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ABSTRACT
This paper proposes and evaluates an optimizer for neuron-
based body-area nanonetworks (BANNs). The proposed op-
timizer leverages an evolutionary algorithm to seek the op-
timal trade-off between communication latency and robust-
ness in TDMA-based neuronal signaling. Simulation results
demonstrate that the proposed optimizer efficiently obtains
quality solutions and multiobjective analysis is critical in
configuring neuron-based BANNs.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols; C.3 [Special-purpose and Application-based
Systems]: Signal processing systems; I.2.8 [Artificial In-
telligence]: Problem Solving, Control Methods, and Search—
Heuristic methods

General Terms
Algorithms

Keywords
Molecular communication, Neuronal networks, TDMA schedul-
ing, Evolutionary multiobjective optimization algorithms

1. INTRODUCTION
Molecular communication is a communication paradigm

that utilizes molecules as a communication medium between
nanomachines. Nanomachines are nanoscale devices that
perform simple computation, sensing and/or actuation tasks [18].
They may be man-made devices built in the top-down ap-
proach, downscaling the current microelectronic and micro-
electro-mechanical technologies or in the bottom-up approach,
assembling synthesized nanomaterials such as graphene nano
ribbons and carbon nanotubes [1]. Alternatively, nanoma-
chines may be bio-hybrid, integrating man-made nanostruc-
tures with biological components such as DNA strands, an-
tibodies and molecular motors [1]. Due to its advantages

.

such as inherent nanometer scale, biocompatibility and en-
ergy efficiency [6], a key application domain of molecular
communication is body area nanonetworks (BANNs), where
nanomachines are networked through molecular communi-
cation to perform their tasks in the body for biomedical and
prosthetic purposes (e.g., vital information sensing, targeted
drug release and neural signal augmentation) [3].

An approach to BANNs is to utilize neurons as a pri-
mary communication component [4,19,20]. A neuron-based
BANN consists of a set of nanomachines and a network of
neurons that are artificially formed into a particular topol-
ogy. It allows nanomachines to interface (i.e., activate and
deactivate) neurons and communicate to other nanomachines
with electrochemical signals through a chain of neurons.

This paper focuses on a communication protocol frame-
work, called Neuronal TDMA [20], which performs single-
bit Time Division Multiple Access (TDMA) scheduling for
neuron-based BANNs. Neuronal TDMA allows nanoma-
chines to multiplex and parallelize neuronal signaling while
avoiding signal interference to ensure that signals reach the
destination. This paper proposes and evaluates a particu-
lar optimizer for Neuronal TDMA. The proposed optimizer
seeks the optimal signaling schedules (i.e., which neurons to
activate and when to activate them to trigger signal trans-
missions) for nanomachines with respect to communication
latency and robustness. Communication robustness refers
to the sensitivity of a signaling schedule to environmental
noise that can cause signal interference.

Latency and robustness conflict with each other in neu-
ronal signaling. For example, improving (i.e., decreasing) la-
tency often means improving throughput in a neuronal net-
work by increasing the degree of multiplexing. This can de-
grade robustness because a highly-multiplexed network has a
higher risk of signal interference due to environmental noise.
Conversely, improving robustness often means multiplexing
neuronal signals less often. This can degrade latency because
a rarely-multiplexed network tends to be low-throughput.

A goal of the proposed optimizer in Neuronal TDMA is
to reveal the optimal trade-offs between communication la-
tency and robustness subject to given constraints. Since
there exists no single optimal solution (TDMA schedule)
under conflicting objectives but rather a set of alternative
solutions of equivalent quality, the proposed optimizer is de-
signed to seek Pareto-optimal solutions that are distributed
well in the objective space. Therefore, it can produce both
extreme TDMA schedules (e.g., the one yielding low latency
and low robustness) and balanced schedules (e.g., the one
yielding moderate latency and robustness) at the same time.



Given a set of heuristically-approximated Pareto-optimal
TDMA schedules, the proposed optimizer allows the BANN
designer to examine the trade-offs among them and make
a well-informed decision to choose one of them, as the best
TDMA schedule, according to his/her preferences and pri-
orities. For example, the BANN designer can examine how
he/she can trade (or sacrifice) latency for robustness and
determine a particular TDMA schedule that yields a desir-
able/comfortable balance between latency and robustness.

Simulation evaluation results show that the proposed op-
timizer in Neuronal TDMA efficiently obtains quality solu-
tions with acceptable computational costs and verify mul-
tiobjective analysis is critical in configuring and operating
neuron-based BANNs.

2. BACKGROUND
This section describes the structural and behavioral prop-

erties of neurons. Neurons are a fundamental component of
the nervous system, which includes the brain and the spinal
cord. They are electrically excitable cells that process and
transmit information via electrical and chemical signaling.

The structure of a neuron consists of a cell body (or soma),
dendrites and an axon (Figure 1). The soma is the central
part of a neuron. It can vary from 4 to 100 micrometers
in diameter. Dendrites are thin structures that arise from
the soma. They form a complex “dendritic tree” that ex-
tends the farthest branch a few hundred micrometers from
the soma. Dendrites are where the majority of inputs to a
neuron occur. An axon is a cellular extension that arises
from the soma. It branches before it terminates and travels
through the body in bundles called nerves. Its length can
be over one meter in the human nerve that arises from the
spinal cord to a toe.

Neurons are connected with each other to form a net-
work(s). Neurons communicate with others via synapses,
each of which is a membrane-to-membrane junction between
two neurons. A synapse contains molecular machinery that
allows a (presynaptic) neuron to transmit a chemical sig-
nal to another (postsynaptic) neuron. In general, signals
are transmitted from the axon of a presynaptic neuron to a
dendrite of a presynaptic neuron. An axon transmits an out-
put signal to a postsynaptic neuron, and a dendrite receives
an input signal from a presynaptic neuron.

Presynaptic and postsynaptic neurons maintain voltage
gradients across their membranes by means of voltage-gated
ion channels, which are embedded in the presynaptic mem-
brane to generate the differences between intracellular and
extracellular concentration of ions (e.g., Ca2+) [17]. Changes
in the cross-membrane ion concentration (i.e., voltage) can
alter the function of ion channels. If the concentration (i.e.,
voltage) changes by a large enough amount (e.g., approx-
imately 80 mV in a giant squid), ion channels initiate a
voltage-dependent process; they pump extracellular ions in-
ward. Upon the increase in intracellular ion concentration,
the presynaptic neuron releases a chemical called a neuro-
transmitter (e.g., acetylcholine (ACh)), which travels through
the synapse from the presynaptic neuron’s axon terminal to
the postsynaptic neuron’s dendrite. The neurotransmitter
electrically excites the postsynaptic neuron, and the neuron
generates an electrical pulse called an action potential. This
signal travels rapidly along the neuron’s axon and activates
synaptic connections (i.e., opens ion channels) when it ar-
rives at the axon’s terminals. This way, an action potential
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Figure 1: The structure of neurons
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Figure 2: Intracellular Ca2+ concentration

triggers cascading neuron-to-neuron communication.
Figure 2 shows how Ca2+ concentration changes in a neu-

ron. When the concentration peaks, the neuron releases
a neurotransmitter to trigger an action potential. Upon a
neurotransmitter release, the neuron goes into a refractory
period (Tr in Figure 2), which is the time required for the
neuron to replenish its internal Ca2+ store. During Tr, it
cannot process any incoming signals. The refractory period
is approximately two milliseconds in a giant squid.

3. RELATED WORK
There exist two major thrusts in communication research

for body area nanonetworks (BANNs). One thrust is lever-
aging electromagnetic terahertz communication with, for ex-
ample, graphene-based nanoscale antennas [2]. The other is
molecular communication, which this paper focuses on. In
general, molecular communication maintains several advan-
tages over electromagnetic communication such as biocom-
patibility and energy efficiency [3, 6].

Compared with other molecular communication approaches
(e.g., molecular motors [12], calcium signaling [14] and bac-
teria communication [10]), neuron-based communication has
such advantages as long distance coverage, high speed sig-
naling (up to 90 m/s [8]) and low attenuation in signaling [6].

Balasubramaniam et al. first examined TDMA communi-
cation for neuronal signaling [4]. Neuronal TDMA extended
it with a multiobjective optimization algorithm that consid-
ers communication performance objectives such as signaling
yield, fairness and latency [20]. This paper extends Neu-
ronal TDMA by analyzing the optimal trade-offs between
communication performance (latency) and robustness.

Tezcan et al. address communication robustness in TDMA-
based neural signaling by proposing a signal buffering mech-
anism with neural delay lines, which parallel fiber delay lines
in optical network switching. The proposed optimizer in
this paper is similar to their mechanism in that both aim to
avoid signal interference. However, this paper addresses ro-
bustness in the context of optimizing TDMA schedules while
Tezcan et al. do not consider TDMA scheduling.



4. NEURON-BASED BODY AREA NANONET-
WORKS (BANNS)

This paper assumes neural signaling in a network of natu-
ral neurons that are artificially grown and formed into par-
ticular topology patterns. This assumption is made upon
numerous research efforts to grow neurons on substrates
(e.g., [15]) and design topologically-specific neuronal net-
works (e.g., [9, 13,21]).

Figure 3 illustrates an example neuron-based BANN. It
contains an artificially-grown neuronal network and several
nanomachines such as sensors and a sink. Sensors use neu-
ronal signaling to transmit sensor data to the sink, which
might work as an actuator or transducer. As potential ap-
plications, prosthetic devices and medical rehabilitation de-
vices could leverage neuron-based BANNs to better perform
sensing, transducing and actuation tasks in the body.

This paper assumes that nanomachines (e.g., sensors) in-
teract with neuronal networks in a non-invasive manner.
This means that it is not required to insert carbon nan-
otubes into neurons so that nanomachines can trigger sig-
naling. Nanomachines may use a neurointerface based on
chemical agents (e.g., acetylcholine and mecamylamine [4])
or light [7].
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Figure 3: An Example Neuron-based BANN

5. NEURONAL TDMA
Neuronal TDMA performs a single-bit TDMA communi-

cation that periodically assigns a time slot to each sensor.
Sensors fire neurons, one after the other, each using its own
time slot. This allows multiple sensors to transmit signals to
the sink through the shared neuronal network. Each sensor
transmits a single signal (a single bit) within a single time
slot. This single-bit-per-slot design is based on two assump-
tions: (1) a signal (i.e., action potential) is interpreted with
two levels of amplitudes, which represent 0 and 1, and (2)
after a signal transmission, a neuron goes into a refractory
period (waiting/sleeping period).

An important goal of Neuronal TDMA is to avoid sig-
nal interference, which occurs when multiple signals fire the
same neuron at the same time and leads to corruption of
transmitted sensor data at the sink. Signals can easily inter-
fere with each other if sensors fire their neighboring neurons
randomly. Neuronal TDMA is intended to eliminate signal
interference by scheduling which sensors fire which neurons
with respect to time. An optimizer in Neuronal TDMA seeks
the optimal TDMA schedules for a set of sensors in a given
neuronal network.

Figure 4 shows an example body area nanonetwork (BANN)
that contains four nanomachines (three sensors and a sink)
and a network of five neurons (n1 to n5). Figure 5 illustrates
an example TDMA schedule for those sensors to fire neurons.

The scheduling cycle period lasts 6 time slots (Ts = 5). The
sensor s1 fires the neuron n4 to initiate signaling in the first
time slot T1. The signal travels through n5 in the next time
slot T2 to reach the sink. The sensor s2 transmits a signal
on n3 in T2. During T2, two signals travel in the neuronal
network in parallel. The duration of each time slot must be
equal to, or longer than, the refractory period Tr (Figure 2).
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Figure 4: An Example Neuron-based BANN
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Figure 5: An Example TDMA Schedule

5.1 Scheduling Problem in Neuronal TDMA
The scheduling problem in Neuronal TDMA is defined as

an optimization problem where a neuron-based BANN con-
tains M sensors, S = {s1, s2, ..., si, ..., sM}, and N neurons,
N = {n1, n2, ..., nj , ..., nN}.

The proposed optimizer considers two optimization con-
straints. The first constraint enforces that at most one signal
can pass through each neuron in a single time slot. (Other-
wise, signal interference occurs.) The second constraint en-
forces each sensor transmits one signal during the scheduling
cycle Ts. A TDMA schedule is said to be feasible if it never
violates constraints. On the contrary, it is said to be infea-
sible if it violates any of these two constraints. An example
TDMA schedule in Figure 5 is feasible.

The proposed optimizer considers two optimization ob-
jectives: (1) communication latency and (2) communication
robustness. Latency and robustness are to be minimized
and maximized, respectively.

Communication latency (fL) indicates how soon the sink
receives all signals from all of M sensors. It is computed as
follows.

fL = maxsi∈S tsia (1)

tsia denotes the arrival time at which the sink receives a
signal that si transmits. fL determines the scheduling cycle
period Ts (Ts = fL). In Figure 5, fL = 5.

Communication robustness (fR) indicates the probability
that signals do not interfere with each other on shared neu-

rons N
′

= {n
′
1, n

′
2, ..., n

′
k, ..., n

′
K} ∈ N . Shared neurons are

the neurons that sensors share to transmit their signals to
the sink. In Figure 5, n2 and n5 are shared neurons. (s2



and s3 share n2. s1, s2 and s3 share n5.) Higher robustness
means lower chances of signal interference that can occur
due to variances of signal transmission speed in a neuron
even if the one-signal-per-slot constraint (see above) is sat-
isfied. In Figure 5, s2’s signal travels on n2 in T3, and s3’s
signal travels on n2 in T4. This signaling schedule satisfies
the one-signal-per-slot constraint; however, the two signals
can interfere if s2’s signal arrives at n2 during T4 due to vari-
ances signal transmission speed in n2 and/or if s3’s signal
arrives at n2 in T3 due to signaling speed variances in n1.

A major contributor to the variances of signal transmis-
sion speed is synaptic delay, which is the interval between the
arrival of an action potential at a presynaptic axon terminal
and the start of a postsynaptic action potential. This inter-
val is the time required for a neurotransmitter to be released
from a presynaptic membrane, diffuse across the synaptic
gap and bind to a receptor site on the post-synaptic mem-
brane. It is known that a synaptic delay varies from 0.3−0.5
milliseconds to several milliseconds.

Figure 6 shows a statistical model to determine the prob-
ability of signal interference. Figure 6(a) shows two signals

from s1 and s2 and their expected arrival times at n
′
k (t

nk
si

and t
nk
sj ). T represents the interval between the two arrival

times. Arrival times follow a normal distribution with a

standard deviation of σ. Figure 6(b) depicts N(t
n
′
k

si , σ
2) −

N(t
n
′
k

sj , σ
2), which illustrates the probability that two dis-

tributions (N(t
n
′
k

si , σ
2) and N(t

n
′
k

sj )) overlap. F is the cu-

mulative distribution function for N(t
n
′
k

si , σ
2) − N(t

n
′
k

sj , σ
2).

F (0)
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si,sj denotes the probability that two signals from s1
and s2 do not interfere.
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Figure 6: Robustness in Neural Signaling

The communication robustness objective (fR) is computed
as follows by generalizing the model described in Figure 6.

fR = −
M∑
i=1

M∑
j=1

K∑
k=1

(
F (0)

n
′
k

si,sj × Is
)

where F (0)
n
′
k

si,sj =
1

2

(
1 +

1√
π

∫ T
2σ

− T
2σ

e−x2

dx

) (2)

Note that Is = 1 if t
nk
si > t

nk
sj ; otherwise, Is = 0.

5.2 The Proposed Optimizer in Neuronal TDMA
The proposed optimizer in Neuronal TDMA leverages an

evolutionary multiobjective optimization algorithm (EMOA)
to solve its scheduling optimization problem. The algo-
rithm iteratively evolves the population of solution candi-
dates, called individuals, through several operators (e.g.,
crossover, mutation and selection operators) toward the Pareto-
optimal solutions in the objective space.

In order to seek Pareto optimality, the notion of domi-
nance plays an important role [16]. An individual i is said
to dominate an individual j if both of the following condi-
tions are hold.

• i’s objective values are superior than, or equal to, j’s
in all objectives.

• i’s objective values are superior than j’s in at least one
objectives.

In Neuronal TDMA, each individual represents a particu-
lar TDMA schedule for M sensors. Figure 7 shows the struc-
ture of an example individual, which represents the schedule
shown in Figure 5. In this example, the first sensor, s1, fires
its neighboring neuron, n4, in the first time slot T1. Simi-
larly, s2 and s3 fire their neighboring neurons (n2 and n1)
in T2 and T3, respectively.

1" 0" 0" 0" 0"

0" 1" 0" 0" 0"

0" 0" 1" 0" 0"
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Figure 7: Individual Representation

Algorithm 1 shows how the proposed optimizer works. It
follows the algorithmic structure in NSGA-II [5]. At the 0-
th generation, N individuals are randomly generated as the
initial population P0 (Line 2).

In each generation (g), two parent individuals (p1 and p2)
are selected from the current population Pg with binary
tournaments (Lines 6 and 7). A binary tournament ran-
domly takes two individuals from Pg, compares them based
on the notion of dominance, and chooses a superior one as a
parent. With the crossover rate Pc, two parents reproduce
two offspring through crossover (Lines 8 to 10). Then, muta-
tion occurs on each offspring (Lines 11 to 16). It randomly
alters a neuron-firing pattern with the mutation rate Pm.
The binary tournament, crossover and mutation operators
are executed repeatedly on Pg to reproduceN offspring. The
offspring (Og) are combined with the parent population Pg

to form Rg (Line 19).



Algorithm 1 Optimization Process

1: g = 0;
2: Pg = Randomly generated N individuals;
3: while g < Gmax do
4: Og = ∅;
5: while |Og | < N do
6: p1 = tournament(Pg)
7: p2 = tournament(Pg)
8: if random() ≤ Pc then
9: {o1 , o2 } = crossover(p1 , p2 )

10: end if
11: if (random() ≤ Pm) then
12: o1 = mutation(o1 )
13: end if
14: if random() ≤ Pm then
15: o2 = mutation(o2 )
16: end if
17: Og = {o1 , o2 } ∪ Og

18: end while
19: Rg = Pg ∪ Og

20: F = sortByDominationRanking(Rg)
21: Pg+1 = {∅}
22: i = 1
23: while |Pg+1|+ |Fi| ≤ N do
24: Pg+1 = Pg+1 ∪ Fi

25: i = i+ 1
26: end while
27: sortByCrowdingDistance(Fi)
28: Pg+1 = Pg+1 ∪ Fi[1 : (N − |Pg+1|)]
29: g = g + 1

30: end while

Environmental selection follows reproduction. Best N
individuals are selected from 2N individuals in Rg as the
next generation population (Pg+1). First, the individuals in
Rg are ranked based on the dominance relationships among
them. Non-dominated individuals are on the first rank. The
i-th rank consists of the individuals dominated only by the
individuals on the (i − 1)-th rank. Ranked individuals are
stored in F (Line 20). Fi contains the i-th rank individuals.

Then, the individuals in F move to Pg+1 on a rank by
rank basis, starting with F1 (Lines 23 to 26). If the num-
ber of individuals in Pg+1 ∪ Fi is less than N , Fi moves to
Pg+1. Otherwise, a subset of Fi moves to Pg+1. The sub-
set is selected based on the crowding distance metric, which
measures the distribution (or diversity) of individuals in the
objective space [5] (Lines 27 and 28). The metric computes
the distance between two closest neighbors of an individ-
ual in each objective and sums up the distances associated
with all objectives. A higher crowding distance means that
an individual in question is more distant from its neigh-
boring individuals in the objective space. In Line 27, the
individuals in Fi are sorted from the one with the highest
crowding distance to the one with the lowest crowding dis-
tance. The individuals with higher crowding distance mea-
sures have higher chances to be selected to Pg+1 (Line 28).

6. EVALUATION
This section evaluates the proposed optimizer in Neuronal

TDMA through simulations.

6.1 Simulation Configurations
This paper simulates a neuronal network that contains 43

neurons (Figures 8). 11 sensors are evenly distributed in
the network. The network topology is generated with a tree
structure generation algorithm based on Diffusion Limited

Aggregation (DLA) [11].

Sink%

Figure 8: A Simulated Neuronal Network

The proposed optimizer is configured with a set of param-
eters shown in Table 1. Q denotes the total number of time
slots in an individual (Q = 15 in Figure 7). Tu denotes the
amount of time allocated to each time slot.

Table 1: EMOA Configurations
Parameter Value

Max. # of generations (gmax in Figure 1) 100
Population size (N in Figure 1) 100
Crossover rate (Pc in Figure 1) 0.9
Mutation rate (Pm in Figure 1) 1/Q
σ in Equation 2 Tu/3

6.2 Simulation Results
Figure 9(a) shows how the proposed optimizer increases

the union of the hypervolumes (HVs) that individuals dom-
inate in the objective space as the number of generations
grows. The HV metric quantifies the optimality and diver-
sity of individuals [22]. A higher HV means that individuals
are closer to the Pareto-optimal front and more diverse in
the objective space. As Figure 9(a) shows, the proposed
optimizer rapidly increases its HV measure in the first 20
generations and converges around the 60th generation. At
the last generation, all individuals are non-dominated in
the population. This demonstrates that the proposed op-
timizer allows individuals to efficiently evolve and improve
their quality and diversity within 100 generation.

Figure 9(b) shows an objective space that plots the in-
dividuals obtained at the last generation. Those individu-
als approximate the Pareto front (i.e., the optimal trade-
off) between latency and robustness. Note that the robust-
ness of −20% means the signal interference probability of
20%. Given objective value ranges (16 ≤ TL ≤ 47 and
−40.77 ≤ TR / 0), the BANN designer can examine how
he/she can trade latency for robustness and choose a par-
ticular individual as the best TDMA schedule according to
his/her preferences, priorities and/or constraints.

7. CONCLUSIONS
The proposed optimizer in Neuronal TDMA is designed

to optimize TDMA signaling schedules for nanomachines in
neuron-based BANNs. Simulation results demonstrate that
the proposed optimizer efficiently obtains quality solutions
and multiobjective analysis is critical in configuring neuron-
based BANNs.
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