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Abstract—This paper studies an evolutionary algorithm to
solve a new multiobjective optimization problem (MOP), the
Probabilistic Traveling Salesperson Problem with Profits (pT-
SPP), which has noisy objective functions. As a variant of TSP,
many real-world noisy MOPs can be reduced to pTSPP. The
proposed algorithm leverages a novel noise-aware dominance
operator, called the α-dominance operator. The operator sta-
tistically estimates the impacts of noise on objective functions
and judges which solution candidates are superior/inferior to
the others. Unlike existing noise-aware dominance operators,
the α-dominance operator assumes no noise distributions. Thus,
it is well applicable to various real-world noisy MOPs that
follow unknown noise distributions. Experimental results show
that the α-dominance operator effectively reveals the dominance
relationships among solution candidates, aids to obtain quality
solutions to pTSPP and outperforms existing noise-aware domi-
nance operators.

I. INTRODUCTION

This paper focuses on noisy multiobjective optimization
problems (MOPs), which are formalized as follows:

min F (~x) = [f1(~x) + ε1, · · · , fm(~x) + εm]T ∈ O
subject to ~x = [x1, x2, · · · , xn]T ∈ S

}
(1)

S denotes the decision variable space. ~x ∈ S denotes a
solution candidate that consists of n decision variables. F :
Rn → Rm consists of m real-value objective functions, which
produce the objective values of ~x in the objective space O.
The goal of MOPs is to find an individual(s) that minimizes
objective values with respect to F .

In MOPs, objective functions often conflict with each other.
Thus, there exists rarely a single solution that is optimum with
respect to all objectives. As a result, MOPs often aim to find
the optimal trade-off solutions, or Pareto-optimal solutions, by
balancing the trade-offs among conflicting objectives. A notion
of dominance plays an important role to seek Pareto optimality
in MOPs [1]. A solution candidate ~x ∈ S is said to dominate
another solution candidate ~y ∈ S (denoted by ~x � ~y) iif the
both of the following conditions are hold.
• fi(~x) ≤ fi(~y) ∀ i = 1, · · · ,m
• fi(~x) < fi(~y) ∃ i = 1, · · · ,m

In Equation 1, εi is a random variable that represents noise
in the i-th objective function. εi 6= 0 in noisy MOPs. This
means that each objective function can yield different objective
values for the same solution candidate from time to time.

This paper formulates a new noisy MOP, the probabilistic
traveling salesperson problem with profits (pTSPP), which can
derive a number of real-world optimization problems. pTSPP
is a combination of existing two variants of the traveling
salesperson problem (TSP): the probabilistic TSP (pTSP) [2]
and the TSP with profits (TSPP) [3].

Noise in objective functions often interferes with a dom-
inance operator, which determines dominance relationships
among solution candidates. Defects in the operator signifi-
cantly degrade the performance (e.g., convergence velocity) to
solve MOPs [4], [5]. To address this issue, this paper proposes
a notion of noise-aware dominance, called α-dominance, and
studies the α-dominance operator for evolutionary multiob-
jective optimization algorithms (EMOAs). An EMOA uses
a population of individuals, each of which represents a so-
lution candidate. It evolves individuals through generations
and seeks the Pareto optimal solutions to a MOP. The α-
dominance operator takes objective value samples of given two
individuals, estimates the impacts of noise on the samples and
determines whether it is statistically confident enough to judge
a dominance relationship between the two individuals.

This paper describes the design of the α-dominance operator
and evaluates it with pTSPP. Experimental results demonstrate
that the α-dominance operator reliably performs dominance
operation to solve pTSPP and outperforms existing noise-
aware dominance operators.

II. PROBABILISTIC TRAVELING SALESPERSON PROBLEM
WITH PROFITS (PTSPP)

pTSPP is defined on a fully-connected graph G = (V,E).

• V = {v0, v1, v2, ..., vn} is the set of vertices in G, where
v0 is the depot. V ′ = V −{v0} is the set of n non-depot
vertices. This paper assumes that vertices are stationary,
and |V | does not change dynamically.



• E = {vi, vj |vi, vj ∈ V ; i 6= j} is the set of edges. Each
edge {vi, vj} ∈ E has an associated cost cvi,vj .

• Each vertex vi ∈ V ′ maintains a visiting probability pvi ,
which represents the probability that vi is visited. pvi ∈
[0.0, 1.0]. The visiting probability of the depot pv0 = 1.0.

• Each vertex vi ∈ V ′ has an associated profit ρvi > 0.
The depot’s profit ρv0 = 0.

• R is a route, which is a sequence of vertices, starting
and ending with v0. R may not contain all the vertices
in V ′: |R| ≤ |V ′| + 2. No redundant vertices exist in R
except v0. (A non-depot vertex is not visited more than
once.) R is an a posteriori route. The salesperson uses
it to decide, a posteriori, which vertices he/she actually
visits based on the visiting probabilities associated with
the vertices in R.

pTSPP is to find the Pareto-optimal routes with respect to
the following two objectives.
• Cost: The total traveling cost that the salesperson incurs

by visiting vertices in a route. This objective is to be
minimized. It is computed as:

fcost =
∑

vn,vn′∈R
pvnpvn′ cvn,vn′ (2)

where vn′ is the next vertex of vn in R.
• Profit: The total profit that the salesperson gains by visit-

ing vertices in a route. This objective is to be maximized.
It is computed as:

fprofit =
∑
vn∈R

pvnρvn (3)

Two objectives in pTSPP conflict with each other. For
example, a shorter route (i.e., a route containing a smaller
number of vertices) yields a lower cost and a lower profit. On
the contrary, a longer route (i.e., a route containing a larger
number of vertices) yields a higher cost and a higher profit.

pTSPP considers noise in its objective functions. Following
the notations in Equation 1, pTSPP is formulated as follows.

min F (R) = [fcost(R) + εcost,
1

fprofit(R) + εprofit]
T ∈ O

subject to R = [v0, · · · , vn, vn′ · · · , v0] ∈ S

}
(4)

εcost and εprofit denote noise in the cost and profit objective
functions, respectively.

As mentioned in Section I, pTSPP is a combination of
pTSP [2] and TSPP [3]. pTSP is to find the minimum-cost
route. Each vertex requires a visit of the salesperson with an
associated visiting probability. TSPP is to find the optimal
route with respect to profit as well as cost. The salesperson
can visit a subset of given vertices. pTSPP is similar to
pTSP in that both consider cost and visiting probability. It
extends pTSP by considering profit as an extra objective and
computing the total profit of a route based on the profit and
visiting probability associated with each vertex (Equation 3).
pTSPP is similar to TSPP in that both consider cost and

profit as objectives. However, unlike TSPP, pTSPP considers
a visiting probability for each vertex.

Many real-world noisy MOPs can be reduced to pTSPP
as various real-world optimization problems can be reduced
to pTSP and TSPP [2], [3], [6], [7]. For example, pTSPP can
represent noisy MOPs in transportation planning, supply chain
networks and data routing/gathering in computer networks.

III. RELATED WORK

The α-dominance operator was proposed first in [8] and
evaluated with several test problems such as ZDT1, ZDT2
and ZDT3 [9]. This paper evaluates it with a new noisy MOP,
pTSPP, which can derive more realistic optimization problems.

pTSP and TSPP have been studied extensively and used
to model many real-world problems in different fields [3].
Early pTSP studies adopted the heuristics for TSP (e.g.,
nearest neighbor, savings heuristic, k-OPT exchanges and 1-
shift) and modified them to solve pTSP (e.g., [10]). Recent
studies often focus on meta-heuristics, such as ant colony
optimization algorithms [11] and evolutionary algorithms [12],
[13], in favor of their global search capabilities. However,
these algorithms are not applicable for pTSPP because pTSPP
is a multiobjective optimization problem.

TSPP is a multiobjective optimization problem; however,
a number of existing work have attempted to solve it by
aggregating multiple objectives into a single fitness function
as, for example, a weighted sum of objective values or by
considering extra objectives as constraints [14], [15]. These
algorithms are not designed to seek Pareto-optimal solutions
among conflicting objectives. Moreover, it is not always trivial
to manually tune weight values in a fitness function that
aggregates multiple objective values.

A few existing work have attempted to solve TSPP with
multiobjective optimization algorithms (e.g., [16].) These al-
gorithms better address the characteristics of pTSPP; however,
they never consider noise in objective functions.

In the area of EMOAs, there exist several existing work
to handle uncertainties in objective functions by modifying
NSGA-II’s classical dominance operator. All of them assume
particular noise distributions in advance. For example, [17]–
[19] assume normal distributions. [20] assumes uniform dis-
tributions. [21], [22] assume Poisson distributions. Given a
noise distribution, these existing work collect objective value
samples from each individual ( [17], [18], [20]–[22]) or cluster
individuals ( [19]) in order to determine dominance rela-
tionships among individuals. If dominance operators assume
noise distributions, they are less applicable for real-world
noisy MOPs in which noise follows unknown distributions
and noise distributions can dynamically change. In contrast,
the α-dominance operator assumes no noise distributions in
advance. Instead of estimating each individual’s objective
values, the α-dominance operator estimates the impacts of
noise on objective value samples and determines whether it
is statistically confident enough to compare individuals.

[23] divides the decision variable space into hyperspheres
and runs an EMOA in each hypersphere. EMOAs strive to



move and guide hyperspheres toward the Pareto optima. Each
EOMA uses a classical dominance operator, and its noise
handling is based on a simple sampling scheme that uses
the average of objective value samples as each individual’s
objective value. In contrast, the α-dominance operator extends
the classical dominance operator with a statistical scheme in
order to perform noise handling in a more reliable manner.

[24] considers noisy objective functions in an indicator-
based EMOA, called IBEA [25], which exploits performance
indicators such as ε indicator and hypervolume indicator to
rank individuals without using classical dominance relation-
ships. Its noise handling operator takes a set of indicator value
samples of each individual and uses their average (and other
measures) as the individual’s indicator value. Unlike [24], the
α-dominance operator examines noise-aware dominance rela-
tionships that leverage statistical characteristics of objective
value samples.

IV. THE PROPOSED EVOLUTIONARY MULTIOBJECTIVE
OPTIMIZATION ALGORITHM FOR PTSPP

This section describes the proposed noise-aware EMOA.

A. Individual Representation

In the proposed EMOA, each individual represents a solu-
tion candidate: a posteriori route R that contains a sequence
of vertices. (See Section II.) Every individual has the depot
(v0) as its first and last element. Figure 1 shows an example
individual. Given this route, the salesperson starts with v0,
visits v3 and its subsequent 7 vertices, and returns back to
v0. Different individuals have different lengths (i.e., different
numbers of vertices).

Fig. 1. An Example Individual

B. Algorithmic Structure

Algorithm 1 shows the algorithmic structure of evolutionary
optimization in the proposed EMOA. It follows the optimiza-
tion process in NSGA-II, a well-known existing EMOA [26].

At the 0-th generation, N individuals are randomly gen-
erated as the initial population P0 (Line 2). Each of them
contains randomly-selected vertices in a random order. At each
generation (g), two parent individuals (p1 and p2) are selected
from the current population Pg with binary tournaments (Lines
6 and 7). A binary tournament randomly takes two individuals
from Pg , compares them based on α-dominance relationship,
and chooses a superior one as a parent.

With the crossover rate Pc, two parents reproduce two
offspring with a crossover operator (Lines 8 to 10). Each
offspring performs mutation with the mutation rate Pm (Lines
11 to 16). The binary tournament, crossover and mutation
operators are executed repeatedly on Pg to reproduce N
offspring. The offspring (Og) are combined with the parent
population Pg to form Rg (Line 19).

The environmental selection process follows the reproduc-
tion process. N individuals are selected from 2N individuals
in Rg as the next generation’s population (Pg+1). First, the
individuals in Rg are ranked based on their α-dominance
relationships. Non-dominated individuals are on the first rank.
The i-th rank consists of the individuals dominated only by
the individuals on the (i− 1)-th rank. Ranked individuals are
stored in F (Line 20). Fi contains the i-th rank individuals.

Then, the individuals in F move to Pg+1 on a rank by
rank basis, starting with F1 (Lines 23 to 26). If the number
of individuals in Pg+1 ∪ Fi is less than N , Fi moves to
Pg+1. Otherwise, a subset of Fi moves to Pg+1. The subset
is selected based on the crowding distance metric, which
measures the distribution (or diversity) of individuals in the
objective space [26] (Lines 27 and 28). The metric computes
the distance between two closest neighbors of an individual
in each objective and sums up the distances associated with
all objectives. A higher crowding distance means that an
individual in question is more distant from its neighboring
individuals in the objective space. In Line 27, the individuals in
Fi are sorted from the one with the highest crowding distance
to the one with the lowest crowding distance. The individuals
with higher crowding distance measures have higher chances
to be selected to Pg+1 (Line 28).

Algorithm 1 Optimization Process in the Proposed EMOA
1: g = 0;
2: Pg = Randomly generated N individuals;
3: while g < MAX-GENERATION do
4: Og = ∅;
5: while |Og| < N do
6: p1 = tournament(Pg)
7: p2 = tournament(Pg)
8: if random() ≤ Pc then
9: {o1 , o2} = crossover(p1 , p2 )

10: end if
11: if (random() ≤ Pm) then
12: o1 = mutation(o1 )
13: end if
14: if random() ≤ Pm then
15: o2 = mutation(o2 )
16: end if
17: Og = {o1 , o2} ∪ Og

18: end while
19: Rg = Pg ∪ Og

20: F = sortByDominationRanking(Rg)
21: Pg+1 = {∅}
22: i = 1
23: while |Pg+1|+ |Fi| ≤ N do
24: Pg+1 = Pg+1 ∪ Fi

25: i = i+ 1
26: end while
27: sortByCrowdingDistance(Fi)
28: Pg+1 = Pg+1 ∪ Fi[1 : (N − |Pg+1|)]
29: g = g + 1

30: end while

C. Crossover
The proposed EMOA adopts partially-mapped crossover

(PMX) as its crossover operator. PMX was originally proposed



to solve TSP [27]. It is known that PMX effectively works for
TSP and its variants [27], [28].

PMX first selects two crossover points on parent individuals
at random. A sub-route surrounded by the two crossover
points is called a mapping section. In an example in Figure 2,
parent 1’s mapping section is [2, 8, 7, 3], and parent 2’s is [3,
9, 4, 13]. Given two mapping sections, mapping relationships
are formed by paring elements in the mapping sections on a
position by position basis. In Figure 2, the first elements in two
mapping sections, 3 and 2, are paired; 3–2 is the first mapping
relationship. Similarly, three other mapping relationships, 9–
8, 4–7 and 13–3, are formed. In order to reproduce two
offspring from two parents, mapping sections are exchanged
between parents. In Figure 2, parent 1’s mapping section is
replaced with parent 2’s. (Note that Figure 2 does not show
the other proto-offspring.) If proto-offspring has duplicate
vertices across its mapping section and the other section, PMX
replaces each duplicate vertex with its counterpart described in
a mapping relationship. In Figure 2, 4, 9 and 13 are duplicated.
Given a mapping relationship of 7–4, 4 is replaced with 7 in
the non-mapping section. (Replacements always occur in the
non-mapping section.) 9 is replaced with 8 with a mapping
relationship of 9–8. 13 is replaced with 2 by referencing two
mapping relationships (13–3 and 3–2) recursively.

The length of each individual is variable as described in
Section IV-A. When two parents have different lengths, their
mapping section is constrained not to exceed a shorter parent’s
length. In Figure 2, where parent 2 is shorter, the mapping
section’s length is always shorter than its length.

0 2 7 6 3 9 4 13 10 5 1 0

0 4 5 6 2 8 7 3 1 12 9 13 0

Mapping relationships:

3 - 2,  9 - 8, 4 - 7, 13 - 3

Parent 1

Parent 2

Exchange mapping 

sections

Offspring 1

Replace duplicate vertices 

with mapping relationships

0 4 5 6 3 9 4 13 1 12 9 13 0

0 7 5 6 3 9 4 13 1 12 8 2 0

Proto-

offspring 1

Fig. 2. An Example Crossover (PMX) Process

D. Mutation

The proposed EMOA provides a multi-mode mutation oper-
ator to alter reproduced offspring. The operator has four modes
and selects one of them at a time randomly.

1) Add: randomly chooses a vertex from unselected vertices
and inserts it to a randomly-selected position in a route
(Figure 3(a)).

2) Delete: removes a randomly-selected vertex from a route
(Figure 3(b)).

3) Exchange: randomly chooses a vertex in a route and
replaces it with one of unselected vertices (Figure 3(c)).
The unselected vertex is also chosen at random.

4) Swap: exchanges the positions of two randomly-selected
verticies in a route (Figure 3(d)).
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Fig. 3. Example Mutation Modes

E. α-Dominance

This section describes the notion of α-dominance and the
design of the α-dominance operator. α-dominance is a new
dominance relationship that extends a classical dominance
relationship described in Section I. It takes objective value
samples of given two individuals, estimates the impacts of
noise on the samples, and determines whether it is statistically
confident enough to judge which one is superior/inferior be-
tween the two individuals. The α-dominance operator is used
in the parent selection operator (Lines 6 and 7 in Algorithm 1)
and individual ranking operator (Line 20 in Algorithm 1).

With the notion of α-dominance, individual A is said to
α-dominate individual B (denoted by A �α B), iif:
• A’s and B’s objective value samples are classifiable with

a statistical confidence level of α, and
• C(A,B) = 1 ∧ C(B,A) < 1.
In order to examine the first condition, the α-dominance

operator classifies A’s and B’s objective value samples with
Support Vector Machine (SVM), and measures a classification
error. The error (e) is computed as the ratio of the number of
missclassified samples to the total number of samples. Then,
the α-dominance operator computes the classification error’s
confidence interval (eint):

eint = e± tα,n−1σ (5)

tα,n−1 denotes a single-tail t-distribution with α confidence
level and n−1 degrees of freedom. n denotes the total number
of samples. σ is the standard deviation of e. It is approximated
as follows.

σ ∼=
√
e

n
(6)

If eint does not span zero, the α-dominance operator judges
that a classification error is significant and A’s and B’s
samples are not classifiable with the confidence level of α.



This means that the aforementioned first condition is not
hold. As a result, the α-dominance operator determines that
A and B do not α-dominate each other. Figure 4(a) shows
an example classification error (e1) and its confidence interval
(eint1 ). Since the confidence interval does not span zero (i.e.,
e1 −

eint1

2 > 0), e1 is judged to be significant.

0

e2

eint_2
e0

e1

eint_1 e

(b). Insignificant Classification Error(a). Significant Classification Error

Fig. 4. Classification Error’s Distributions

If eint spans zero, the α-dominance operator judges that
a classification error is not significant and A’s and B’s
samples are classifiable with the confidence level of α. This
means that the aforementioned first condition is hold. Thus,
the α-dominance operator examines the second condition. In
an example shown in Figure 4(b), e2 is not judged to be
significant because eint2 spans zero (i.e., e2 −

eint2

2 < 0).
In order to examine the second condition, the α-dominance

operator measures C-metric [29] with a classical notion of
dominance (�) described in Section I. C(A,B) denotes the
fraction of individual B’s samples that at least one sample of
individual A dominates:

C(A,B) =
|{b ∈ B | ∃a ∈ A : a � b}|

|B|
(7)

If C(A,B) = 1, all of B’s samples are dominated by at
least one sample of A. If C(B,A) < 1, not all of A’s samples
are dominated by at least one sample of B. The α-dominance
operator determines A �α B if C(A,B) = 1 and C(B,A) <
1. If C(A,B) < 1 and C(B,A) < 1, the operator determines
that A and B are non-α-dominated.

Figures 5 and 6 show three examples to determine the α-
dominance relationship between two individuals, A and B,
with respect to two objectives, f1 and f2, to be minimized.
Individual A and B have seven samples each. In each example,
SVM classifies these 14 samples with a classification vector.

In Figure 5, five samples (two for A and three for B) are
missclassified; e = 5

14 (0.357). Thus, σ ∼=
√

0.357
14 = 0.160.

Assuming the confidence level α of 95%, eint = 0.357 ±
1.771∗0.160 = 0.357±0.283. Since eint does span zero (i.e.,
0.357− 0.283 > 0), A’s and B’s samples are not classifiable
with the confidence level of 95%. The aforementioned first
condition is not hold. Therefore, the α-dominance operator
determines A and B are non-α-dominated in Figure 5.

f
2

A

B

Classification 

f
1

Classification 

Vector

Fig. 5. An Example Classification of Two Individuals (A and B)

In both Figures 6(a) and 6(b), two samples are missclassi-
fied. e = 2

14 (0.143) and σ ∼=
√

0.143
14 = 0.1. Under α = 0.95,

eint = 0.143± 1.771 ∗ 0.1 = 0.143± 0.1771. eint spans zero
(i.e., 0.143− 0.1771 < 0); therefore, A’s and B’s samples are
classifiable with the confidence level of 95%. This means that
the aforementioned first condition is hold in both Figures 6(a)
and 6(b).

f
2 f

2
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B

C(A, B) < 1

C(B, A) < 1

C(A, B) = 1

C(B, A) < 1

f
1 f

1(a). (b).
&

Fig. 6. An Example Process to determine the α-Dominance Relationship
between two individuals (A and B)

In Figure 6(a), C(A,B) = 1 and C(B,A) = 1/7 < 1.
This means that the aforementioned second condition is hold.
As a result, the α-dominance operator concludes A �α B
in Figure 6(a). In Figure 6(b), C(A,B) = 6/7 < 1 and
C(B,A) = 1/7 < 1. The second condition is not hold.
Therefore, the α-dominance operator concludes that A and
B are non-α-dominated in Figure 6(b).

Algorithm 2 shows pseudo code of the α-dominance oper-
ator. A and B denote individual A’s and B’s samples, respec-
tively. A′ and B′ denote two clusters of samples classified by
SVM.

V. EXPERIMENTAL EVALUATION

This section evaluates the proposed EMOA, particularly
its α-dominance operator, through experiments with a test
problem that is built based on a TSP instance called pr226.
This TSP instance is obtained from TSPLIB1 [30]. pr226
contains 226 vertices in a graph. It is customized in this
evaluation study so that each vertex maintains a profit and a
visiting probability. The value ranges of a profit and a visiting
probability are [1.0, 100.0] and [0.0,1.0], respectively. Both
values are assigned to each vertex at a uniformly random.

Noise is generated and injected to each of two objective
functions every time it is evaluated, as shown in Equation 4.

1http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/



Algorithm 2 Pseudocode of the α-Dominance Operator
1: function alphaDominance(A, B, α)
2: A′, B′ = classifyWithSVM(A, B)
3: count = 0 // # of missclassified samples
4: for each x ∈ A′ do
5: if x /∈ A then
6: count = count+ 1
7: end if
8: end for
9: for each x ∈ B′ do

10: if x /∈ B then
11: count = count+ 1
12: end if
13: end for
14: e = count

|A|+|B| // classification error
15: t = t-distribution(α, |A|+ |B| − 1)

16: eint = e− t×
√

e
|A|+|B|

17: if eint > 0 then
18: // e is significant.
19: return 0 // A and B are non-α-dominated.
20: else
21: // e is not significant.
22: if C(A,B) = 1 then
23: return 1 // A α-dominates B.
24: else if C(B,A) = 1 then
25: return -1 // B α-dominates A.
26: else
27: return 0 // A and B are non-α-dominated.
28: end if
29: end if
30: end function

Two types of noise are generated: random noise, which follows
continuous uniform distributions, and Gaussian noise, which
follow normal distributions. Each noise type has three levels
of noise: low, medium and high. Table I illustrates noise
configurations. For random noise, each cell of the table shows
a pair of the lower and upper bounds of noise values. For
Gaussian noise, each cell of the table shows a pair of the
mean and variance of noise values.

Random noise Gaussian noise
(Uniform distribution) (Normal distribution)

Cost
Low [-320,320] (0,740)

Medium [-1280,1280] (0,1600)
High [-2240,2240] (0,2560)

Profit
Low [-2,2] (0,4)

Medium [-8,8] (0,10)
High [-14,14] (0,16)

TABLE I
NOISE CONFIGURATIONS

The proposed EMOA is configured with a set of parameters
shown in Table II. It is called NSGA-II-A, or simply A, in
this evaluation study because it extends NSGA-II with the α-
dominance operator and other operators. In order to evaluate
the α-dominance operator, NSGA-II-A is compared with the
following three variants of NSGA-II:
• NSGA-II (or simply R): NSGA-II with its crossover and

mutation operators replaced by PMX and a mutation op-

erator described in Section IV-D. Its dominance operator
takes a set of object value samples of each individual and
use their average as the individual’s objective value.

• NSGA-II-N (or simply N): NSGA-II with its dominance
operator replaced by a noise-aware dominance opera-
tor [18]. The operator takes a set of objective value
samples of each individual and estimates its objective
value by assuming noise follow normal distributions. This
algorithm performs the PMX operator and a mutation
operator described in Section IV-D.

• NSGA-II-U (or simply U): NSGA-II with its dominance
operator replaced by a noise-aware dominance opera-
tor [20]. The operator takes a set of objective value
samples of each individual and estimates its objective
value by assuming noise follow uniform distributions.
This algorithm performs the PMX operator and a mu-
tation operator described in Section IV-D.

All algorithms take the same number of samples in each
generation and carry out the same number of objective function
evaluations in each experiment. All experiments were con-
ducted with jMetal [31]. Every experimental result is obtained
and shown based on 20 independent experiments.

Parameter Value SVM Parameter Value
Population size 100 SVM Type C-support vector

Max Generations 500 classification
Crossover rate 0.9 Kernel Linear
Mutation rate 0.2 C parameter 1
Samples size 30 Termination criteria 1e−3

TABLE II
PARAMETER CONFIGURATIONS

A. Cost and Profit Analysis

Figures 7, 8, 9 and 10 show the objective values that each
algorithm’s individuals yield at the last (the 500th) generation.
Figures 7 and 8 illustrate the cost and profit distributions under
Gaussian noise. Figure 7 depicts that, under Gaussian noise,
NSGA-II-A is the best among four algorithms in the median
and lowest cost metrics under all noise levels. It is also the
best in the median and highest profit metrics under low and
high noise levels (Figure 8). NSGA-II-N does not perform
well except under the mid-level noise, although its dominance
operator expects Gaussian noise in advance. NSGA-II-R yields
the worst results in most cases due to its simple sampling
scheme. The cost distributions are comparable among four
algorithms.

Figures 9 and 10 show the cost and profit distributions under
random noise. Their results are qualitatively similar to the ones
in Figures 7 and 8. NSGA-II-A yields the best median and
lowest cost under low noise level (Figure 9). It also yields the
lowest cost under the mid-level noise. In Figure 10, NSGA-
II-A yields the best median and highest profit under medium
noise level. It also yields the best median profit under high-
level noise. In the other cases, NSGA-II-A is comparable
with NSGA-II-U, which expects random noise in advance.
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Fig. 7. Cost Distributions under Gaussian Noise
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Fig. 8. Profit Distributions under Gaussian Noise

The distributions of individuals are comparable among four
algorithms.

B. Algorithm Comparison with C-metric

Tables III and IV show the C-metric measures [29] to
compare NSGA-II-A with the other three algorithms under
Gaussian and random noise, respectively. This experiment uses
30 objective value samples for each individual at the last
generation (3,000 samples in total).

Under Gaussian noise (Tables III), C(NSGA-II-A, NSGA-
II) > C(NSGA-II, NSGA-II-A) in all three noise levels. (A
bold font face is used to indicate a higher C-metric value
between C(NSGA-II-A, NSGA-II) and C(NSGA-II, NSGA-
II-A).) This means that NSGA-II-A outperforms NSGA-II
in all three noise levels. Under mid-level noise, NSGA-II
produces no individuals that dominate the ones produced by
NSGA-II-A. Under high-level noise, 40.1% of NSGA-II’s
individual samples (1,203 samples) are dominated by at least
one sample of NSGA-II-A. In comparison between NSGA-II-
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Fig. 9. Cost Distributions under Random Noise
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Fig. 10. Profit Distributions under Random Noise

A and NSGA-II-U, C(NSGA-II-A, NSGA-II-U) > C(NSGA-
II-U, NSGA-II-A) in low and high noise levels. This means
that NSGA-II-A outperforms NSGA-II-U under low-level and
high-level noise and the two algorithms tie under mid-level
noise. In comparison between NSGA-II-A and NSGA-II-N,
NSGA-II-A outperforms NSGA-II-N in high noise level and
the two algorithms tie in the other two noise levels. Even
though NSGA-II-N is designed to handle Gaussian noise, it
fails to produce individuals that dominate NSGA-II-A’s in all
noise levels.

Under random noise (Tables IV), NSGA-II-A outperforms
NSGA-II in all three noise levels. Under high-level noise,
50.8% of NSGA-II’s individual samples (1,524 samples) are
dominated by at least one sample of NSGA-II-A. In compar-
ison between NSGA-II-A and NSGA-II-U, which is designed
to handle random noise, NSGA-II-A outperforms NSGA-II-
U under mid-level and high-level noise. The two algorithms
tie in low noise level. Under mid-level and high-level noise,
NSGA-II-U fails to produce individuals that dominate NSGA-



Low Medium High
C(NSGA-II-A, NSGA-II-R) 0.405 0.40 0.401
C(NSGA-II-R, NSGA-II-A) 7.29e-3 0.00e+00 3.12e-03
C(NSGA-II-A, NSGA-II-U) 5.71e− 03 0.00e+00 3.18e− 3
C(NSGA-II-U, NSGA-II-A) 2.32e-03 0.00e+00 0.00e+00
C(NSGA-II-A, NSGA-II-N) 0.00e+00 0.00e+00 5.29e− 3
C(NSGA-II-N, NSGA-II-A) 0.00e+00 0.00e+00 0.00e+00

TABLE III
C-METRIC MEASURES UNDER GAUSSIAN NOISE

Low Medium High
C(NSGA-II-A, NSGA-II-R) 0.502 0.510 0.508
C(NSGA-II-R, NSGA-II-A) 4.03e-3 4.21e-3 6.11e-03
C(NSGA-II-A, NSGA-II-U) 0.00e+00 4.38e− 03 6.71e− 03
C(NSGA-II-U, NSGA-II-A) 0.00e+00 0.00e+00 2.25e-3
C(NSGA-II-A, NSGA-II-N) 0.00e+00 6.77e− 03 7.51e− 03
C(NSGA-II-N, NSGA-II-A) 0.00e+00 2.10e-03 0.00e+00

TABLE IV
C-METRIC MEASURES UNDER RANDOM NOISE

II-A’s. In comparison between NSGA-II-A and NSGA-II-
N, NSGA-II-A outperforms NSGA-II-N under mid-level and
high-level noise. Under low-level and high-level noise, NSGA-
II-N produces no individuals that dominate NSGA-II-A’s.

Tables III and IV demonstrate that, although the α-
dominance operator assumes no noise distributions in advance,
NSGAII-A performs well under both Gaussian and random
noise. NSGAII-A exhibits higher superiority against the other
three algorithms in higher noise levels.

VI. CONCLUSIONS

This paper formulates a noisy multiobjective optimiza-
tion problem, the Probabilistic Traveling Salesperson Problem
with Profits (pTSPP), which contains noise in its objective
functions. In order to solve pTSPP, this paper proposes an
evolutionary multiobjective optimization algorithm (EMOA)
that leverages a novel noise-aware dominance operator, called
the α-dominance operator. Experimental results demonstrate
that the operator allows the proposed EMOA to effectively
obtain quality solutions and it outperforms existing noise-
aware dominance operators.

As future work, extended experiments are planned with, for
example, extra noise configurations and evaluation metrics. In
addition, a noise-aware diversity preservation operator will be
studied and integrated with the α-dominance operator.
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