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Abstract. This paper formulates a prioritized data gathering prob-
lem in noisy wireless sensor networks (WSNs) and solves the problem
with a noise-aware evolutionary multiobjective optimization algorithm
(EMOA). Unlike existing local search heuristics, the proposed algorithm
can seek the Pareto-optimal routing structures with respect to conflict-
ing optimization objectives. Simulation results demonstrate that the pro-
posed algorithm outperforms a traditional EMOA in a noisy WSN.
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1 Introduction
Data gathering is one of the most fundamental tasks in wireless sensor networks
(WSNs): collecting sensor data from all of, or a subset of, sensor nodes in the
network on a periodic or on-demand basis [1, 2]. It it known that a problem of
finding the optimal data gathering solution(s) is NP-complete [2]. This paper
focuses on a prioritized data gathering problem in multi-hop and semi-static
WSNs. The problem is to construct the routing structures for fixed-sized query
packets to visit a subset of nodes in the network, starting and ending at the
base station, transmit query packets through the constructed routing structures
to collect sensor data from visited nodes, and deliver collected data to the base
station. In this problem, different priorities are given to different nodes; higher
priorities indicate higher requirements for query packets to visit.

This paper describes a data gathering protocol, called DGP Boston (DGPB),
which uses source routing to seek the optimal routing structures for prioritized
data gathering in WSNs. DGPB is designed to make two key contributions.
First, DGPB seeks the Pareto-optimal routing structures with respect to mul-
tiple conflicting optimization objectives such as data yield, latency and energy
consumption. Since optimization objectives often conflict with each other in
WSNs [3], it is important to examine the optimal trade-offs (i.e., Pareto optima)
among those objectives. However, as discussed in Section 5, no existing data
gathering protocols do not study that. The second contribution of DGPB is that
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it considers noise in environmental and protocol parameters such as packet loss
rate and node priority. No existing data gathering protocols assume noise in their
parameters. (See Section 5.) This paper describes and evaluates an evolutionary
and noise-aware multiobjective optimization algorithm in DGPB.

2 Problem Statement

This paper uses the following notations to state a data gathering problem in
question. A WSN is considered as a graph G(N,L).

– N = {n0, n1, ..., nm} is a set of nodes in G, where n0 is the base station.
N ′ = N − {n0} is a set of m sensor nodes. This paper assumes semi-static
WSNs [4, 5]; nodes are stationary and |N | does not change dynamically.

– M ⊆ N ′ is a set of nodes that query packets gather data from. It is referred
as a measurement set. M is chosen manually or via techniques such as [6, 7].

– L = {(ni, nj)|ni, nj ∈ N ; i 6= j} is a set of links in G. A link is established
from ni to nj if ni can directly transmit a packet to nj without intermediate
nodes. Thus, nodes in G are not fully connected with L.

– rij is the packet loss rate on a link (ni, nj). Due to the asymmetric nature of
link quality, rij = pij×pji, where pij denotes the loss rate to transmit a packet
from ni to nj . tij = 1

(1−pij)×(1−pji) is the expected number of transmissions,

including transmission retries, to successfully deliver a packet on (ni, nj).
– GM (M,P ) ⊆ G is a graph that consists of M . P = {(ni, nj)|ni, nj ∈M ; i 6= j}

is a set of paths in GM . A path is a sequence of one or more links in L. It is
established as the minimum loss rate path from ni to nj if ni can transmit a
packet to nj through a single-hop or multi-hop path. Thus, nodes in GM are
fully connected with P .

– di is a demand (or priority) assigned to ni ∈M .
– g is the number of query packets used for data gathering. Each packet can

carry a limited size S of data due to the limitation of packet size. This is a
constraint on how many nodes a packet can collect data from.

– Rq is a route that a query packet q follows to gather data through the paths
in P . It is a sequence of nodes in M , starting and ending at n0. lRq is the
number of links in Rq. TRq

=
∑
n,n′∈Rq

tnn′ is the expected total number of

transmissions to route a packet in Rq. (n′ is the next hop node of the node n
in Rq.) R = {R1, R2, ..., Rq, ..., Rg} is a route set.

A data gathering problem this paper addresses is to find a set of Pareto-
optimal route sets that minimize the following objective functions:

1. Latency: indicates the time required for data gathering. It is computed as
max {TR1 , ..., TRq , ..., TRg}.

2. Per-demand energy consumption: indicates the amount of energy consumed

to collect a unit demand. It is computed as
∑

Ri∈R TRi/∑
Ri∈R

∑
j∈Ri

dj .

3. Per-hop packet loss rate: indicates the average packet loss rate in a route set.

It is computed as
∑

Ri∈R

∑
n,n′∈Ri

rn,n′/∑g
i=1 li

, where n′ is the next hop node
of the node n in Ri.
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3 DGP Boston

DGPB’s algorithmic structure follows NSGA-II, an existing evolutionary multi-
objective optimization algorithm [8]. Due to space limitation, this section focuses
on a set of extensions that DGPB makes on NSGA-II.

3.1 Individuals

In DGPB, each individual is a variable-length representation of packet routes as
shown in Fig. 1. It encodes the number of routes (i.e., the number of packets)
and the order of nodes visited by each packet.
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Fig. 1. An Example Individual

(a) 2-OPT (b) Partial swap (c) Merge shortest routes (d) Split longest route

Fig. 2. Mutation Operators

3.2 Crossover and Mutation Operators

BGPB adopts partially-mapped crossover (PMX) [9] as its crossover operator. It
also uses the following eight mutation operators. (See Fig. 2 for four of them.):

– Add : randomly chooses a node from the measurement set and inserts it to a
randomly-selected place in a randomly-selected route. This operator ensures
that the inserted node is not redundant with the other nodes in the route.

– Delete: removes a randomly-selected node from a randomly-selected route.
– Exchange: randomly chooses a node in a randomly-selected route and replaces

it with a node selected from the measurement set randomly. This operator
ensures that the new node is not redundant with the other nodes in the route.

– Swap: exchanges the positions of two randomly-selected nodes in a route,
which is also selected randomly.

– Inversion (2-OPT): randomly chooses two cut points in a randomly-selected
route and reverses the the order of nodes between the cut points.

– Partial swap: randomly selects a subsequence of nodes in each of randomly-
selected two routes, and swaps two subsequences between the two routes.

– Merge the shortest routes: identifies the two shortest routes and appends one
of them to the other.
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– Split the longest route: identifies the longest route and splits it to two routes
at a randomly-chosen point.

DGPB classifies these eight mutation operators to three categories. The first
category consists of Add, Delete and Exchange. They alter the nodes an individ-
ual visit. The second category consists of Swap, Partial swap and 2-OPT, which
alter the order of nodes that an individual visits. The remaining two operators
are in the third category. They alter the number of routes that an individual
have. These three categories have the same probably to be used. In each category,
mutation operators are selected randomly.

3.3 The α-Dominance Operator

As discussed in Section 2, BGPB considers noise in its objective functions. The
noise interferes with a dominance operator, which determines dominance rela-
tionships among individuals. For example, the operator may mistakenly judge
that an inferior individual dominates an superior one. Defects in a dominance
operator significantly degrades optimization performance [10].

To address this issue, DGPB replaces NSGA-II’s classical dominance oper-
ator with a new noise-aware operator, called the α-dominance operator. Given
objective value samples of two individuals, the α-dominance operator estimates
the impacts of noise on objective values and determines whether it is statistically
confident enough to judge a dominance relationship between the two individuals.

Individual A is said to α-dominate individual B (i.e., A �α B) iif:

1. A’s and B’s samples are classifiable with the confidence level of α, and
2. C(A,B) = 1 ∧ C(B,A) < 1.

In order to examine the first condition, the α-dominance operator classifies
A’s and B’s objective value samples with Support Vector Machine, and measures
a classification error (Step 1 in an example in Fig. 3). The error (e) is computed as
the ratio of the number of miss-classified samples to the total number of samples.
For evaluating confidence level (α) in the classification error, the α-dominance
operator computes the classification error’s confidence interval: eint = e±tα,n−1σ
where tα,n−1 denotes a single-tail t-distribution with α confidence level and n−1
degrees of freedom. n denotes the total number of samples. σ is the standard
deviation of e, which is approximated as σ ∼=

√
e
n . If eint is significant (i.e., if

eint does not span zero), the α-dominance operator cannot classify A’s and B’s
samples with the confidence level of α. Thus, the operator determines that A
and B do not α-dominate with each other (Step 2 in Fig. 3).

If eint is not significant (i.e., if eint spans zero), the α-dominance operator can
classify A’s and B’s samples with the confidence level of α. Thus, the operator
examines the aforementioned second condition with C-metric [11]: C(A,B) = |{b ∈
B | ∃a ∈ A : a � b}|/|B| where � denotes a classical notion of dominance [8]. A
sample a ∈ A is said to dominate a sample b ∈ B (i.e., a � b) iff a’s objective
values are superior than, or equal to, b’s in all objectives, and a’s objective values
are superior than b’s in at least one objective. C(A,B) denotes the fraction of
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B’s samples that at least one sample of A dominates. If C(A,B) = 1, all of B’s
samples are dominated by at least one sample of A. The α-dominance operator
determines A �α B if C(A,B) = 1 and C(B,A) < 1. If C(A,B) < 1 and
C(B,A) < 1, it determines neither A �α B nor B �α A. See Step 2 in Fig. 3.

Fig. 3 shows an example that determines the α-dominance relationship be-
tween two individuals, A and B, with two objectives, f1 and f2, to be minimized.
A and B have seven samples each. The first step is to classify these 14 samples
with SVM and compute eint. Suppose SVM produces a classification vector as
shown in Fig. 3. Two samples of B are miss-classified; e = 2

14 (0.143). Thus,

σ ∼=
√

0.143
14 = 0.1. Assuming α = 0.95, eint = 0.143±1.771∗0.1 = 0.143±0.1771.

Since eint spans zero, A’s and B’s samples are classifiable with the confi-
dence level of 95%. The second step is to compute C-metric: C(A,B) = 1 and
C(B,A) = 2/14 < 1 Therefore, the α-dominance operator determines A �α B.
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Fig. 3. An Example α-Dominance Operation

4 Preliminary Simulation Evaluation

This section evaluates DGPB, through simulations, in a WSN that have noise
in packet loss rate and demand. The highest demand (100) is given to an event
reporting node. Lower demands (85, 70 and 55) are given to the nodes that are
1-hop, 2-hops and 3-hopes away from the event reporting node. These nodes and
the event reporting node are included in the measurement set M (|M | = 79).
Table 1 shows a set of parameter values used in simulations. The α-dominance
operator performs C-support vector classification with a linear kernel in its SVM.

The noise on demands follows a uniform distribution [-50,50]. The noise on
packet loss rate is given based on an empirical experimental result in [4].

Table 2 compares DGPB with NSGA-II and four combinations of exist-
ing heuristics: nearest neighbor route construction (NN), 2-OPT local search
and Clarke-Wirght Savings algorithm (CWS). Performance metrics are the to-
tal number of data transmissions as well as the three objectives described in
Section 2. The average results indicate the average of 20 simulation runs. The
values in parentheses show standard deviations. Table 2 illustrates that DGPB
outperforms NSGA-II except for per-hop packet loss rate. It outperforms four
combinations of exiting heuristics in all performance metrics.
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Table 1. Parameter Values used in Simulations

Parameter Value Parameter Value

Observation area 200m×200m Population size 100
The number of nodes 150 Max # of generations 500
Communication range 30m Crossover rate 0.9

Base station (0,100) Mutation rate 0.4
Event reporting node (100, 100) Stopping criteria in SVM 1e−3

Max # of data stored in a packet 10 C in SVM 1
Packet loss rate on each link 0.05 # of samples in α-dominance 20

Table 2. Objective Values

Average Maximum Minimum

#Trans Obj1 Obj2 Obj3 #Trans Obj1 Obj2 Obj3 #Trans Obj1 Obj2 Obj3

NN 58.7(31.1) 12.71(2.01) 0.018(0.002) 0.371(0.017) 104.4 22.14 0.083 0.71 4.5 5.30 0.007 0.16

NN+2OPT 48.7(28.2) 12.19(1.09) 0.017(0.001) 0.277(0.016) 93.0 25.23 0.079 0.71 4.2 5.62 0.011 0.15

CWS+NN 64.2(32.4) 14.79(2.66) 0.031(0.002) 0.404(0.021) 108.8 24.65 0.084 0.83 10.5 4.36 0.014 0.20

CWS+NN

+2OPT

52.4(27.1) 13.85(2.31) 0.020(0.001) 0.375(0.018) 97.7 24.61 0.079 0.79 9.2 4.03 0.013 0.18

NSGA-II 5.18(1.54) 4.87(1.42) 0.019(0.008) 0.016(0.006) 7.92 7.92 0.004 0.057 2.26 2.26 0.013 0.001

DGPB 4.26(1.56) 3.75(1.09) 0.017(0.008) 0.052(0.002) 7.88 7.88 0.022 0.079 3.11 3.11 0.013 0.03

Obj1: Latency; Obj2: Per-demand energy consumption; Obj3: Per-hop packet loss rate

Table 3. Quality Indicators

Hyper
Volume

Scott’s
Spacing

U-
Measure

# of Non-dominated
Individuals

NSGA-II 0.53 0.381 0.72 49.2

DGPB 0.75 0.207 0.61 100

Table 3 compares the non-dominated individuals produced by NSGA-II and
DGPB. Hypervolume [11] indicates the optimality and spread of individuals in
the objective space. DGPB yields 42% greater volume than NSGA-II. Scott’s
Spacing [12] and U-measure [13] indicate the distribution of individuals in the
objective space. (A smaller value means that individuals are distributed more
evenly.) DGPB evolves individuals more evenly in the objective space than
NSGA-II. In 500 generations, DGPB evolves all 100 individuals to be non-
dominated, while NSGA-II evolves less than half of it. This means that DGPB
maintains a stronger evolution pressure to converge individuals. As demonstrated
in Table 3, DGPB outperforms NSGA-II in all comparison metrics.



Evolutionary and Noise-aware Data Gathering for Sensor Networks 7

5 Related Work

This work is an extension to [14], which formulates data gathering in WSNs as a
VRP and solves it with an existing heuristic algorithm (CWS). As shown in Ta-
ble 2, DGPB outperforms CWS-based algorithms. Moreover, DGPB considers
three conflicting optimization objectives, while [14] considers energy consump-
tion as an objective and latency as a constraint. [14] does not consider prioritized
data gathering in noisy WSNs.

Meliou el al. [2] formulate data gathering as a TSP and solve it with a TSP
approximation method. They consider a single optimization objective: energy
consumption. Prioritized data gathering in noisy WSNs is out of their scope.

Several evolutionary multiobjective optimization algorithms (EMOAs) exist
to solve VRPs. Ombuki et al. [15] study an EMOA for a VRP, and Tan et
al. [16] study an EMOA for a VRP with stochastic demands. Both work assume
fully-connected graphs. Since nodes in a WSN are often not fully-connected,
DGPB reduces a WSN to a fully-connected graph with the notion of shortest
paths. DGPB considers an extra stochastic (or noisy) parameter, packet loss
rate, which Tan et al. do not.

In the field of EMOAs, several existing dominance operators consider noise in
objective functions [17,18]; however, all of them assume particular noise distribu-
tions. For example, [19–21] assume normal distributions. [22] assumes a uniform
distribution. [23, 24] assume Poisson distributions. Given a noise distribution,
each of existing noise-aware dominance operators statistically estimates each in-
dividual’s objective value by collecting its samples. In contrast, the α-dominance
operator assumes no noise distributions a priori because it is not realistic to pre-
dict and model them in WSNs. Instead of estimating each individual’s objective
values, the α-dominance operator measures the effect of noise on objective value
samples and determines whether it is confident enough to compare individuals.

6 Conclusion

This paper proposes considers WSN application required to simultaneously min-
imize latency, energy consumption and per-hop packet loss rate in a noisy en-
vironment. A noisy-aware multiobjective evolutionary algorithm, NSGA-IIA, is
proposed and applied to the problem. Evolution results show that NSGA-IIA
can find better nondominated individuals in terms of convergence and diversity.
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