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This chapter considers autonomic wireless sensor networks (WSNs) to detect and monitor
spatiotemporally dynamic events, which dynamically scatter along spatiotemporal dimensions,
such as oil spills, chemical/gas dispersions and toxic contaminant spreads. Each WSN appli-
cation is expected to autonomously detect these events and collect sensor data from individual
sensor nodes according to a given spatiotemporal resolution. For this type of autonomic WSNs,
this chapter proposes a new programming paradigm, spatiotemporal macroprogramming, which
is designed to reduce the complexity of programming event detection and data collection in au-
tonomic WSNs. The proposed paradigm aids to specify them from a global network viewpoint
as a whole rather than a viewpoint of sensor nodes as individuals and (2) make applications
behave autonomously to satisfy given spatiotemporal resolutions for event detection and data
collection. The proposed programming language, Chronus, treats space and time as first-class
programming primitives and combines them as spacetime continuum. A spacetime is a three
dimensional object that consists of two spatial dimensions and a time playing the role of the
third dimension. Chronus allows application developers to program event detection and data
collection to spacetime, and abstracts away low-level details in WSNs. The notion of spacetime
provides an integrated abstraction for seamlessly expressing event detection and data collec-
tion as well as consistently specifying data collection for both the past and future in arbitrary
spatiotemporal resolutions. This chapter describes Chronus’ design, implementation, runtime
environment and performance implications.

1. Introduction

Wireless sensor networks (WSNs) are considered as a key enabler to enhance the quality
of monitoring and early warning in various domains such as environmental monitoring, emer-
gency response and homeland security [1–3]. This chapter considers autonomic wireless sensor
networks (WSNs) to detect and monitor spatiotemporally dynamic events, which dynamically
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scatter along spatiotemporal dimensions, such as oil spills, chemical/gas dispersions and toxic
contaminant spreads. With autonomic WSNs, each application is expected to autonomously
detect these events and collect sensor data from individual sensor nodes according to a given
spatiotemporal resolution. Its goal is to provide human operators with useful information to
guide their activities to detect and respond to spatiotemporally dynamic events. For example,
upon detecting an event, a WSN application may increase spatial and temporal sensing resolu-
tions to keep track of the event. In order to understand the nature of an event, another WSN
application may collect past sensor data to seek any previous foretastes that have led to the
current event.

This chapter proposes a new programming paradigm, called spatiotemporal macroprogram-
ming, which is designed to aid spatiotemporal event detection and data collection with WSNs.
This paradigm is designed to reduce the complexity of programming event detection and data
collection by (1) specifying them from a global (or macro) network viewpoint as a whole rather
than a micro viewpoint of sensor nodes as individuals and (2) making applications behave au-
tonomously to satisfy given spatiotemporal resolutions for event detection and data collection.
The proposed programming language, Chronus, treats space and time as first-class program-
ming primitives. Space and time are combined as spacetime continuum. A spacetime is a three
dimensional object that consists of a two spatial dimensions and a time playing the role of the
third dimension. Chronus allows developers to program event detection and data collection to
spacetime, and abstracts away the low-level details in WSNs, such as how many nodes are de-
ployed, how nodes are connected and synchronized, and how packets are routed across nodes.
The notion of spacetime provides an integrated abstraction to seamlessly express event detection
and data collection for both the past and future in arbitrary spatiotemporal resolutions.

In Chronus, a macro-program specifies an application’s global behavior. It is transformed
or mapped to per-node micro-programs. Chronus is customizable to alter the default mapping
between macro-programs and micro-programs and tailor micro-programs. It allows developers
to flexibly tune the performance and resource consumption of their applications by customizing
algorithmic details in event detection and data collection.

This paper is organized as follows. Section 2 overviews a motivating application that Chronus
is currently implemented and evaluated for. Section 3 describes how Chronus is designed and
how it is used to program spatiotemporal event detection and data collection. Section 4 presents
how the Chronus runtime environment is implemented and how it interprets macro-programs
to map them to micro-programs. Section 5 describes how Chronus allows for customizing
the mapping from macro-programs to micro-programs. Section 6 shows simulation results to
characterize the performance and resource consumption of applications built with Chronus.
Sections 7 and 8 conclude with some discussion on related work and future work.

2. A Motivating Application: Oil Spill Detection and Monitoring

Chronus is designed generic enough to operate in a variety of dynamic spatiotemporal en-
vironments; however, it currently targets coastal oil spill detection and monitoring. Oil spills
occur frequently1 and have enormous impacts on maritime and on-land businesses, nearby res-

1The U.S. Coast Guard reports that 50 oil spills occurred in the U.S. shores in 2004 [4], and the Associated Press
reported that, on average, there was an oil spill caused by the US Navy every two days from the fiscal year of 1990
to 1997 [5].
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idents and the environment. Oil spills can occur due to, for example, broken equipment of
a vessel and coastal oil station, illegal dumping or terrorism. Spilled oil may spread, change
the direction of movement, and split into multiple chunks. Some chunks may burn, and others
may evaporate and generate toxic fumes. Using an in-situ network of sensor nodes such as
fluorometers2, light scattering sensors3, surface roughness sensors4 salinity sensors5 and water
temperature sensors6, Chronus aids developing WSN applications that detect and monitor oil
spills. This chapter assumes that a WSN consists of battery-operated sensor nodes and several
base stations. Each node is packaged in a sealed waterproof container, and attached to a fixed
buoy.

In-situ WSNs are expected to provide real-time sensor data to human operators so that they
can efficiently dispatch first responders to contain spilled oil in the right place at the right time
and avoid secondary disasters by directing nearby ships away from spilled oil, alerting nearby
facilities or evacuating people from nearby beaches [6, 7, 11]. In-situ WSNs can deliver more
accurate information (sensor data) to operators than visual observation from the air or coast.
Moreover, in-situ WSNs are more operational and less expensive than radar observation with
aircrafts or satellites [11]. In-situ WSNs can operate during nighttime and poor weather, which
degrade the quality of airborne and satellite observation.

3. Chronus Macroprogramming Language

Chronus addresses the following requirements for macroprogramming.

• Conciseness. The conciseness of programs increases the ease of writing and understand-
ing. This can improve the productivity of application development. Chronus is required
to facilitate concise programming.

• Extensibility. Extensibility allows application developers to introduce their own (i.e.,
user-defined) programming elements such as operators and functions in order to meet the
needs of their applications. Chronus requires extensibility for developers to define their
own operators used in a wide variety of applications.

• Seamless integration of event detection and data collection. Existing macroprogram-
ming languages consider event detection and data collection largely in isolation. How-
ever, WSN applications often require both of them when they are designed to detect and
monitor spatiotemporally dynamic events. Chronus is required to provide a single set of
programming elements to seamlessly implement both event detection and data collection.

• Complex event detection. Traditional event detection applications often consider a sin-
gle anomaly in sensor data as an event. However, in spatiotemporal detection and moni-

2Fluorescence is a strong indication of the presence of dissolved and/or emulsified polycyclic aromatic hydro-
carbons of oils. Aromatic compounds absorb ultraviolet light, become electronically excited and fluoresce [6].
Different types of oil yield different fluorescent intensities [7].
3High intensity of light that is scattered by water indicates high concentration of emulsified oil droplets in the
water [8, 9].
4Oil films locally damp sea surface roughness and give dark signatures, so-called slicks [6].
5Water salinity influences whether oil floats or sinks. Oil floats more readily in salt water. It also affects the
effectiveness of dispersants [10].
6Water temperature impacts how fast oil spreads; faster in warmer water than cold water [10].
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toring, it is important to consider more complex events, each of which consists of multiple
anomalies. Chronus is required to express complex events in event detection.

• Customizability in mapping macro-programs to micro-programs. Different WSN
applications have different requirements such as minimizing false positive sensor data,
latency of event detection and power consumption. Therefore, the default mapping be-
tween macro-programs to micro-programs may not be suitable for a wide range of appli-
cations. Chronus is required to be able to customize the mapping according to application
requirements.

Chronus is designed as an extension to Ruby7. Ruby is an object-oriented language that
supports dynamic typing. The notion of objects combines program states and functions, and
modularizes the dependencies between states and functions This simplifies programs and im-
proves their readability [12]. Dynamic typing makes programs concise and readable by omitting
type declarations and type casts [13, 14]. This allows application developers to focus on their
macroprogramming logic without considering type-related housekeeping operations.

In general, a programming language can substantially improve its expressiveness and ease
of use by supporting domain-specific concepts inherently in its syntax and semantics [15]. To
this end, Chronus is defined as an embedded domain-specific language (DSL) of Ruby. Ruby
accepts embedded DSLs, which extend Ruby’s constructs with particular domain-specific con-
structs instead of building their own parsers or interpreters [16]. With this mechanism, Chronus
reuses Ruby’s syntax/semantics and introduces new keywords and primitives specific to spa-
tiotemporal event detection and data collection such as time, space, spacetime and spatiotem-
poral resolutions.

Chronus leverages closures, which Ruby supports to modularize a code block as an object
(similarly to an anonymous method). It uses a closure for defining an event detection and
a corresponding handler to respond to the event as well as defining a data collection and a
corresponding handler to process collected data. With closures, Chronus can concisely associate
handlers with event detection and data collection specifications.

Chronus also employs process objects, which Ruby uses to encapsulate code blocks. It allows
application developers to define their own (i.e., user-defined) operators as process objects.

Chronus simultaneously supports both data collection and event detection with WSNs. The
notion of spacetime allows application developers to seamlessly specify data collection for the
past and event detection in the future. It enables WSN applications to perform event detection
and event collection at the same time.

Chronus allows developers to define three types of complex events for event detection: se-
quence, any and all events. Each complex event is defined with a set of events. A sequence
event fires when a set of events occurs over time in a chronological order. An any and all event
fire when one of or all of defined events occur(s), respectively.

Chronus leverages the notion of attribute-oriented programming to customize the default
mapping from macro-programs to micro-programs. Attribute-oriented programming is a pro-
gram marking technique to associate program elements with extra semantics [17, 18]. In
Chronus, attributes are defined as special types of comments in macro-programs. Application
developers can mark macro-program elements with attributes to indicate that the elements are

7www.ruby-lang.org
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associated with certain application-specific requirements in, for example, packet rouging. The
default macro-program-to-micro-program mapping can be customized by changing attributes
that mark program elements in macro-programs.

3.1. Data Collection with Chronus
In Chronus, a data collection is executed one time or periodically to collect data from a WSN.

A data collection pairs a data query and a corresponding data handler to process obtained data.
Listing 1 shows an example macro-program that specifies several queries. Figure 1 visualizes
this program.

A spacetime is created with the class Spacetime at Line 4. In Chronus, a class is instantiated
with the new() class method. This spacetime (sp) is defined as a polygonal prism consisting
of a triangular space (s) and a time period of an hour (p). Chronus supports the concepts of
absolute time and relative time. A relative time can be denoted as a number annotated with its
unit (Week, Day, Hr, Min or Sec) (Line 3).

Listing 1: An Example Macro-Program for Data Collection
1 points = [ Point.new( 10, 10 ), Point.new( 100, 100 ), Point.new( 80, 30 ) ]
2 s = Polygon.new( points )
3 p = RelativePeriod.new( NOW, Hr -1 )
4 sp = Spacetime.new( s, p )
5
6 s1 = sp.get_space_at( Min -30, Sec 20, 60 )
7 avg_value = s1.get_data( ’f-spectrum’, AVG, Min 3 ) {
8 | data_type , value, space, time |
9 # the body of a data handler comes here. }

10
11 spaces = sp.get_spaces_every( Min 5, Sec 10, 80 )
12 max_values = spaces.collect { |space|
13 space.get_data( ’f-spectrum’, MAX, Min 2 ){
14 | data_type , value, space, time |
15 # data handler
16 if value > avg_value then ... }}
17
18 name = ’f-spectrum’
19 event_spaces =
20 spaces.select{|s| s.get_data(name, STDEV, Min 5)<=10)}.select{|s|
21 s.get_data(name, AVG, Min 5) - spaces.prev_of(s).get_data(name, AVG, Min 5)>20)} }
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Figure 1. An Example Data Collection

get_space_at() is a method that the Spacetime class has (Table 1). It is called on a space-
time to obtain a snapshot space at a given time in a certain spatial resolution. In Line 6, a



6 Hiroshi Wada, Pruet Boonma, Junichi Suzuki,

snapshot space, s1, contains sensor data available on at least 60% of nodes (the third param-
eter) in the space at 30 minutes before (the first parameter) with a 20 second time band (the
second parameter).

Table 1
Key Methods in Chronus

Method Description
Spacetime::get_space_at() Returns a snapshot space at a given time
Spacetime::get_spaces_every() Returns a set of snapshot spaces
Spacetime +/- spacetime() Returns a union/difference of two spacetimes
Space::get_data() Executes a data query
Space::get_node() Returns a particular node in a space
Space::get_nodes() Returns a set of nodes in a space
Space::get_border() Returns a set of nodes that are located at the border of a space
Space::divide() Divides a space into sub spaces
Space +/- Space() Returns a union/difference of two spaces
List::collect() Returns a value from each element in a list
List::select() Returns a subset of elements in a list

Table 2
Data Aggregation Operators in Chronus

Operator Description
COUNT Returns the number of collected data
MAX Returns the maximum value among collected data
MIN Returns the minimum value among collected data
SUM Returns the summation of collected data
AVG Returns the average of collected data
STDEV Returns the standard deviation of collected data
VAR Returns the variance of collected data

get_data() is used to specify a data query. It is called on a space to collect sensor data
available on the space (the first parameter) and process the collected data with a given operator
(the second parameter). Chronus provides a set of data aggregation operators shown in Table 2.
In Line 7, get_data() obtains the average of fluorescence spectrum (’f-spectrum’) data in
the space s1. The third parameter of get_data() specifies the tolerable delay (i.e., deadline) to
collect and process data (three minutes in this example).
get_data() can accept a data handler as a closure that takes four parameters: the type of

collected data, the value of collected data, the space where the data is collected, and the time
when the data is collected. In this example, a code block from Line 8 to 9 is a closure, and its
parameters contain a string ’f-spectrum’, the average fluorescence spectrum in s1, the space
s1 and the time instant at 30 minutes before. An arbitrary data handler can be written with these
parameters.
get_spaces_every() is called on a spacetime to obtain a discrete set of spaces that meet a

given spatiotemporal resolution. In Line 11, this method returns spaces at every five minutes
with the 10 second time band, and each space contains data available on at least 80% of nodes
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within the space. Then, the maximum data is collected from each space (Lines 12 and 13).
In Chronus, a list has the collect() method8, which takes a closure as its parameter, and the
closure is executed on each element in a list. In this example, each element in spaces is passed
to the space parameter of a closure (Line 14).
select() is used to obtain a subset of a list based on a certain condition specified in a closure.

From Line 19 to 21, event_spaces obtains spaces, each of which yields 10 or lower standard
deviation of data and finds an increase of 20 or more degrees in average in recent give minutes.

3.2. Event Detection with Chronus
An event detection application in Chronus pairs an event specification and a corresponding

event handler to respond to the event. Listing 2 shows an example macro-program that specifies
an event detection application. It is visualized in Figure 2. Once an oil spill is detected, this
macro-program collects sensor data from an event area in the last 30 minutes and examines the
source of the oil spill. The macro-program also collects sensor data from the event area over
the next one hour in a high spatiotemporal resolution to monitor the oil spill.

Listing 2: An Example Macro-Program for an Event-based Data Query
1 sp = Spacetime.new( GLOBALSPACE , Period.new( NOW, INF ) )
2 spaces = sp.get_spaces_every( Min 10, Sec 30, 100 )
3
4 event spaces {
5 sequence {
6 not get_data(’f-spectrum’, MAX) > 290);
7 get_data(’f-spectrum’, MAX) > 290;
8 get_data(’droplet-concentration’, MAX) > 10;
9 within MIN 30;

10 }
11 any {
12 get_data(’f-spectrum’, MAX) > 320;
13 window(get_data(’d-concentration’, MAX), AVG, HOUR -1) > 15;
14 }
15 all {
16 get_data(’f-spectrum’, AVG) > 300;
17 get_data(’d-concentration’, AVG) > 20;
18 }
19 }
20 execute{ |event_space , event_time|
21 # query for the past
22 sp1 = Spacetime.new(event_space , event_time , Min -30)
23 past_spaces = sp1.get_spaces_every(Min 6, Sec 20, 50)
24 num_of_nodes = past_spaces.get_nodes.select{ |node|
25 # @CWS_ROUTING
26 node.get_data(’f-spectrum’, Min 3) > 280}.size
27
28 # query for the future
29 s2 = Circle.new( event_area.centroid , event_area.radius * 2 )
30 sp2 = Spacetime.new( s2, event_time , Hr 1 )
31 future_spaces = sp2.get_spaces_every( Min 3, Sec 10, 80 )
32 future_spaces.get_data( ’f-spectrum’, MAX, Min 1 ){
33 | data_type , value, space, time |
34 # data handler }
35 }
36 }

An event detection is performed against a set of spaces, which is obtained by
get_spaces_every(). Line 1 obtains a spacetime sp that starts from the current time and cov-
ers whole observation area. GLOBALSPACE is a special type of space that represents the whole

8In Ruby, a method can be called without parentheses when it takes no parameters.
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Figure 2. An Example Event-based Data Query

observation area, and INF represents the infinite future. spaces in Line 2 represents a set of
GLOBALSPACEs at every 10 minutes with the 30 second time band in the future.

An event specification (Line 4 to 19) defines an event(s) (Line 5 to 18) and an event handler
(Line 20 to 35). Listing 3 shows the language syntax to define event specifications. An event
specification is declared with the keyword event followed by a set of spaces (Line 4). Events
are defined as the conditions to execute a corresponding event handler. Chronus supports three
event types: sequence, any and all events.

A sequence event fires when a set of atomic events occurs in a chronological order. An
atomic event is defined with get_data() or window() operation. get_data() returns spatially
processed data; i.e., data aggregated over a certain space with one of operators in Table 2. In
Listing 2, a sequence event is defined with three atomic events (Line 6 to 8). The sequence
event fires if those atomic events occur chronologically in spaces. The first atomic event fires
when the maximum fluorescence spectrum (f-spectrum) data does not exceed 290 (nm) (Line
6). The second atomic event fires when the maximum fluorescence spectrum (f-spectrum) data
exceeds 290 (nm) (Line 7). The third one fires when the maximum concentration of oil droplet
(d-concentration) exceeds 10 (µL/L) (Line 8). A sequential event can optionally specify a
time constraint within which all atomic events occur. In Listing 2, three atomic events are
specified to occur in 30 minutes (Line 9).

Listing 3: Event Specification Syntax
1 <query> = <event spec> <event handler>
2 <event spec> = ’event’ <space> ’{’ {condition}+ ’}’
3 <condition > = <sequence > | <any> | <all>
4 <sequence > = ’sequence’ ’{’ {<atomic event >}+ [<time restriction >] ’}’
5 <atomic event> = (<get data> | <window >) <comparison operator > <number>
6 <time restriction > = ’within’ <time>
7 <any> = ’any’ ’{’ {<atomic event >}+ ’}’
8 <all> = ’all’ ’{’ {<atomic event >}+ ’}’
9 <event handler> = ’execute’ ’{’ <Chronus code> ’}’

A sequence condition is transformed into a state machine in which each state transition cor-
responds to an atomic event. For example, a sequence in Listing 2 is transformed to a state
machine in Figure 3. A is the initial state, and it transits to B when the first atomic event, not
get_data(’f-spectrum’, MAX) > 290, occurs. The sequence event’s handler is executed in D.

An any event fires when one of defined atomic events occurs. Listing 2 uses window() to
define an atomic event. window() returns temporally processed data; i.e., data aggregated over
time with one of operators in Table 2. In Listing 2, an any event is defined with two atomic
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Figure 3. A State Transition transformed from Listing 2

events (Line 12 and 13). It fires and executes a corresponding event handler if one of the two
atomic events occurs. The first atomic event fires when the maximum fluorescence spectrum
(f-spectrum) data exceeds 320 (nm). The second atomic event fires when the average of the
maximum oil droplet concentration (d-concentration) exceeds 15 (µL/L) in recent one hour.

An all event fires and executes a corresponding event hander when all of defined atomic
events occur. It does not consider a chronological order of atomic events as a sequence event
does. Listing 2 defines two atomic events (Line 16 and 17).

An event handler is specified as a closure of execute (Line 20 to 36). Its parameters are a
space where an event has occurred and the time when the event has occurred (Line 20). In Line
23, a spacetime (sp1) is created to cover event_space over the past 30 minutes. Then, sp1
is used to examine how many nodes have observed 280 (nm) or higher fluorescence spectrum
every six minutes. Line 25 is a special comment that contains an attribute, which starts with @.
It is used to customize the default mapping from a macro-program to a micro-program. The
attribute @CWS_ROUTING declares to use an algorithm called CWS for packet routing. (See Sec-
tion 5.3 for more details about CWS.) In Line 36, another spacetime (sp2) is created to specify
a data collection in the future. sp2 covers a larger space than event_space for an hour in the
future. It is used to examine the maximum fluorescence spectrum every three minutes.

Listing 2 uses get_spaces_every() to obtain a set of spaces (Line 2). This operation guaran-
tees that a Chronus application can watch a certain space with a certain spatiotemporal resolu-
tion. However, it does not suit for detecting highly critical events since an event may happen be-
tween two spaces in a list that get_spaces_every() returns and an event handler fails to respond
to the event immediately. For example, when get_spaces_every() returns a set of spaces every
30 minutes, an application may respond to an event 30 minutes after the event happens. Re-
ducing the interval of time to watch (i.e., the first parameter of get_spaces_every()), however,
results to consume unnecessarily large amount of battery power since get_spaces_every()
may send packets to sensor nodes in a WSN to collect data (see details in Section 4.2). In or-
der to avoid this situation, Chronus supports get_spaces_upon() operation to obtain a set of
spaces in addition to get_spaces_every(). Chronus assumes that each sensor node sends back
data to a base station when a condition met (e.g., fluorescence spectrum exceeds 290(nm), and
get_spaces_upon() creates a space upon the arrival of data from sensor nodes.

Listing 4: An Example program using get_spaces_upon()
1 sp = Spacetime.new( GLOBALSPACE , Period.new( NOW, INF ) )
2 spaces1 = sp.get_spaces_upon( Sec 30 )
3
4 sp = Spacetime.new( space, Period.new( NOW, INF ) )
5 spaces2 = sp.get_spaces_every( Min 10, Sec 30, 100 )
6
7 observing_space = spaces1 + spaces2



10 Hiroshi Wada, Pruet Boonma, Junichi Suzuki,

Listing 4 shows an example using get_spaces_upon() and get_spaces_every(). spaces1
contains a set of spaces created upon the arrival of data from nodes (Line 2), and spaces2
contains a set of spaces that satisfies a certain spatiotemporal resolution (Line 5). Chronus
treats both types of spaces in the same way and allows for combining them (Line 7). With
the combined spaces, observing_space, an application can monitor an area with a certain spa-
tiotemporal resolution and respond to events that occur in the area immediately.

3.3. User-defined Data Aggregation Operators
Chronus allows application developers to introduce their own (i.e., user-defined) operators

in addition to the predefined operators shown in Table 2. In Chronus, both predefined and
user-defined operators are implemented in the same way.

Listing 5 shows the implementations of SUM, COUNT and AVG operators (Table 2). Each operator
is defined as a process object, which is a code block that can be executed with the call()
method. (See Line 14 for an example.) The keyword proc declares a process object, and its
implementation is enclosed between the keywords do and end. sensor_readings is an input
parameter (i.e., a set of sensor data to process) to each operator (Lines 1, 9 and 13).

Listing 6 shows an example user-defined operator, CENTROID, which returns the centroid of
sensor data. This way, developers can define and use arbitrary operators that they need in their
applications

Listing 5: Predefined Data Aggregation Operators
1 SUM = proc do |sensor_readings|
2 sum = 0.0
3 sensor_readings.each do |sensor_reading|
4 sum += sensor_reading.value
5 end
6 sum
7 end
8
9 COUNT = proc do |sensor_readings|

10 sensor_readings.size
11 end
12
13 AVG = proc do |sensor_readings|
14 SUM.call(sensor_readings)/COUNT.call(sensor_readings)
15 end

Listing 6: An Example User-defined Operator for Data Aggregation
1 CENTROID = proc do |sensor_readings|
2 centroid = [0, 0] # indicates a coordinate (x, y)
3 sensor_readings.each do |sensor_reading|
4 centroid[0] += sensor_reading.value*sensor_reading.x
5 centroid[1] += sensor_reading.value*sensor_reading.y
6 end
7 centroid.map{ |value| value / sensor_readings.size }
8 end

4. Chronus Implementation

Chronus is currently implemented with an application architecture that leverages mobile
agents in a push and pull hybrid manner (Figure 4). In this architecture, each WSN applica-
tion is designed as a collection of mobile agents, and there are two types of agents: event agents
and query agents. An event agent (EA) is deployed on each node. It reads a sensor at every duty



Spatiotemporal Macroprogramming for Autonomic Wireless Sensor Networks 11

cycle and stores its sensor data in a data storage on the local node. When an EA detects an event
(i.e., a significant change in its sensor data), it replicates itself, and a replicated agent carries (or
pushes) sensor data to a base station by moving in the network on a hop-by-hop basis. Query
agents (QAs) are deployed at Agent Repository (Figure 4), and move to a certain spatial region
(a certain set of nodes) to collect (or pull) sensor data that meet a certain temporal range. When
EAs and QAs arrive at the Chronus server, it extracts the sensor data the agents carry, and stores
the data to a spatiotemporal database (STDB).
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Figure 4. A Sample WSN Organization

At the beginning of a WSN operation, the Chronus server examines network topology and
measures the latency of each link by propagating a measurement message (similar to a hello
message). EAs and QAs collect topology and latency information as moving to base stations.
When they arrive at the Chronus server, they update the topology and latency information that
the Chronus server maintains. The Chronus server also maintains each node’s physical location
through a certain localization mechanism.

4.1. Visual Macroprogramming
In addition to textual macroprogramming shown in Figures 1 and 2, Chronus provides a

visual macroprogramming environment. It leverages Google Maps (maps.google.com) to show
the locations of sensor nodes as icons, and allows application developers to graphically specify
a space where they observe. Figure 5 shows a pentagonal space (an observation area) on an
example WSN deployed at the Boston Harbor. Given a graphical space definition, the Chronus
visual macroprogramming environment generates a skeleton macro-program that describes a
set of points (pairs of longitude and latitude) constructing the space. Listing 7 shows a macro-
program generated from a graphical space definition in Figure 5.

Listing 7: A Generated Skeleton Code
1 points = [ # ( Latitude, Longitude )
2 Point.new( 42.35042512243457, -70.99880218505860 ),
3 Point.new( 42.34661907621049, -71.01253509521484 ),
4 Point.new( 42.33342299848599, -71.01905822753906 ),
5 Point.new( 42.32631627110434, -70.99983215332031 ),
6 Point.new( 42.34205151655285, -70.98129272460938 ) ]
7 s = Polygon.new( points )
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Figure 5. Chronus Visual Macroprogramming Environment

4.2. Chronus Runtime Environment
Once a macro-program is completed, it is transformed to a servlet (an application runnable

on the Chronus server) and interpreted by the JRuby interpreter in the Chronus runtime envi-
ronment (Figures 6 and 7). The Chronus runtime environment operates the Chronus server,
STDB, gateway and Agent Repository. The Chronus library is a collection of classes, closures
(data/event handlers) and process objects (user-defined operators) that are used by Chronus
macro-programs. STDB stores node locations in SensorLocations table and the sensor data
agents carry in SensorData table. Node locations are represented in the OpenGIS Well-Known
Text (WKT) format9.
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Figure 6. Chronus Development Process

When a Chronus macro-program specifies a data query for the past, a SQL query is generated
to obtain data from STDB. get_data() implements this mapping from a data query to SQL
query. Listing 8 shows an example SQL query. It queries ids, locations and sensor data from
the nodes located in a certain space (space in Line 6). Contains() is an OpenGIS standard
geographic function that examines if a geometry object (e.g., point, line and two dimensional
surface) contains another geometry object. Also, this example query collects data from a given
temporal domain (Lines 7 and 8). The result of this query is transformed to a Ruby object and
passed to a corresponding data handler in a macro-program.
9www.opengeospatial.org
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Figure 7. Chronus Runtime Environment

If STDB does not have enough data that satisfy a data query’s spatiotemporal resolution, QAs
are dispatched to certain sensor nodes in order to collect extra sensor data. They carry the data
back to STDB.

When a Chronus macro-program specifies a future data query, QAs are dispatched to a set
of nodes that meet the query’s spatial resolution. get_data() implements this mapping from
a data query to QA dispatch. After a QA is dispatched to a node, the QA periodically collects
sensor data in a given temporal resolution. It replicates itself when it collects data, and the
replicated QA carries the data to STDB. The data is passed to a corresponding data handler.

As shown above, the notion of spacetime allows application developers to seamlessly specify
data collection for the past and future. Also, developers do not have to know whether STDB
has enough data that satisfy the spatiotemporal resolutions that they specify.

Listing 8: An Example SQL
1 SELECT SensorLocations.id, SensorLocations.location ,
2 SensorData.value
3 FROM SensorLocations , SensorData
4 WHERE SensorLodations.id = SensorData.id AND
5 Contains(
6 space, SensorLocations.location ) = true AND
7 SensorData.time >= time - timeband AND
8 SensorData.time <= time + timeband;

4.3. In-Network Processing
As described in Section 3.3, Chronus macroprogramming language supports user-defined

data processing operators. get_data() can specify a data processing operator as its parameter
(Section 3.1). Data processing is performed on the Chronus server or in a network depending
on data queries.
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When a data query collects sensor data in the past and STDB can provide enough data, col-
lected data is processed on the Chronus server. Otherwise, a QA visits sensor nodes, collects
sensor data, processes them on the last node of its route, and returns the result to a Chronus
macro-program. This in-network data processing saves the power consumption in a sensor net-
work by reducing the amount of data to exchange between nodes. In Chronus, to reduce the
amount of data QAs brings, a QA is designed to have only its state and not to have code to
execute on nodes. A code for in-network data processing is deployed only on the last node of
QA’s route, and a QA executes the code to process its data before returning to a base station.
The Chronus server transforms a code for in-network data processing in Chronus macropro-
gramming language (Section 3.3) into TinyScript, and sends it to the last node of QA’s route
through the shortest path from a base station to the node before dispatching a QA.

4.4. Concurrency in the Chronus Server
Chronus macroprogramming language allows a Chronus macro-program to have multiple

data queries and data processing. This design strategy makes it easy to write queries and data
processing which depend on results of preceding data queries and data processing. However,
without an appropriate threading model, i.e., if Chronus macro-programs follow single thread
model, they suffer from their low performance because data queries may take long time and
block other data queries and data processing continually. To maximize the performance of
Chronus macro-programs, Chronus macro-programs automatically create new threads so that
multiple data queries and data processing perform in a parallel manner.

Chronus macro-programs which deployed on the Chronus server, i.e., servlets, can be in-
voked via SOAP, i.e., a XML-based protocol [19]. As illustrated in Figure 8, a Chronus macro-
program (Servlet) starts when its run() method is called. (run() method is automatically
generated during a transformation from a Chronus macro-program to a servlet, and it is used to
execute the original Chronus macro-program.) Then, a new thread (Data Collection Thread)
is created when a Chronus macro-program calls get_data() so that it can perform a data col-
lection in parallel with program’s main thread. Each get_data() creates its own thread auto-
matically. A data collection thread checks if STDB provides enough data, and collects data
from STDB or dispatches QAs (Section 4.2). When a data collection thread dispatches QAs, it
registers a corresponding event handler to a Chronus macro-program. Once a gateway receives
returning QA(s), it retrieves collected sensor data from the QA(s) and send it to the Chronus
server via SOAP (Figure 7). The Chronus server notifies it to a Chronus macro-program, and a
Chronus macro-program invokes the registered event handler.

Since a program’s main thread and data collection threads run in parallel manner, get_data()
may not be able to return a result to a program’s main thread immediately. For example, in
Listing 1, a variable max_values may not contain results of get_data() (Line 14) when a
main thread accesses it (e.g., for drawing a graph or creating another data query based on the
variable). In Chronus, a main thread and a data collection thread are synchronized when a
variable which contains a result of get_data() is accessed by a main thread.

5. Chronus Microprogramming Language

Chronus provides a microprogramming language to customize the default behavior of micro-
programs. While Chronus macro-programs are always written on spacetime, Chronus micro-
programs are always written on nodes. This allows developers to flexibly tune the performance
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Figure 8. Concurrency in the Chronus Server

and resource consumption of their applications by providing a means to tailor EAs and QAs.
The Chronus microprogramming and macroprogramming languages share the same syntax and
semantics.

5.1. Microprogramming EAs
By implementing a process object, Chronus microprogramming language allows specifying

a condition when an EA replicates itself and a replicated agent starts migrating to a base station.
Listing 9 shows an example micro-program for EAs. Each node periodically obtains its sensor
data and executes LOCAL_FILTERING process object. A process object returns true or false.
When it returns true, an EA replicates itself on the node and a replicated EA starts migrating
to a base station with sensor data. If it returns false, the node stores sensor data in its local
storage (e.g., flush memory). A QA may visit to the node and collect the stored data in future.
In Listing 9, each node periodically check whether local sensor data exceed 300(nm) or not.

Listing 9: A Micro-Program for EAs (Local Filtering)
1 LOCAL_FILTERING = proc do |node|
2 node.get_data( ’f-spectrum’ ) > 300
3 end

By leveraging attribute-oriented programming, Chronus allows to use micro-programs in
macro-programs while keep separating them. Listing 10 is an example Chronus macro-program
that refers a micro-program for EAs through the use of an attribute. A keyword starts with @ in
a comment, e.g., @LOCAL_FILTERING in Line 1, is called an attribute, and the attribute marks
the following program element. In Listing 10, each node contained in the spacetime (sp) uses
LOCAL_FILTERING (Listing 9) to decide when to send back data to a base station. If no attribute
is specified right before an initialization of a specetime, nodes in the spacetime do not send back
data to a base station (only QAs collect data from nodes). Attribute-oriented programming im-
proves the readability and maintainability of Chronus programs by separating macro-programs
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and micro-programs clearly while providing a mechanism to combine them.

Listing 10: A Macro-Program for Deploying A Micro-Program for EAs
1 # @LOCAL_FILTERING
2 sp = Spacetime.new( GLOBALSPACE , Period.new( Hr -1, Min 30 ) )
3 spaces = sp.get_spaces_every( Min 10, Sec 30, 100 )

Listing 11 is another example of a micro-program for EAs. In Listing 11, when a local sensor
data exceeds 300(nm), each node obtains a list of neighbors within one hop away (Line 4), and
checks if the average of their sensor data exceed 300(nm). This algorithm reduces the number of
false positive sensor data compare with the algorithm in Listing 9 since each EA uses an average
of neighbors’ sensor data to decide whether to return a replicated EA, but may consume much
energy since nodes exchange packets to obtains neighbors’ sensor data.

Listing 11: A Micro-Program for EAs (Neighborhood Filtering)
1 NEIGHBORHOOD_FILTERING = proc do |node|
2 if node.get_data( ’f-spectrum’ ) <= 300 then false
3
4 neighbors = node.get_neighbors_within(1)
5 total = node.get_data( ’f-spectrum’ )
6 neighbors.each{ |neighbor|
7 total += neighbor.get_data( ’f-spectrum’ ) }
8 total > 300 * (neighbors.size + 1);
9 end

Listing 12 is another example. In Listing 12, if local sensor data exceed 300(nm), each node
broadcasts its local sensor data to one hop neighbors with a label f-spectrum (Line 4 and 5).
Once receiving a broadcast message, each node keeps it as a tuple consisting of a source node id
and a received value in a table of which name is f-spectrum. After that, a node retrieves sensor
data from its f-spectrum table and checks if the average of them exceeds 300(nm). Compare
with the algorithm in Listing 11, this algorithm consumes less energy since it uses broadcasts
to exchange sensor data instead of node-to-node communications.

Listing 12: A Micro-Program for EAs (Gossip Filtering)
1 GOSSIP_FILTERING = proc do |node|
2 if node.get_data( ’f-spectrum’ ) <= 300 then false
3
4 node.broadcast(
5 node.get_data( ’f-spectrum’ ), ’f-spectrum’, 1 )
6 total = node.get_data( ’f-spectrum’ )
7 node.get_table( ’f-spectrum’ ).each{ |node_id, value|
8 total += value }
9 total > 300 * (node.get_table.size + 1)

10 end

As shown in Listing 9, 11 and 12, Chronus microprogramming language allows defining arbi-
trary algorithm to decide when a replicated EA starts migrating to a base station. Depending on
the requirements of WSN applications, e.g., low latency, low energy consumption or less false
positive sensor data, application developers can implement their own algorithms and deploy
them on nodes in a certain space.

5.2. Implementation of EAs
Chronus extends a Bombilla VM [20] and TinyScript to support mobile agents as one of

messages which can move among sensor nodes with sensor data. A micro-program is used
to configure EA code (template) in Agent Repository and a configured EA code is deployed
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on certain nodes by the Chronus server (Figure 6 and 7). Listing 13 is an example EA code
configured with Listing 9. A micro-program for EAs is transformed into TinyScript and copied
to a template. Chronus server deploys this code on certain nodes in a space specified in a
Chronus macro-program.

Listing 13: A Fragment of EA Code in TinyScript
1 agent ea;
2 private data = get_sensor_data();
3 if (get_sensor_data() > 300) then
4 ea = create_event_agent();
5 set_source(ea, id());
6 set_sensor_data(ea, data);
7 return_to_basestation(ea);
8 end if

5.3. Microprogramming QAs
In a default algorithm for QA’s routing, only one QA visits to nodes in a certain space in the

order of node’s id. However, Chronus microprogramming language allows implementing QA’s
routing algorithms such as Clarke-Wright Savings (CWS) algorithm [21].

CWS is a well known algorithm for Vehicle Routing Problem (VRP), one of NP-hard prob-
lems. The CWS algorithm is a heuristic algorithm which uses constructive methods to gradually
create a feasible solution with modest computing cost. Basically, the CWS algorithm starts by
assigning one agent per vertex (node) in the graph (sensor network). The algorithm then tries
to combine two routes so that an agent will serve two vertices. The algorithm calculates the
"savings" of every pair of routes, where the savings is the reduced total link cost of an agent
after a pair of route is combined. The pair of routes that have the highest saving will then be
combined if no constraint (e.g., deadline) is violated.

Listing 14 implements a QA’s routing algorithm based on CWS. CWS_ROUTING is a process
object which is executed right before dispatching QAs by the Chronus server. The process
object takes a set of nodes to visit (nodes in Line 2), a spatial resolution and a tolerable delay
specified by a data query (percentage and tolerable_delay), and the maximum number of
nodes an agent can visit (max_nodes). Since the size of the agent’s payload is predefined, an
agent is not allowed to visit and collect data from more than a certain number of nodes. The
process object returns a set of sequences of nodes as routes on which each QA follows (routes
in Line 9), e.g., if it returns three sequences of nodes, three QAs will be dispatched and each of
them uses each sequence as its route. Moreover, a process object returns a set of sequences of
nodes, a QA replicates itself on an intermediate node and visit nodes in parallel. For example,
when a process returns a set of two sequences of nodes as {{5, 9, 10}, {5, 7}}, a QA moves
from a base station to node 5 and replicates itself. One QA visits to nodes 9 and 10, and the
other visits to node 7. After that, the two QAs merge into one QA, and it returns to a base
station.

In Listing 14, CWS_ROUTING selects part of nodes based on a spatial resolution (Line 9 to
12), and calculates savings of each adjacent nodes pair (Line 14 to Line 22). After that, routes
are created by connecting two adjacent nodes in the order of savings. As described in Section
4, the Chronus server stores the topology and latency information collected by EAs and QAs,
and micro-programs can use that information through node object, e.g., get_closest_node(),
get_shortest_path() and get_delay() methods (Line 4 to 6).
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Listing 14: A Micro-Program for QAs (CWS Routing)
1 CWS_ROUTING = proc do
2 | nodes, percentage , tolerable_delay , max_nodes |
3
4 closest = get_closest_node( base, nodes )
5 delay = tolerable_delay/2 -
6 closest.get_shortest_path(base).get_delay(base)
7
8 # select closest nodes
9 nodes = nodes.sort{|a, b|

10 a.get_shortest_path(closest).get_delay <=>
11 b.get_shortest_path(closest).get_delay}
12 [0, (nodes.length * percentage/100).round - 1]
13
14 nodes.each{ |node1| # get savings of each pair
15 nodes.each{ |node2|
16 next if node1.get_hops(node2) != 1
17 saving =
18 node1.get_shortest_path(closest).get_delay +
19 node2.get_shortest_path(closest).get_delay -
20 node1.get_shortest_path(node2).get_delay
21 savings[saving].push({node1, node2}) } }
22
23 # connect nodes in the order of savings
24 savings.keys.sort{ |saving|
25 savings[saving].each{ |pair|
26 if !pair[0].in_route && !pair[1].in_route ||
27 pair[0].is_end != pair[1].is_end then
28 route1 = pair[0].get_route_from(closest)
29 route2 = pair[1].get_route_from(closest)
30 if route1.get_delay <= delay &&
31 route1.get_size <= max_nodes &&
32 route2.get_delay <= delay &&
33 route2.get_size <= max_nodes then
34 pair[0].connect_with(pair[1]) # connect
35 end
36 end } }
37
38 # return routes
39 nodes.select{|node| node.is_end}
40 .map{|node| node.get_route_from(closest)}
41 end

As well as micro-programs for EA described in Section 5.1, micro-programs for QA can be
referred in macro-programs through the use of attributes. Listing 15 is an example Chronus
macro-program that refers a micro-program for QAs through the use of an attribute. A micro-
program for QAs is used as a default in a spacetime when a corresponding attribute marks an
initialization of the spacetime (Line 1 and 2). Also, a micro-program for QAs is used only for
performing a certain get_data() when a corresponding attribute marks a get_data() method
call (Line 1 and 2).

Listing 15: A Macro-Program for Deploying a Micro-Program for QAs
1 # @CWS_ROUTING
2 sp = Spacetime.new( GLOBALSPACE , Period.new( Hr -1, Min 30 ) )
3 spaces = sp.get_spaces_every( Min 10, Sec 30, 100 )
4
5 max_values = spaces.collect { |space|
6 # @CWS_ROUTING
7 space.get_data( ’f-spectrum’, MAX, Min 2 ){
8 | data_type , value, space, time |
9 # data handler

10 }
11 }
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5.4. Implementation of QAs
A micro-program for QAs is executed on the Chronus server to configure QAs’ routes. Each

QA is implemented in TinyScript. As illustrated in Figures 6 and 7, QA’s template code is
stored in Agent Repository. The Chronus server configures QA’s route with a micro-program.

Listing 16 is a fragment of a configured QA code in TinyScript which is executed once at a
base station. set_agent_path() sets a path, i.e., a sequence of nodes to visit (Line 5 and 6).
set_start_collecting() sets when to start collecting data by specifying an index of a node
(Line 7). If multiple QAs are used to collect data in parallel, each QA’s route is specified in
the sequence delimited with 0. In this example, a QA migrates from a base station to node 1
and 3, and starts collecting data. At node 3, a QA creates another QA, and one QA collects
data from nodes 11 and 9, and another QA collects data from nodes 10 and 13 (Line 5). After
visiting all nodes, each QAs returns to the node they split, node 3 in this example, and merge
themselves. In this example, two QAs (the first and the second QAs) are merged into one QA.
(Line 9 and 10). A list of nodes to collect data is provided by a micro-program for QAs. A
list of nodes before starting a data collection (node 1 and 3) is the shortest path from a base
station to the node to start collecting sensor data (nodes 12). Also, set_timestamp_from() and
set_timestamp_untill() specifies a time window of data to collect. Chronus assumes timers
of all nodes are synchronized and the Chronus server can convert a representation of a time
instant in a macro-program, i.e., absolute and relative times, into a clock of node.

Listing 16: A Fragment of QA Code
1 agent qa;
2 buffer path;
3 buffer merge;
4 qa = create_query_agent();
5 path[]=1; path[]=3; path[]=11; path[]=9; path[]=0; path[]=10; path[]=13;
6 set_agent_path(qa, path);
7 set_start_collecting(qa, 1);
8 set_agent_num_of_qa(qa, 2);
9 merge[] = 1; merge[] = 2;

10 set_agents_merge(qa, merge);
11 set_timestamp_from(qa, 100);
12 set_tiemstamp_untill(qa, 500);
13 migrate(qa);

Listing 17 is a fragment of a code deployed on each node beforehand, and used to accept QAs.
It is executed when a node receives a broadcast message. (QAs are transmitted via broadcast.)
It checks whether a QA collects data from the current node (Line 6). If the current node is the
last one to visit, a QA executes a code for in-network processing (Section 4.3) and returns to
a base station along the shortest path (Line 11 and 12). If not, a QA migrates to the next node
(Line 14).

Listing 17: A Fragment of Code to Accept EAs
1 agent qa, copy;
2 buffer path;
3 private node_id;
4 qa = migratebuf(); # retrieves a QA from a buffer
5 node_id = id(); # get the current node id
6
7 # start collecting data?
8 if start_collection(qa, node_id) then
9 for i = 1 to get_num_of_qa(qa) - 1

10 copy = create_query_agent();
11 path = get_path(copy, i);
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12 set_agent_path(copy, path);
13 set_start_collecting(copy, 1);
14 migrate(copy);
15 next i
16 end if
17
18 if (do_collection(qa, node_id)) then # collect data?
19 add_data(qa, get_sensor_data());
20 end if
21
22 if (is_end(qa, node_id)) then # the last node to visit?
23 # do in-network processing here
24 return_to_basestation(qa);
25 else
26 migrate(qa); # move to the next node
27 end if

6. Simulation Evaluation

This simulation study simulates a WSN deployed on the sea to detect oil spills in the Boston
Harbor of Massachusetts. (Figure 9). The WSN consists of nodes equipped with fluorometers.
Nodes are deployed in an 6x7 grid topology in an area of approximately 620x720 square meters.
They use MICA2 motes with the outdoor transmission range (radius) of 150 meters, 38.4kbps
bandwidth, 128kB program memory (flush memory) and 2000 mAh battery capacity (two AA
battery cells). The node running one of four WSN corners works as the base station. This study
assumes that 100 barrels (approximately 4,200 gallons) of crude oil is spilled at the center of
WSN. Simulation data set is generated with an oil spill trajectory model implemented in the
General NOAA Oil Modeling Environment [22]. Sensor data shows a fluorescence spectrum
of 280(nm) when there is no spilled oil, and it reaches 318(nm) when there exists oil. Each
sensor has a white noise that is simulated as a normal random variable with its mean of zero
and standard deviation of five percent of sensor data.

Initial location
of an oil spill

A base station Initial location
of an oil spill

A base station

Figure 9. A Simulated Oil Spill

6.1. Event Detection
This section describes the performance differences between EA’s algorithms shown in List-

ings 9 (Local Filtering), 11 (Neighborhood Filtering) and 12 (Gossip Filtering). Figure 10 and
Figure 13 show the number of packets to transmit EAs to the base station and the number of
false positive data. With Local Filtering, nodes decide whether to send replicated EAs inde-
pendently; the base station receives many false positive data. With Neighborhood Filtering and
Gossip Filtering, the base station receives mush less false positive data because nodes interact
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with each other before sending EAs. However, as shown in Figure 11, this interaction requires
control overhead (i.e., power consumption). (There is no control overhead in Local Filtering.)
Figure 12 shows the total number of packet transmissions. By reducing the number of false
positive data, the total number of packet transmissions is comparable in Gossip Filtering and
Local Filtering.
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Figure 10. Packet Transmission
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Figure 12. Total Packet Transmission

�

�

�

�

�

���

� ��� �	�
� ����� � �
�
�
�������������

��
�
���
 "!
#$ %
&')(
�
* #(
+ ,+)-
�
. �/
(
#0
1 &,
&

2�3547698;:  8 �<�5=>��9?
@ �AB?�CED 3 =>C 3E3AFG:  8 �<�5=>���?
H 3AIJI LK :  8 �<�5=>��9?

Figure 13. The Number of False Positive Data

6.2. Data Collection in the Future
As described in Section 4.2, QAs are dispatched to nodes to collect senor data when a query

retrieves historical data and STDB cannot provide enough data.
Table 3 compares the behavior of different routing algorithms for QA, i.e., a default QA’s

routing algorithm and the CWS algorithm in Listing 14, when a query retrieves data from nodes
in 3x3 nodes in the center of the WSN with 100% spatial-resolution and three minutes tolerable
delay. Each QA can contain 13 sensor readings. The default QA’s routing algorithm dispatches
only one QA, and the QA simply visits to all nodes in the order of node’s id. Since it does not
consider query’s timeliness, the result violates the tolerable delay specified by a query (i.e., three
minutes). The CWS-based routing algorithm in Section 5.3 considers the tolerable delay and
dispatches three QAs simultaneously, and one of QAs takes 2887ms to collect data and return
to the base station (Other two take 2679ms and 2380ms). Since these three QAs’ routes are
partially over wrapped, especially a route between a base station and the area in where the 3x3



22 Hiroshi Wada, Pruet Boonma, Junichi Suzuki,

nodes are located, the total number of hops QAs take (battery consumption) is larger than one
of the default routing algorithm. When an extended version of CWS-based routing algorithm
is used, the total number of hops drops significantly since a QA replicates itself and replicated
QAs merge on an intermediate node. The total number of hops QAs take is almost same as one
of the default routing algorithm.

Depending on the requirements of WSN applications, e.g., timeliness and low energy con-
sumption, application developers can implement their own algorithms for routing QAs by lever-
aging Chronus microprogramming language.

Table 3
A Measurement on QA for the Past

Default Routing CWS Routing CWS Routing with QA
merging

# of QAs 1 3 1 (split into 3)
Latency (ms) 4459 2887 2887
Total # of Hops 26 48 28

In addition to queries for the past, QAs are used for queries for the future. Figure 14 shows
the number of agents (sensor data carried by EAs and QAs) from 3x3 nodes in the center of the
WSN to the base station when a future query is used as in Listing 2. The temporal resolution of
the future query is three minutes, i.e., obtain data every three minutes, and the spatial resolution
varies from 0% to 100%. In addition to QAs, Gossip Filtering-based EAs are deployed on each
node.
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Figure 14. The Number of Sensor Data Received by the Base Station with a Future Query

When a spatial resolution is 0%, no future query is used, and few sensor data are transmitted
during the first 75 minutes since only EAs send sensor data (replicated EAs). When a spatial-
resolution is larger than 0%, deployed QAs send sensor data (replicated QAs) to the base station
every three minutes according to a spatial-resolution even if deployed EAs do not send sensor
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data. In Figure 14, spikes appear every three minutes, and they correspond transmitted QAs.
This way, a future query in Chronus allows collecting sensor data to satisfy specified spatiotem-
poral resolutions even if there is no event.

6.3. Data Collection in the Past
This section describes differences in response time of data queries that retrieve data in the

past from nodes in 3x3 nodes in the center of the WSN with 100% spatial-resolution (15(a) and
15(b)). An application executes data queries, get_data() method call with three minutes tol-
erable delay, 240 minutes after an oil spill occurs. -30 min means that an application examines
the data at 30 minutes before. (at 210 minutes after an oil spill occurs.) If every nodes in the
3x3 area sent EAs to a base station, the response time of data queries is almost zero because
STDP can provide enough data to an application, However, if STDP cannot provide enough
data, Chronus runtime automatically dispatches QAs to sensor nodes to collect data. Since QAs
use the CWS algorithm defined in Section 5.3 and data query’s tolerable delay is three minutes,
it takes 2887ms when no data is available in STDB. Also, it takes 1291ms for a QA to visit to
only the closest node in the 3x3 area.

Figure 15(a) and 15(b) show response times when EAs works with Gossip Filtering and Local
Filtering algorithms, respectively. Response times in Figure 15(b) is shorter than ones in Figure
15(a) since Local Filtering-based EAs send much sensor data, including false positive data,
than Gossip Filtering-based EAs as shown in Section 6.1. When an application gives weights
to data collection rather than data detection, Local Filtering-based EAs gives positive impact
since it can reduce the response time of data queries for the past. When an application gives
weights to data detection rather than data collection, Gossip Filtering-based EAs gives positive
impact since it reduces the number of false positive data and consumes less battery power. As
the results shown, Chronus allows developers to flexibly tune their applications through the use
of micro-programming languages.
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Figure 15. Response Time of Data Queries
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6.4. Lines of Code
This section compares lines of code (LOC) of applications in Chronus and nesC. A number

of WSN applications are currently implemented in nesC [23], a dialect of the C language, and
deployed on the TinyOS operating system [24], which provides low-level libraries for basic
functionalities such as sensor reading and node-to-node communication. nesC and TinyOS
hide hardware-level details; however, they do not help developers to rapidly implement their
applications because applications in nesC are required to handle low-level mechanisms (e.g.,
memory management and routing)

Listing 18 is a Chronus code to collect data from sensor nodes by leveraging QAs. The code
hides 1) which routes QAs use to move in WSNs and 2) how each node routes QAs. As de-
scribed in Section 5.3, Chronus allows reusing micro-programs by leveraging attribute oriented
technique. Listing 18 hides 33 lines of code defined in Listing 14. Moreover, application devel-
opers are required to implement nesC code deployed on each sensor node to route QAs. Listing
19 shows a fragment of the code. ReceiveMsg.receive() is invoked when a node receives a
QA (Line 9). After that, a code collects sensor data in the past, append the data to a QA, and
route the QA to the next node. In addition to a code in Listing 19, a code for configure mod-
ules, e.g., bind the QARouting module with a module that implements ReceiveMsg interface, is
required to be implemented. The total LOC of nesC code is approximately 70.

Listing 18: Chronus code to collect data using QAs
1 # @CWS_ROUTING
2 sp = Spacetime.new( GLOBALSPACE , Period.new( Hr -1, Min 30 ) )
3 spaces = sp.get_spaces_every( Min 10, Sec 30, 100 )

Listing 19: nesC version QA Routing Module
1 module QARouting {
2 uses {
3 interface ReceiveMsg;
4 interface SendMsg;
5 interface StdControl;
6 } }
7 implementation {
8 // invoked once a node receive a QA
9 event TOS_MsgPtr ReceiveMsg.receive(TOS_MsgPtr m) {

10 AgentMsg* agent = (AgentMsg*)m->data;
11
12 // collect sensor data from the current node
13 if(agent->isReturning == FALSE &&
14 agent->startCollectionIndex >= agent->numOfHops){
15 uint16_t data = getDataAt(agent->data_timestamp);
16 append(agent, TOS_LOCAL_ADDRESS , data);
17 }
18
19 // check if the current node is the last one to visit
20 if( getLastNode(agent) == TOS_LOCAL_ADDRESS )
21 agent->isReturning = TRUE;
22
23 // go to the next node
24 agent->numOfHops++;
25 uint16_t nextNode = call getNextNode(agent);
26 if(call Send.send(nextNode, sizeof(AgentMsg), &m) != SUCCESS){
27 return FAIL;
28 }
29 return SUCCESS;
30 }
31
32 // get sensor data in the past from a log
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33 static uint16_t getDataAt(uint16_t timestamp){...}
34 // add a new data to an agent
35 static uint16_t append(AgentMsg* agent, uint16_t addr, uint16_t data){...}
36 // get the last node to visit
37 static uint16_t getLastNode(AgentMsg* agent){...}
38 // get the next node to visit
39 static uint16_t getNextNode(AgentMsg* agent){...}
40 }

Chronus micro-programs also hides the details of applications running on each sensor node as
well as macro-programs does. Listing 20 shows a fragment of nesC version of Local-Filtering
algorithm. ADC.dataReady() is invoked right after an Analog-Digital Converter module pro-
vides sensor data to an application. If the data exceeds a certain threshold (Line 5), it calls
SendData() to send the data to a base station (Line 7). The LOC of Chronus version of Local-
Filtering algorithm is only three (Listing 9) while one of nesC version is 20.

Listing 20: nesC version Local-Filtering Algorithm
1 // invoked once an AD converter is ready
2 async event result_t ADC.dataReady(uint16_t data){
3 atomic {
4 if (!gfSendBusy) {
5 gfSendBusy = TRUE;
6 if(data > SENSOR_READING_THRESHOLD) {
7 post SendData( data );
8 } } }
9 return SUCCESS;

10 }
11
12 task void SendData(uint16_t data){
13 EventAgentMsg *pReading;
14 if (pReading = (EventAgentMsg *)call Send.getBuffer(&gMsgBuffer ,&Len)) {
15 pReading ->type = F_SPECTRUM;
16 pReading ->parentaddr = call RouteControl.getParent();
17 pReading ->reading = data;
18 // send a message to a base station
19 if ((call Send.send(&gMsgBuffer ,sizeof(EventAgentMsg))) != SUCCESS){
20 atomic gfSendBusy = FALSE;
21 }
22 } }

As the results shown, Chronus reduces LOC of WSN applications significantly and allows
developers to implement their applications rapidly.

6.5. Memory Footprint
Table 4 shows the memory footprint of micro-programs deployed on a sensor node. The total

footprint counts the memory consumption of TinyOS, Bombilla VM, EA code and QA code. As
shown in Table 4, Chronus’s micro-programs are lightweight enough to run on a MICA2 node,
which has 128 KB memory space. It can operate on a smaller-scale sensor node;for example,
TelosB, which has 48 KB memory space.

Table 4
Memory Footprint

EA Algorithms Total Footprint (KB) EA Code Footprint (KB)
Local Filtering 41.3 0.077
Neighborhood Filtering 41.3 0.114
Gossip Filtering 41.3 0.116
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7. Related Work

This work is a set of extensions to the authors’ previous work [25, 26]. This chapter in-
vestigates several extensions to [25]; for example, user-defined operators and microprogram-
ming. This chapter also extends [26] to study complex event specification in macro-programs,
streamlined mapping from macro-programs to micro-programs based on the notion of attribute-
oriented programming, and extra routing optimization for QAs. Moreover, this chapter provides
extended simulation results to evaluate the performance and resource consumption of WSN ap-
plications built with Chronus.

Pleiades [27] and Snlog [28] are the languages for spatial macroprogramming. They pro-
vide programming abstractions to describe spatial relationships and data aggregation opera-
tions across nodes. Event detection can be expressed without specifying the low-level details
of node-to-node communication and data aggregation. However, these languages require ap-
plication developers to explicitly write programs to individual nodes. For example, they often
need to access the states of individual nodes. In contrast, Chronus allows developers to program
event detection to spacetime as a global behavior of each application. Also, Kairos and SNLong
do not consider the temporal aspect of sensor data. They do not support data collection for the
past; all sensor data are always considered as data collected at the current time frame.

Proto [29], Regiment [30] and Flask [31] are similar to Chronus in that they support in-
network data processing and spatiotemporal event detection. While they allow developers to
specify arbitrary event detection algorithms, they do not support data collection the notion of
spatial and temporal resolutions. Chronus supports data collection for the future and the past in
arbitrary spatiotemporal resolutions.

TinyDB [32] and Semantic Stream [33] performs in-network data processing as well as spa-
tiotemporal data collection by extending SQL and Prolog, respectively. They aid to program
data collection for the future, but not for the past. Moreover, their expressiveness is too limited
to implement data handlers although they are well applicable to specify data queries. There-
fore, developers need to learn and use extra languages to implement data handlers. In contrast,
Chronus supports spatiotemporal data collection for the future and the past. Its expressiveness
is high enough to provide integrated programming abstractions for data queries and data han-
dlers. Also, TinyDB supports event-based data collection that is executed upon a predefined
event; however, it does not support event detection on individual nodes.

SPIRE [34] and SwissQM [35] propose SQL-based languages for complex event detection in
RFID systems and WSNs, respectively. GEM [36] proposes a Petri Net-based visual language
to detect complex events. These languages’ expressiveness is too limited to implement event
handlers although they are well applicable to define event specifications. Chronus’ expressive-
ness is higher to provide integrated programming abstractions for event specifications and event
handlers.

This work is the first attempt to investigate a push-pull hybrid WSN architecture that performs
spatiotemporal event detection and data collection. Most of existing push-pull hybrid WSNs do
not address spatiotemporal aspects of sensor data [37–39]. They also assume static network
structures and topologies (e.g., star and grid topologies). Therefore, data collection can be
fragile against node/link failures and node addition/redeployment. In contrast, Chronus can
operate in arbitrary network structures and topologies. It can implement failure-resilient queries
by having the Chronus server dynamically adjust the migration route that each QA follows.
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PRESTO performs push-pull hybrid event detection and data collection in arbitrary network
structures and topologies [40]. While it considers the temporal aspect in data queries, it does
not consider their spatial aspect. Moreover, it does not support data collection in the future as
well as in-network data processing.

8. Conclusion

This chapter proposes a new programming paradigm for autonomic WSNs, spatiotemporal
macroprogramming. It is designed to reduce the complexity of programming spatiotemporal
event detection and data collection. This chapter discusses Chronus’ design, implementation,
runtime environment and performance implications.

Chronus is currently limited in two dimensional physical space to deploy sensor nodes. It
is planned to be extended for using three dimensional physical space (i.e., four dimensional
spacetime). Accordingly, new applications will be studied such as three-dimentional building
monitoring and atmospheric monitoring.
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