
Toward Sensor-Cloud Integration as a Service:
Optimizing Three-tier Communication in

Cloud-integrated Sensor Networks

Dũng H. Phan and Junichi Suzuki
Department of Computer Science

University of Massachusetts, Boston
Boston, MA, 02125-3393, USA
{phdung, jxs}@cs.umb.edu

Shingo Omura and Katsuya Oba
OGIS International, Inc.

San Mateo, CA 94402, USA
{omura, oba}@ogis-international.com

ABSTRACT
This paper proposes a cloud-integrated sensor networking
architecture, called Sensor-Cloud Integration Platform as a
Service (SC-iPaaS), which hosts virtualized sensors in clouds
and operates physical sensors through their virtual counter-
parts. SC-iPaaS performs push-pull hybrid communication
between three layers: cloud, edge and sensor layers. This pa-
per formulates an optimization problem for SC-iPaaS to seek
the optimal data transmission rates for individual nodes and
examines evolutionary optimization with respect to multiple
conflicting objectives subject to given constraints. Simula-
tion results show that multiobjective analysis is critical in
configuring and operating three-tier push-pull hybrid com-
munication in SC-iPaaS.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design; I.2.8 [Artificial Intelligence]:
Problem Solving, Control Methods, and Search—Heuristic
methods

General Terms
Design, Algorithms

Keywords
Wireless sensor networks, cloud computing, multiobjective
optimization, evolutionary algorithms

1. INTRODUCTION
The advances in minuscule sensor devices, mobile comput-

ing and cloud computing offer tremendous opportunities to
seamlessly integrate the physical world and the cyber space.
The notion of cyber-physical systems (CPSs) is aimed at
a computing paradigm to sense, understand, intervene in,

.

control and/or predict physical phenomena, events and pro-
cesses. Cloud-integrated CPS (CCPS) refers to virtually
representing physical system components (e.g., sensors, ac-
tuators, robots and other devices) in clouds, accessing (e.g.,
monitoring, actuating and navigating) those physical com-
ponents through their virtual representations, and process-
ing/managing the sheer amount of data collected from phys-
ical components in clouds in a scalable, on-demand, efficient
and/or reliable manner.

This paper proposes a CCPS architecture, called Sensor-
Cloud Integration Platform as a Service (SC-iPaaS), and ex-
amines communication optimization in SC-iPaaS. SC-iPaaS
is a three-tier architecture that seamlessly integrates the
sensor, edge and cloud layers. The sensor layer consists of
sensor nodes embedded in the physical environment. The
edge layer consists of sink nodes that collect sensor data
from sensor nodes in the physical environment. The cloud
layer consists of cloud computing environments that host
virtual sensors, which are virtualized counterparts (or soft-
ware counterparts) of physical sensors in the sensor layer.
Virtual sensors collect sensor data from sink nodes in the
edge layer and store those data for future use. Clouds also
host cloud applications, which obtain sensor data from vir-
tual sensors and aid users to monitor physical phenomena,
events and processes in the physical environment.

SC-iPaaS performs push-pull hybrid communication be-
tween its layers. Individual sensor nodes periodically trans-
mit (or push) sensor data to sink nodes, which in turn for-
ward (or push) incoming sensor data periodically to virtual
sensors. When a virtual sensor does not have sensor data
that a cloud application requires, it obtains (or pulls) that
data from a sink node or a sensor node. This push-pull com-
munication scheme is intended to make as much sensor data
as possible available for cloud applications by taking advan-
tage of push communication while allowing virtual sensors
to pull any missing data anytime in an on-demand manner.

In order to properly operate three-tier push-pull commu-
nication in SC-iPaaS, it is important to optimize various pa-
rameters, namely data transmission rate of each sensor node
and sink node. Therefore, this paper formulates a commu-
nication optimization problem in SC-iPaaS. It is to seek the
optimal data transmission rate for each sensor node and sink
node with respect to multiple optimization objectives such
as sensor data yield (sensor data availability) for cloud ap-
plications, bandwidth consumption between the cloud layer
and the edge layer and energy consumption of sensor nodes
in the sensor layer. This paper heuristically approach this

Sensor
node

Sink

Sensor network

Sensor Mgt.

......"

……"

App! App! App! App! ……"

Edge

Sensors

Cloud

Cloud
apps

Virtual
sensors

Push"

Push"

Pull"

Pull"

Communication!
Data Management!

Workflow!
Perf/Res Monitoring!

Res Provisioning!
Security & Privacy!

Cloud-based Mgt. Services

Virtual
sensor
node

Figure 1: A Push-Pull Hybrid Communication Architecture for Cloud-integrated Sensor Networks

multiobjective problem with an evolutionary optimization
algorithm. Simulations are carried out to examine Pareto-
optimal communication configurations (parameter settings)
against data request patterns placed by cloud applications.
Simulation results show that multiobjective analysis is crit-
ical in configuring and operating three-tier push-pull hybrid
communication in cloud-integrated sensor networks.

2. SC-IPAAS AND ITS APPLICATIONS
Figure 1 shows an architectural overview of SC-iPaaS. SC-

iPaaS consists of the following three tiers.
Sensor Layer: operates one or more wireless networks

of stationary sensor nodes embedded in the physical envi-
ronment. Each network is assumed to be heterogeneous; it
has different types of sensor devices such as air tempera-
ture sensors, humidity sensors and barometric pressure sen-
sors. Sensor nodes are battery-operated or solar-powered;
they have limited energy supplies. In each sensor network,
nodes form a particular topology (e.g., tree, star or mesh
topology). In Figure 1, sensor networks use a tree topology.
Nodes periodically read sensors and transmit (or push) sen-
sor data to a special node, called sink node, on a hop-by-hop
manner through a given network topology. Different sensor
nodes have different data transmission rates.

Edge Layer: is a collection of sink nodes, each of which
participates in a certain sensor network and receives sen-
sor data periodically from individual nodes in the network.
Each sink node stores incoming sensor data in its memory
space and then transmits (or pushes) them periodically to
the cloud layer. It maintains the mappings between physi-
cal sensors and virtual sensors. In other words, it knows the
origins and destinations of sensor data. Different sink nodes
have different data transmission rates. A sink node’s data
transmission rate can be different from the ones of sensor
nodes in the same network. Note that each sensor network
operates one or more sink nodes. In Figure 1, one sink node
is operated in each sensor network. Depending on applica-
tion domains, sink nodes may have limited energy supplies
through batteries and solar panels or they may have infinite

energy supplies.
In addition to pushing sensor data to a virtual sensor,

each sink node receives a “pull” request from a virtual sen-
sor when the virtual sensor does not have data that a cloud
application(s) requires (Figure 1). If the sink node has the
requested data in its memory, it returns that data. Oth-
erwise, it issues a pull request to a sensor node that is re-
sponsible for the requested data. Upon receiving the pull
request, the sensor node reads a sensor and returns sensor
data.

Cloud Layer: operates on one or more clouds to host
end-user applications and management services for the ap-
plications. Applications are operated on virtual machines in
clouds. Users are assumed to place continuous sensor data
queries on virtual sensors via cloud applications in order to
monitor the physical environment. If a virtual sensor al-
ready has data that an application queries, it returns that
data. If a query does not match, the virtual sensor issues
a pull request and sends it to a sink node. Each query is
assumed to have a relative time window within which an ap-
plication requires particular sensor data. While push com-
munication carries out one-way upstream travel of sensor
data, pull communication incurs a round trip for requesting
sensor data and receiving that data (Figure 1).

Cloud-based management services offer common function-
alities to implement and operate applications (Figure 1).
This paper focuses on the following two services.

• Sensor manager: virtualizes physical heterogeneous
sensors in a unified way by abstracting away their low-
level operational details. Cloud applications always
access physical sensors through virtual sensors; for ex-
ample, collecting sensor data with a pull request and
sending control signals (e.g., turning on/off sensors and
setting data transmission rates).

• Communication manager: is responsible for push-pull
hybrid communication between different layers. It is
assumed to operate on top of certain publish/subscribe
communication middleware such as TinyDDS [4]. A

key component in this manger is communication opti-
mizer, which this paper focuses on to seek the optimal
data transmission rates for sensor and sink nodes with
respect to multiple optimization objectives.

While SC-iPaaS can be effectively applicable to a wide
range of applications, this paper discusses two specific exam-
ple applications. The first example is a physiological moni-
toring application in pervasive healthcare for inpatients and
homebound patients [10,17]. This application assumes per-
patient wireless networks of in-body and/or on-body sensors
for, for example, heart rate, blood pressure, oxygen satura-
tion, body temperature, respiratory rate, blood coagulation
and galvanic skin response. Those sensors are wirelessly con-
nected to a dedicated per-patient device or a patient’s com-
puter (e.g., cell phone, tablet machine or laptop computer)
that serves as a sink node. Real-time physiological sensor
data are periodically pushed to virtual sensors in clouds so
that clinicians, hospital nurses and visiting nurses can share
the data for clinical observation and intervention. When an
anomaly is found in physiological data, clinical staff may
pull extra data in a higher temporal resolution to better
understand a patient’s medical condition. Given a sufficient
amount of data, they may perform clinical interventions (for
inpatients) or dispatch visiting nurses or ambulances (for
homebound patients).

The second example application of SC-iPaaS is in-situ en-
vironmental monitoring in public beaches [9,16,18]. A sensor
network is deployed in each beach area with water quality
sensors and other environmental sensors (e.g., bacteria, pH,
dissolved oxygen, water temperature, humidity, barometric
pressure, wind speed, wind direction and rain fall sensors).
A sink node(s) in each beach area periodically receive sen-
sor data from individual sensor nodes and pushes them to
virtual sensors. Users of cloud applications include local
government officials for public health, environmental qual-
ity, recreation and tourism. Cloud applications are intended
to indicate and localize episodic changes in, for example,
water quality, tidal level and climate at beaches. When cer-
tain environmental properties are detected as predictors of
unhealthy or dangerous conditions, applications allow local
government officials to pull extra sensor data in a higher spa-
tiotemporal resolution so that they can be better informed
to decide beach closures, signal warnings to the general pub-
lic and dispatch public safety officials to beaches.

3. COMMUNICATION OPTIMIZATION IN
SC-IPAAS: PROBLEM STATEMENT

This section describes an optimization problem to seek the
optimal data transmission rates for sensor and sink nodes
in SC-iPaaS. The following notations are used to state the
optimization problem.

• S = {s1, s2, ..., si, ..., sM} is the set of M sensor nodes
in sensor networks. νsi denotes the data transmission
rate for the i-th sensor node (si) to push sensor data
to its corresponding sink node. The rate is measured
as the number of sensor data transmitted per a unit
time. di indicates the size of single sensor data that
si generates and transmits to a sink node. hi denotes
the shortest logical distance (i.e., hop count) from si
to its corresponding sink node.

• νei denotes the data transmission rate for a sink node

to push sensor data receiving from the i-th sensor node (si).
νei and νsi are not necessarily equal.

• W indicates a relative time window that SC-iPaaS
considers to monitor sensor data requests from cloud
applications and compute its communication perfor-
mance with respect to optimization objectives.

• Ri = {ri1, ri2, ..., rij , ..., ri|Ri|} is the set of all sensor
data requests that cloud applications issue to the vir-
tual counterpart of si (s′i) during the time period of W
in the past. rij denotes the j-th request to the i-th vir-
tual sensor s′i. Each request is characterized by its time
stamp (tij) and time window (wij). It requests all sen-
sor data available in the time interval [tij − wij , tij].
If s′i has at least one data in [tij − wij , tij], it returns
those data to a cloud application. Otherwise, it issues
a pull request to a sink node.

• Re
i ⊂ Ri is the set of sensor data requests for which

the virtual sensor s′i has no data. This means that |Re
i |

indicates the number of pull requests that s′i issues to
a sink node. In other words, Ri \ Re

i indicates the
requests that s′i can fulfill.

• Rs
i ⊂ Re

i ⊂ Ri is the set of sensor data requests for
which the sink node for si do not have data. This
means that |Rs

i | indicates the number of pull requests
that the sink node issues to si. In other words, Re

i \Rs
i

indicates the requests that the sink node can fulfill.

This paper considers three optimization objectives: band-
width consumption between the edge and cloud layers (fB),
energy consumption of physical sensors (fE) and data yield
for cloud applications (fD). The first two objectives are to
be minimized while the third is to be maximized.

The bandwidth consumption objective (fB) is defined as
the total amount of data transmitted per a unit time be-
tween the edge and cloud layers. This objective impacts
the payment for bandwidth consumption based on a cloud
operator’s pay-per-use billing scheme. It also impacts the
lifetime of sink nodes if they are battery-operated or solar-
powered. fB is computed as follows.

fB =

M∑
i=1

(νei × di) +
1

W

M∑
i=1

∑
rij∈Re

i

(φij × di + dr) (1)

The first and second terms indicate the bandwidth con-
sumption by one-way push communication from the edge
layer to the cloud layer and two-way pull communication
between the cloud and edge layers, respectively. φij denotes
the number of sensor data that the request rij can collect
in the time interval [tij −wij , tij]. dr indicates the size of a
single pull request from the cloud layer to the edge layer. It
is constant for all sensor nodes.

The energy consumption objective (fE) is defined as the
total amount of energy that sensor nodes consume for data
transmissions during the time period of W . This objective
impacts the lifetime of sensor nodes and sensor networks. It
is computed as follows.

fE =

M∑
i=1

(hi×et×di×νsi×W)+

M∑
i=1

∑
rij∈Re

i

(
hi×et×(di+d

′
r)
)

(2)

The first and second terms indicate the energy consump-
tion by one-way push communication from the sensor layer
to the edge layer and two-way pull communication between
the edge layer and the sensor layer, respectively. et denotes
the amount of energy that a unit amount of data consumes
to travel from a sensor node to its neighboring node. d′r de-
notes the size of a single pull request from the edge layer to
the sensor layer. et and dr are constant for all sensor nodes.

The data yield objective (fY) is defined as the total amount
of data that cloud applications gather for their users. This
objective impacts the informedness and situation awareness
for application users. It is computed as follows.

fY =

M∑
i=1

∑
rij∈Ri

φij (3)

In SC-iPaaS, optimization objectives conflict with each
other. For example, the data yield objective conflicts with
the other two objectives. Maximizing data yield means in-
creasing data transmission rates for sensor and sink nodes.
This increases bandwidth consumption and energy consump-
tion. Similarly, the energy consumption objective conflicts
with the data yield objective. Minimizing energy consump-
tion means reducing data transmission rates for sensor nodes.
This can reduce data yield. Given these conflicting objec-
tives, this paper seeks the optimal trade-off (i.e., Pareto-
optimal) configurations for data transmission rates in SC-
iPaaS.

SC-iPaaS considers two constraints in its optimization
process. The first constraint (CE) is the upper limit for
energy consumption (fE):

fE < CE (4)

The constraint violation in energy consumption (gE) is
computed as follows where IE = 1 if fE > CE ; otherwise
IE = 0.

gE = IE × (fE − CE) (5)

The second constraint (CY) is the lower limit for data
yield (fY):

fY > CY (6)

The constraint violation in data yield (gY) is computed
as follows where IY = 1 if fY < CY ; otherwise IY = 0.

gY = IY × (CY − fY) (7)

4. COMMUNICATION OPTIMIZER IN SC-
IPAAS

SC-iPaaS leverages an evolutionary multiobjective opti-
mization algorithm (EMOA) for its communication opti-
mizer. The algorithm iteratively evolves the population of
solution candidates, called individuals, through several op-
erators (e.g., crossover, mutation and selection operators)
toward the Pareto-optimal solutions in the objective space.

The EMOA in SC-iPaaS is intended to search Pareto-
optimal solutions that are equally distributed in the objec-
tive space because there exits no single optimal solution un-
der conflicting objectives but rather a set of alternative so-
lutions of equivalent quality. Therefore, it can produce both

Algorithm 1 Optimization Process in SC-iPaaS

1: g = 0;
2: Pg = Randomly generated N individuals;
3: while g < MAX-GENERATION do
4: Og = ∅;
5: while |Og | < N do
6: p1 = tournament(Pg)
7: p2 = tournament(Pg)
8: if random() ≤ Pc then
9: {o1 , o2 } = crossover(p1 , p2)

10: end if
11: if (random() ≤ Pm) then
12: o1 = mutation(o1)
13: end if
14: if random() ≤ Pm then
15: o2 = mutation(o2)
16: end if
17: Og = {o1 , o2 } ∪ Og

18: end while
19: Rg = Pg ∪ Og

20: F = sortByDominationRanking(Rg)
21: Pg+1 = {∅}
22: i = 1
23: while |Pg+1|+ |Fi| ≤ N do
24: Pg+1 = Pg+1 ∪ Fi

25: i = i+ 1
26: end while
27: sortByCrowdingDistance(Fi)
28: Pg+1 = Pg+1 ∪ Fi[1 : (N − |Pg+1|)]
29: g = g + 1

30: end while

extreme data transmission configurations (e.g., the one ex-
hibiting high data yield and high energy consumption) and
balanced configurations (e.g., the one exhibiting intermediate
data yield and energy consumption) at the same time. Given
a set of heuristically-approximated Pareto-optimal solutions,
an SC-iPaaS operator can examine the trade-offs among
them and make a well-informed decision to choose one of
them, as the data transmission configuration, according to
his/her preferences and priorities. For example, an SC-iPaaS
operator can examine how he/she can data yield for energy
consumption and determine a particular data transmission
configuration that achieves a desirable/comfortable balance
of data yield and energy consumption.

In order to seek Pareto optimality, the notion of domi-
nance plays an important role [20]. An individual i is said
to dominate an individual j (denoted by i � j) if both of
the following conditions are hold.

• i’s objective values are superior than, or equal to, j’s
in all objectives.

• i’s objective values are superior than j’s in at least one
objectives.

In SC-iPaaS, each individual represents a particular data
transmission configuration, which is a set of data transmis-
sion rates for all sensor and sink nodes (Figure 2).

Figure 2: Individual Representation

Algorithm 1 shows the evolutionary optimization process
in SC-iPaaS. It follows the algorithmic structure in NSGA-

II [6]. At the 0-th generation, N individuals are randomly
generated as the initial population P0 (Line 2). Each of them
has randomly-selected data transmission rates for sensor and
sink nodes.

In each generation (g), two parent individuals (p1 and p2)
are selected from the current population Pg with binary
tournaments (Lines 6 and 7). A binary tournament ran-
domly takes two individuals from Pg, compares them based
on the notion of constrained dominance, and chooses a su-
perior one as a parent. Given the notion of constrained
dominance, an individual i is said to constrained-dominate
an individual j, if any of the following conditions is hold:

• i is feasible j is not.

• i and j are both feasible, and i dominates j in the
objective space.

• Both i and j are infeasible, but i dominates j in the
constraint space.

• Both i and j are infeasible and both of the following
conditions are hold

1. i’s constraint violation are less than, or equal to,
j’s in all constraints.

2. i’s constraint violation are less than j’s in at least
one constraint.

With the crossover rate Pc, two parents reproduce two
offspring through crossover (Lines 8 to 10). Then, mutation
occurs on each offspring (Lines 11 to 16). It assigns a new
randomly-chosen data transmission rate to each node with
the mutation rate Pm. The binary tournament, crossover
and mutation operators are executed repeatedly on Pg to
reproduce N offspring. The offspring (Og) are combined
with the parent population Pg to form Rg (Line 19).

Environmental selection follows reproduction. Best N in-
dividuals are selected from 2N individuals in Rg as the next
generation population (Pg+1). First, the individuals in Rg

are ranked based on the constrained dominance relation-
ships among them. Non-dominated individuals are on the
first rank. The i-th rank consists of the individuals domi-
nated only by the individuals on the (i−1)-th rank. Ranked
individuals are stored in F (Line 20). Fi contains the i-th
rank individuals.

Then, the individuals in F move to Pg+1 on a rank by
rank basis, starting with F1 (Lines 23 to 26). If the num-
ber of individuals in Pg+1 ∪ Fi is less than N , Fi moves to
Pg+1. Otherwise, a subset of Fi moves to Pg+1. The sub-
set is selected based on the crowding distance metric, which
measures the distribution (or diversity) of individuals in the
objective space [6] (Lines 27 and 28). The metric computes
the distance between two closest neighbors of an individ-
ual in each objective and sums up the distances associated
with all objectives. A higher crowding distance means that
an individual in question is more distant from its neigh-
boring individuals in the objective space. In Line 27, the
individuals in Fi are sorted from the one with the highest
crowding distance to the one with the lowest crowding dis-
tance. The individuals with higher crowding distance mea-
sures have higher chances to be selected to Pg+1 (Line 28).

5. SIMULATION EVALUATION
This section evaluates communication optimization in SC-

iPaaS through simulations.

0.75

0.8

0.85

0.9

0.95

HV

0.6

0.65

0.7

0.75

0 100 200 300 400 500

of generations

Figure 3: Changes in Hypervolume over Genera-
tions

5.1 Simulation Configurations
Simulations are configured with a set of parameters shown

in Table 1. A network of 50 sensor nodes is simulated to
connect to a cloud through a sink node. Cloud applications
issue 100,000 sensor data requests a day. Those requests are
uniformly distributed over 50 virtual sensors. Table 2 shows
three types of sensors used in simulations. Half of 50 sensors
are temperature sensors. The size of each temperature data
is 15 bytes. The time window for each temperature data re-
quest is randomly generated following a normal distribution
with the mean of 300 seconds and the standard deviation of
60 seconds.

Table 1: Simulation Configurations
Parameter Value Parameter Value

Total # of sensors (M) 50 Population size (N) 100
Total # of data requests 100,000 Crossover rate (Pc) 0.9
Simulation time (W) 1 day Mutation rate (Pm) 0.1

Table 2: Configurations for Sensors and Sensor Data
Requests
Sensor type Quantity Data size (di) Request time window (wij)

(Bytes) (Seconds)

Temperature 25 15 N (300, 602)
Acceleration 15 100 N (600, 1202)

Sound 10 128 N (1800, 3602)

5.2 Simulation Results
Figure 3 shows how individuals evolve as the number of

generations grows when no constraints are specified (CE =
∞ and CY = 0). It uses the hypervolume (HV) metric [24].
HV measures the union of volumes that non-dominated in-
dividuals dominates in the objective space. Thus, HV quan-
tifies the optimality and diversity of non-dominated individ-
uals. A higher HV indicates that non-dominated individuals
are closer to the Pareto-optimal front and more diverse in
the objective space. As shown in Figure 3, SC-iPaaS rapidly
increases its hypervolume measure in the first 10 generations
and converges around the 400th generation. At the last gen-
eration, all individuals are non-dominated in the population.

Figure 4 shows how the average and the best objective val-
ues in the population change over generations when no con-
straints are specified. As the number of generations grow,

30000

40000

50000

60000

Average fBf
B

f
B

0

10000

20000

0 100 200 300 400 500

Average fB

Best fB

of generations

f
B

f
B

(a) Bandwidth Consumption (fB)

300000

400000

500000

600000

700000

Average fB

Best fB

f
E

f

f
E

0

100000

200000

300000

0 100 200 300 400 500

Best fB

of generations

f
E

(b) Energy Consumption (fE)

3.00E-08

4.00E-08

5.00E-08

6.00E-08

Average fB

Best fB

1/f
Y

1/f

1/f
Y

of generations

0.00E+00

1.00E-08

2.00E-08

0 100 200 300 400 500

Best fB1/f
Y

(c) Data Yield (fY)

Figure 4: Average Objective Values over Generations

(a) Bandwidth Consumption and Energy
Consumption

6.00E-08

8.00E-08

1.00E-07

1.20E-07

1.40E-07

1/f
Y

0.00E+00

2.00E-08

4.00E-08

6.00E-08

0 10000 20000 30000 40000 50000 60000 70000

f
B

1/f
Y

(b) Data Yield and Bandwidth Consump-
tion

6.00E-08

8.00E-08

1.00E-07

1.20E-07

1.40E-07

1/f
Y

0.00E+00

2.00E-08

4.00E-08

6.00E-08

0 200000 400000 600000 800000 1000000

f
E

(c) Data Yield and Energy Consumption

Figure 5: Two-dimensional Objective Spaces

the average objective values of bandwidth consumption and
energy consumption decrease while the average data yield in-
creases. However, the best objective value clearly decreases
over generations in every objective. Figures 3 and 4 verify
that SC-iPaaS allows individuals to efficiently evolve and
improve their quality and diversity

Figure 5 shows two-dimensional objective spaces, each of
which plots individuals obtained at the last generation. (No
constraints are specified.) Figure 5(a) illustrates that band-
width consumption and energy consumption correlate. Fig-
ure 5(b) illustrates that data yield and bandwidth consump-
tion conflict with each other. According to Figure 5(c),
data yield and energy consumption conflict as well. SC-
iPaaS successfully reveals the relationships among optimiza-
tion objectives and clearly exhibits the trade-offs among
non-dominated individuals

Figure 6 shows two-dimensional objective spaces, each of
which plots individuals obtained at the last generation when
constraints are specified for data yield and energy consump-
tion (CE = 500, 000 and CY = 20, 000, 000). At the last
generation, all individuals are feasible; their objective val-
ues are below given constraint values. In comparison with
Figure 5, Figure 6 demonstrates that SC-iPaaS effectively
optimizes data transmission configurations subject to given
constraints.

Figure 7 shows three-dimensional objective spaces that
plot individuals obtained at the last generation with and
without constraints. At the last generation, all individuals
are non-dominated with each other in both cases. When

constraints are given, all individuals are feasible at the last
generation. As Figure 7 illustrates, SC-iPaaS evolves indi-
viduals in different ways with and without constraints and
successfully obtain feasible individuals when constraints are
specified.

6. RELATED WORK
Various architectures and research tools have been pro-

posed for cloud-integrated sensor networks [1, 3–5, 7, 8, 11,
19, 23]. Hassan et al. [11], Aberer et al. [1], Shneidman et
al. [8,19] and Boonma et al. [3,4] assume three-tier architec-
tures similar to SC-iPaaS and investigate publish/subscribe
communication between the edge layer to the cloud layer.
Their focus is placed on push communication. In contrast,
SC-iPaaS investigates push-pull hybrid communication be-
tween the sensor layer and the cloud layer through the edge
layer. Fortino et al. study a three-tier architecture to in-
tegrate body area networks with clouds [5, 7]. Yuriyama et
al. propose a two-tier architecture that consists of the sen-
sor and cloud layers [23]. The architectures proposed by
Fortino et al. and Yuriyama et al. are similar to SC-iPaaS
in that they leverage the notion of virtual sensors. However,
they do not consider push-pull (nor publish/subscribe) com-
munication. All the above-mentioned work do not consider
communication optimization as SC-iPaaS does.

Push-pull hybrid communication has been studied well in
sensor networks [2, 12–15, 21]. However, few attempts have
been made to investigate it between the edge and cloud

300000

400000

500000

600000

f
E

C
E
=500,000

0

100000

200000

0 10000 20000 30000 40000 50000 60000 70000

f
B

(a) Bandwidth Consumption and Energy
Consumption

3.00E-08

4.00E-08

5.00E-08

6.00E-08

1/f
Y

C
Y
=20,000,000

0.00E+00

1.00E-08

2.00E-08

0 20000 40000 60000 80000
f
B

(b) Data Yield and Bandwidth Consump-
tion

3.00E-08

4.00E-08

5.00E-08

6.00E-08

C
Y
=20,000,000

1/f
Y

0.00E+00

1.00E-08

2.00E-08

0 100000 200000 300000 400000 500000 600000

C
E
=
5
0
0
,0
0
0

f
E

(c) Data Yield and Energy Consumption

Figure 6: Two-dimensional Objective Space (Data Yield and Energy Consumption) with Two Constraints

(a) Without Constraints (CE =∞ and CY = 0) (b) With Constraints (CE = 500, 000 and CY =
20, 000, 000)

Figure 7: Three-dimensional Objective Spaces

layers in the context of cloud-integrated sensor networks.
Unlike existing relevant work, this paper formulates an op-
timization problem with cloud-specific optimization objec-
tives as well as the ones in sensor networks and examine
sensor-to-cloud communication optimization.

Xu et al. propose a three-tier architecture called CEB
(Cloud, Edge and Beneath), which is similar to SC-iPaaS,
and optimize data transmission rates between layers [22].
CEB runs two optimization algorithms collaboratively: OPT-
1 and OPT-2, which optimize data transmission rates be-
tween the cloud and edge layers and between the edge and
sensor layers, respectively. Optimization is carried out on
a sensor node by sensor node basis with respect to a single
objective: energy consumption of sensor nodes. In contrast,
SC-iPaaS runs a single optimization algorithm for the entire
group of sensor nodes and sink nodes simultaneously with re-
spect to multiple conflicting objectives. SC-iPaaS assumes
sensor data requests with time windows to heterogeneous
sensor networks while CEB assumes requests without time
windows to homogeneous networks.

7. CONCLUSIONS
This paper proposes a cloud-integrated sensor networking

architecture, called SC-iPaaS, which hosts virtualized sen-
sors in clouds and operates physical sensors through their

virtual counterparts. SC-iPaaS performs push-pull hybrid
communication between three layers: cloud, edge and sensor
layers. This paper formulates an optimization problem for
SC-iPaaS to seek the optimal data transmission configura-
tions and approaches the problem with an evolutionary mul-
tiobjective optimization algorithm. SC-iPaaS successfully
optimizes data transmission configurations with respect to
multiple objectives (data yield, bandwidth consumption and
energy consumption) subject to given constraints. It also re-
veals the relationships among objectives and clearly exhibits
the trade-offs among different data transmission configura-
tions.

8. REFERENCES
[1] K. Aberer, M. Hauswirth, and A. Salehi.

Infrastructure for data processing in large-scale
interconnected sensor networks. In Proc. the 8th IEEE
Int’l Conference on Mobile Data Management, 2007.

[2] P. Boonma, Q. Han, and J. Suzuki. Leveraging
biologically-inspired mobile agents supporting
composite needs of reliability and timeliness in sensor
applications. In Proc. IEEE Int’l Conf. on Frontiers in
the Convergence of Biosci. and Info. Tech., 2007.

[3] P. Boonma and J. Suzuki. Toward interoperable
publish/subscribe communication between wireless

sensor networks and access networks. In Proc. IEEE
Int’l Workshop on Information Retrieval in Sensor
Networks, 2009.

[4] P. Boonma and J. Suzuki. TinyDDS: An interoperable
and configurable publish/subscribe middleware for
wireless sensor networks. In A. Hinze and
A. Buchmann, editors, Principles and Apps. of Dist.
Event-Based Systems, chapter 9. IGI Global, 2010.

[5] A. Cuzzocrea, G. Fortino, and O. Rana. Managing
data and processes in cloud-enabled large-scale sensor
networks: State-of-the-art and future research
directions.

[6] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A
fast elitist non-dominated sorting genetic algorithm
for multi-objective optimization:NSGA-II. In Proc. of
Int’l Conference on Parallel Problem Solving from
Nature, 2001.

[7] G. Fortino, M. Pathan, and G. D. Fatta. BodyCloud:
Integration of cloud computing and body sensor
networks. In Proc. IEEE Int’l Conference on Cloud
Computing Technology and Science, 2012.

[8] M. Gaynor, M. Welsh, S. Moulton, A. Rowan,
E. LaCombe, and J. Wynne. Integrating wireless
sensor networks with the grid. IEEE Internet
Computing, July/August 2004.

[9] J. Goldman, N. Ramanathan, R. Ambrose, D. A.
Caron, D. Estrin, J. C. Fisher, R. Gilbert, M. H.
Hansen, T. C. Harmon, J. Jay, W. J. Kaiser, G. S.
Sukhatme, and Y.-C. Tai. Distributed sensing systems
for water quality assessment and management.
Technical report, Woodrow Wilson Int’l Center for
Scholars, 2007.

[10] Y. Hao and R. Foster. Wireless body sensor networks
for health-monitoring applications. Physiological
Measurement, 29(11), 2008.

[11] M. M. Hassan, B. Song, and E.-N. Huh. A framework
of sensor-cloud integration opportunities and
challenges. In Proc. the 3rd ACM Int’l Conference on
Ubiquitous Info. Mgt. and Comm., 2009.

[12] S. Kapadia and B. Krishnamachari. Comparative
analysis of push-pull query strategies for wireless
sensor networks. In Proc. International Conference on
Distributed Computing in Sensor Systems, 2006.

[13] W. C. Lee, M. Wu, J. Xu, and X. Tang. Monitoring
top-k query in wireless sensor networks. In Proc. IEEE
International Conference on Data Engineering, 2006.

[14] M. Li, D. Ganesan, and P. Shenoy. PRESTO:
Feedback-driven data management in sensor networks.
In Proc. USENIX Symposium on Networked Systems
Design and Implementation, 2006.

[15] W. Liu, Y. Zhang, W. Lou, and Y. Fang. Managing
wireless sensor networks with supply chain strategy. In
Proc. Int’l Conference on Quality of Service in
Heterogeneous Wired/Wireless Networks, 2004.

[16] B. O’Flynn, F. Martinez-Catala, S. Harte,
C. O’Mathuna, J. Cleary, C. Slater, F. Regan,
D. Diamond, and H. Murphy. SmartCoast: A wireless
sensor network for water quality monitoring. In Proc.
IEEE Conference on Local Computer Networks, 2007.

[17] S. Patel, H. Park, P. Bonato, L. Chan, and
M. Rodgers. A review of wearable sensors and systems
with application in rehabilitation. Journal of

Neuroengineering and Rehabilitation, 9(21), 2012.

[18] L. A. Seders, C. A. Shea, M. D. Lemmon, P. A.
Maurice, and J. W. Talley. LakeNet: An integrated
sensor network for environmental sensing in lakes.
Environmental Engineering Science, 24(2), 2007.

[19] J. Shneidman, P. Pietzuch, J. Ledlie,
M. Roussopoulos, M. Seltzer, and M. Welsh.
Hourglass: An infrastructure for connecting sensor
networks and applications. Technical report, Harvard
University, TR-21-04, 2004.

[20] N. Srinivas and K. Deb. Multiobjective function
optimization using nondominated sorting genetic
algorithms. Evol. Computat., 2(3), 1995.

[21] H. Wada, P. Boonma, and J. Suzuki. Chronus: A
spatiotemporal macroprogramming language for
autonomic wireless sensor networks. In N. Agoulmine,
editor, Autonomic Network Mgt. Principles: From
Concepts to Applications, chapter 8. Elsevier, 2010.

[22] Y. Xu, S. Helal, M. Thai, and M. Scmalz. Optimizing
push/pull envelopes for energy-efficient cloud-sensor
systems. In Proc. the 14th ACM Int’l Conference on
Modeling, Analysis and Simulation of Wireless and
Mobile Systems, 2011.

[23] M. Yuriyama and T. Kushida. Sensor-cloud
infrastructure - physical sensor management with
virtualized sensors on cloud computing. In Proc. the
13th Int’l Conf. on Network-Based Info. Sys., 2010.

[24] E. Zitzler and L. Thiele. Multiobjective optimization
using evolutionary algorithms: A comparative study.
In Proc. Int’l Conf. on Parallel Problem Solving from
Nature, 1998.

