for similar applications (e.g., wildfire detection).
However, Agilla does not address the research issues that
BiSNET/e focuses on; adaptation, self-organization, and op-
timization. In addition, BiSNET/e focuses on its design
simplicity and runtime lightweightness. As shown in table
1, BiSNET/e is much more lightweight than Agilla.

[23] proposes a generic communication primitive for sensor
networks. The primitive hides lower level implementation,
i.e. network communication, while maintain the ability of
programmer to control over the communication behavior of
sensor node. The authors use a biological communication
mechanism, called pheromone, as the communication prim-
itive. A set of pheromone properties, i.e. type, strength,
source, and payload, and instructions, i.e. deposit and smell
is provided to application developer to be used as commu-
nication mechanism between sensor node. Different from
BiSNET/e which is designed base on biological system from
the bottom up, the pheromone concept in this work is not
properly integrated into the other part of sensor software
development. Hence, application developers have to deal
with two different levels of concept, a high level concept of



pheromone, and low level concept of sensor node program-
ming.

There are several research efforts to apply evolutionary al-
gorithm to sensor networks. Evolutionary algorithm is used
for network cluster-based routing [15, 12, 13, 6], data pro-
cessing [11], localization [24] and sensor node placement [10,
25]. In [15, 12, 13, 6], genetic algorithm is used to find a
set of cluster head which will be used as relaying point for
sending data form sensor nodes to base stations. Partic-
ularly, [6] claims that a multi-objective optimization using
genetic algorithm is used in their work; however, multiple
objectives employed in their work are combined into a sin-
gle fitness function. [11] uses genetic algorithm to analyze
sensor data, i.e. find approximate polynomial from partial
sensor data. [24, 10, 25] focus on using genetic algorithm
for spatial aspect of WSN, i.e., localization and optimized
sensor node placement. Most of the mentioned works as-
sume network to be static; thus, they can not perform well
in dynamic environment.

In [14, 20, 17], evolutionary multi-objective optimization
is used for finding optimal location of each sensor nodes in a
sensor network. Moreover, [18, 19] propose to use evolution-
ary multi-objective optimization for data routing in sensor
networks. In contrast with MONSOON, their optimization
process performs completely in a central server, which can
leads to scalability problem. MONSOON is carefully de-
signed to perform partially in central server and each sensor
nodes in order to minimize extra energy consumption and
be scalable.

A constraint-based multi-objective optimization is used in
[16] for routing in wireless sensor networks. The objectives
considered in this paper are such as distance to the desti-
nation. The constraints considers in the paper are such as
energy levels of sensor nodes along a route and hazardous
level of the route. Similar to MONSOON, the optimization
process in this work finds an optimal route for each sensor in
a decentralize manner. Each node can make their own deci-
sion which intermediate node it should forward the data to,
in order to send the data to a destination. The node makes
decision by applied a rule set provided by central server
to current property, e.g. energy level, of each neighbors.
In contrast with MONSOON, the central server cannot au-
tonomously improve the rule set based on current condition
of the sensor networks. Thus, the proposed framework in
this paper cannot adapt well to the changes in network con-
dition. Moreover, human administrators have to carefully
design the rule set in order to archive the required objec-
tives. MONSOON, on the other hand, can autonomously
archive the objectives without any human intervention.

6. CONCLUSION
This paper describes a biologically-inspired adaptation mech-

anism for WSNs. It allows WSN applications to autonomously
adapt to dynamics of the network (e.g., node/link failures,
base station failures and node addition) through evolution
and simultaneously satisfy conflicting objectives (e.g. suc-
cess rate, latency and energy consumption) in a self-organizing
manner. Thanks to simple biologically-inspired mechanisms,
the proposed mechanism is implemented lightweight.
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