
AUTONOMIC ADAPTATION OF NETWORK APPLICATIONS 
WITH THE INET ARTIFICIAL IMMUNE SYSTEM 

 
Chonho Lee and Junichi Suzuki 
Department of Compute Science 

University of Massachusetts Boston 
100 Morrissey Blvd. Boston, MA 02125 

{chonho and jxs} @ cs.umb.edu 
 

ABSTRACT 
This paper describes and empirically evaluates a biologi-
cally-inspired adaptation mechanism that allows network 
applications to autonomously adapt to dynamic environ-
ment changes in the network. Based on the observation 
that the immune system has elegantly achieved autono-
mous adaptation, the proposed mechanism, called the iNet 
artificial immune system, follows the mechanisms behind 
how the immune system detects antigens (e.g. viruses) 
and specifically reacts to them. iNet models a behavior of 
network applications (e.g. migration and replication) as an 
antibody, and an environment condition (e.g. network 
traffic and resource availability) as an antigen. iNet allows 
each network application to autonomously sense its local 
environment conditions (i.e. antigens) to evaluate whether 
it adapts well to the sensed conditions, and if it does not, 
adaptively perform a behavior (i.e. antibody) suitable for 
the conditions. Measurement results show iNet works effi-
ciently and makes network applications adaptive. 
 
KEY WORDS 
Autonomous adaptive networks, artificial immune system  
 
1. Introduction 

Future network applications are expected to be more 
autonomous and adaptive to dynamic changes in the net-
work (e.g. changes in network traffic and resource avail-
ability) in order to improve user experience, expand ap-
plication’s operational longevity and reduce maintenance 
cost. As inspiration for a new paradigm for network appli-
cation design [1, 2, 3], the authors of the paper observe 
that various biological systems have already overcome the 
requirements (i.e. autonomy and adaptability). 

The NetSphere architecture1 applies key biological con-
cepts and mechanisms to design network applications. It 
implements each network application as a group of dis-
tributed and autonomous software agents. This is analo-
gous to a bee colony consisting of multiple bees (agents). 
Each agent implements a functional service and follows 
biological behaviors such as migration, communication, 
energy exchange, replication and death. 
                                                 Each agent is implemented as a Java object and runs on a 

NetSphere platform [7]. The platform is also implemented 
1 The NetSphere Architecture is an extension to the Bio-Networking 
Architecture [6, 7, 8].  

This paper addresses autonomous adaptability of network 
applications. The proposed adaptation mechanism, iNet, is 
designed after the mechanisms behind how the immune 
system detects antigens and produces specific antibodies 
to kill them. iNet models an environment condition (e.g. 
network traffic and resource availability) as an antigen 
and a behavior of agents as an antibody. iNet allows each 
agent to autonomously sense its local environment condi-
tions (i.e. antigens) to evaluate whether it adapts well to 
the sensed conditions, and if it does not, adaptively per-
form a behavior (i.e. antibody) suitable for the conditions 
(i.e. antigens). For example, iNet may suggest an agent to 
invoke migration behavior for moving towards network 
nodes that accept a large number of user requests for their 
services. This leads to the adaptation of agent locations, 
and agents can reduce their response time for users. 

This paper is organized as follows. Section 2 overviews 
the design of agents in the NetSphere architecture. Section 
3 describes the design of the iNet artificial immune sys-
tem. Section 4 shows several empirical measurements to 
evaluate iNet. Sections 5 and 6 conclude with comparison 
with existing related work. 

2. NetSphere Architecture 

In the NetSphere architecture, agents are designed based 
on the three principles described below [6, 7]. 

• Decentralization: Agents are decentralized. There are 
no central entities to control and coordinate agents (i.e. no 
directory servers and no resource managers). Decentrali-
zation allows network applications to be scalable and 
simple by avoiding performance bottleneck and any cen-
tral coordination in deploying them [4, 5]. 
• Autonomy: Agents are autonomous. Agents monitor 

their local network environments, and they autonomously 
behave and interact without any intervention from/to other 
agents, platforms and human users. 
• Adaptability: Agents are adaptive to changing environ-

ment conditions (e.g. user demands, user locations and re-
source availability). Each agent contains iNet, which al-
lows the agent to adaptively behave against the current lo-
cal environment conditions. 



in Java and runs atop a Java VM on a network host. Each 
agent consists of three parts: attributes, body and behav-
iors. Attributes carry descriptive information regarding 
the agent (e.g. agent ID). Body implements a service the 
agent provides. For instance, an agent may implement a 
genetic algorithm for an optimization problem, while an-
other agent may implement a physical model for scientific 
simulations. Behaviors implement actions inherent to all 
agents. Although NetSphere defines nine standard agent 
behaviors [7], this paper focuses on five of them. 

• Migration: Agents may move between platforms. 
• Communication: Agents may communicate with other 

 ser-

r providing services to other 

m works 
 after the 

re 1) is an adaptive defense 
e body against dynamic environ-

 mole-

t specifically react and eliminate 
an antigen identified by T-cells. Figure 2 shows how anti-

g to the innate 

agents for the purposes of, for instance, requesting a
vice or exchanging energy. 
• Energy exchange and storage: Agents may receive and 

store energy in exchange fo
agents. Agents may also expend energy for using re-
sources available on a platform (e.g. memory space). The 
abundance and scarcity of stored energy affect various 
behaviors of an agent. For example, an abundance of 
stored energy indicates higher demand for the agent; thus 
the agent may be designed to favor reproduction in re-
sponse to higher levels of stored energy. A scarcity of 
stored energy (an indication of lack of demand or ineffec-
tive behaviors) may eventually cause the agent’s death. 
• Replication: Agents may make a copy of themselves in 

response to higher energy level. 
• Death: Agents also may die as a result of lack of energy. 

3. The iNet Artificial Immune System 

This section overviews how the immune syste
(Section 3.1), and describes how iNet is designed
immune system (Section 3.2). 

3.1 Immune System 

The immune system (Figu
mechanism to regulate th
ment changes (e.g. antigen invasions). Through a number 
of interactions among various white blood cells (e.g. 
macrophages and lymphocytes) and molecules (e.g. anti-
bodies), the immune system evokes two immune re-
sponses: innate and adaptive immune response. 

In the innate immune response, the immune system per-
forms self/non-self discrimination to detect foreign
cules (e.g. viruses). This response is initiated by macro-
phages and T-cells, a type of lymphocytes. Macrophages 
move around the body to ingest antigens and present them 
to T-cells so that T-cells can detect the antigens. T-cells 
are produced in thymus and trained through the negative 
selection process. In this process, thymus removes T-cells 
that react with the body’s own cells (self cells). The re-
maining T-cells are used as detectors for non-self cells. 
When T-cells detect non-self cells, they secrete chemical 
signals to activate the second immune response, the adap-
tive immune response. 

In the adaptive immune response, the immune system 
produces antibodies tha

activation

antibody

B-cell

antigen

T-cell 
receptor

T-cellsignal

Macrophage

Thymus

Stem cell
(immature T-cell)

positive and
negative selection

antibody
production

self-MHC

activation

antibody

B-cell

antigen

T-cell 
receptor

T-cellsignal

Macrophage

Thymus

Stem cell
(immature T-cell)

positive and
negative selection

antibody
production

self-MHC  
Figure1. Immune System 

bodies recognize antigens and how antibodies interact 
with each other. A key portion of antigen recognized by 
antibodies is called epitope, which is the antigen determi-
nant. Paratope is a portion of antibody that corresponds to 
a specific type of antigens. Once an antibody combines an 
antigen via their epitope and paratope, the antibody starts 
eliminating the antigen. Each type of antibody has its own 
antigenic determinant, called idiotope. This means an an-
tibody is recognized as an antigen by other antibodies. 
Antibodies interact with each other through stimulation 
and suppression relationships. Thus, the adaptive immune 
response eliminating foreign antigens is offered by multi-
ple antibodies in a collective manner, although the domi-
nant role may be played by a single antibody whose para-
tope fits best with the epitope of an invading antigen. 

3.2. Design and Implementation of iNet 

The iNet artificial immune system consists of two facili-
behavior selec-

epitope

antigen

antibody 2
(anti-idiotypeto paratope)

antibody 3
(anti-idiotype
to idiotope)antibody 1

idiotope

paratope

suppression

stimulation

epitope

antigen

antibody 2
(anti- to paratope)

antibody 3
(anti-idiotype
to antibody 

idiotope

paratope

suppression

stimulation

epitope

antigen

antibody 2
(anti-idiotypeto paratope)

antibody 3
(anti-idiotype
to idiotope)antibody 1

idiotope

paratope

suppression

stimulation

epitope

antigen

antibody 2
(anti- to paratope)

antibody 3
(anti-idiotype
to antibody 

idiotope

paratope

suppression

stimulation

 
Figure2. Interactions among antigens and antibodies 

ties: the environment evaluation (EE) and 
tion facility (BS) (Figure 3) correspondin
and adaptive immune response, respectively. In EE, Each 
agent continuously senses a current environment condi-
tion as an antigen and examines it if it is self or non-self. 
A self antigen indicates the agent adapts to the sensed en-
vironment conditions, and a non-self antigen indicates it 

attributes

Agent

body

behaviors

Self environment 
condition

Non-self environment 
condition

Behavior
(antibody)

Environment 
Condition

Environment Evaluation Behavior Selection

(antigens)

activation

attributes

Agent

body

behaviors

Self environment 
condition

Non-self environment 
condition

Behavior
(antibody)

Environment 
Condition
(antigens)

activation

Environment Evaluation Behavior Selection  
Figure3. iNet (adaptation mechanism)

  



1

0

1

…

…

DECISION TREE

feature
feature value

OUTPUT

INPUT

FEATURE TABLE

1

0

1

…

…

N

A

1X1

0X2

1X3

…

…

classa3a2a1

class value

(# feature)
Xcur (current
environment 
condition)

Xcur.class
(class value)

1

0

1

…

…

DECISION TREE

feature
feature value

OUTPUT

INPUT

FEATURE TABLE

1

0

1

…

…

N

A

1X1

0X2

1X3

…

…

classa3a2a1

class value

(# feature)
Xcur (current
environment 
condition)

Xcur.class
(class value)

Figure5. Input and Output of self/non-self classification 

does not. s acti-

3.2.1 Environment Evaluation Facility (EE) 

The EE facility performs two steps (Figure 4): initializa-

The second step implements self/non-self discrimination 

3.2.2. Behavior Selection Facility (BS) 

Once the current environment condition is classified as 

Figure 7 shows an interactions among antibodies in iNet. 

When a non-self antigen is detected, BS i
vated. Then it allows each agent to choose a behavior as 
an antibody that specifically matches the detected non-self 
antigen (i.e. non-self environment conditions). 

tion and self/non-self classification. The initialization step 
randomly generates feature vectors first, each of which 
consists of features that represent environment conditions. 
In iNet, a set of environment conditions (i.e. an antigen) is 
implemented as a feature vector (X) consisting of features 
(F) and class value (C). F contains a series of the envi-
ronment conditions such as service request rate, energy 
level, memory utilization, and the number of agents run-
ning on a local platform (e.g. Xcurent=((30, 500, low, 10), 
C)). C indicates whether a given environment is self (0) or 
non-self (1). If it is 0, that means an agent adapts to the 
current environment. If it is 1, the agent does not. Like the 
negative selection in the immune system, the initialization 
step removes the feature vectors that closely match with 
the self environment conditions, where agents do not have 
to behave for adaptation. This is performed via vector 
matching between randomly generated feature vectors and 
self feature vectors that human users supply. Similar to T-
cells, the remaining feature vectors are used to detect non-
self environment conditions (i.e. antigens), where agents 
need to behave for adaptation.  

in the immune system. It uses the feature vectors provided 
from the initialization step (i.e. artificial T-cells) to clas-
sify the current environment condition into self or non-
self. This classification step is performed with a decision 
tree built from the feature vectors (Figure 5). The reasons 
for the choice of decision tree classifier are ease of imple-
mentation and algorithmic efficiency. Since this classifier 

is easy to understand and implement, iNet can maintain a 
lower barrier for developers to design adaptive network 
applications. Also, this classifier executes classifications 
much faster than other techniques using clustering, naïve 
bayes and Markov model algorithms [18, 19, 20]. For ex-
ample, a time complexity for the query (i.e. classification) 
of decision tree is O(log(N)) while that of clustering or 
naïve bayes algorithm is at least O(N) (although it is com-
parable in some applications). The efficiency of classifica-
tion is one of the most important requirements in iNet be-
cause each agent periodically senses and examines its sur-
rounding environment.  

Non-self 
environment 
condition

Environment Evaluation Behavior Selection

Initialization
(Create detectors)

non-self, EE facility activates BS facility (Figure 4); then 
BS facility selects an antibody (i.e. agent’s behavior) suit-
able for the detected non-self antigen (i.e. environment 
conditions). Each agent contains a network of antibodies, 
which are linked with each other using stimulation and 
suppression relationships. Each antibody (Figure 6) has its 
own concentration value corresponding to the number of 
the antibody. The value is used as priority in behavior se-
lection. When an environment changes (i.e. when an non-
self antigen is reported by EE), BS engine identifies can-
didate behaviors suitable for the current environment, pri-
oritizes them based on their concentrations, and then se-
lects the most suited one from the candidates. When pri-
oritizing behaviors, stimulation relationship between be-
haviors contributes to increase the concentration value, 
and suppression relationship contributes to decrease it. 
Each relationship has its own strength (affinity), which 
indicates the degree of stimulation or suppression. 

The antibody i stimulates M antibodies and suppresses N 
antibodies. mji and mik denote affinity values between an-
tibody j and i, and between antibody i and k. mi is an af-
finity value between an antigen and antibody i. The con-
centration of antibody i, denoted by ai, is calculated with 
the following equations. 

(2)  ..... 
))(5.0exp(1

1
)(

(1) ... )(
1

)(
1

)(
1

1)( NtidA ⎜
⎛

tiA
t

i
a

t
i

akim
M

k
tkaikm

M
tja

j
jim

Ndt

−+
=

−+∑
=

⋅−⋅∑
=

= ⎟
⎟
⎠

⎞
⎜
⎝

 
In the equation (1), the first and second terms in a big 
bracket denote the stimulation and suppression from other 
antibodies. The affinity values between antibodies (i.e. mji 
and mik) are positive between 0 and 1. mi is 1 when anti-
body i is stimulated directly by an antigen, otherwise 0. d 
denotes the dissipation factor representing the  death of an 
antibody. The equation (2) is a sigmoid function used to 
squash the Ai(t) value between 0 and 1. Every antibody’s 
concentration is repeatedly calculated the particular num-
ber of times. If no antibody exceeds a threshold during the 
calculation, the antibody whose concentration value is the 

Environment Sensing

Behavior Selection

NO

YES

Self 
environment 

condition

Activation
Self/Non-self 

Classification of 
Environment 
Conditions

Concentration 
Calculation

Given condition has 
been memorized?

Non-self 
environment 
condition

Environment Evaluation Behavior Selection

Initialization
(Create detectors)

Environment Sensing

Behavior Selection

NO

YES

Self 
environment 

condition

Activation
Self/Non-self 

Classification of 
Environment 
Conditions

Concentration 
Calculation

Given condition has 
been memorized?

 
Figure4. Flow of the iNet adaptation mechanism 

  



highest is selected (i.e. winner-tales-all selection). If one 
or more antibodies’ concentration values exceed the 
threshold, an antibody is selected based on the probability 
proportional to the current concentrations (i.e. roulette-
wheel selection). 

Figure 8 shows an example of antibodies in BS facility. It 

4. Preliminary Measurement Results 

of empiri-

 evaluate the perform-

4.2. Perfo cility 

 

contains four antibodies representing behaviors: commu-
nication and migration with two different policies (Table 
I). Antibody1 represents that migration behavior is stimu-
lated when resource availability is low on the local plat-
form. Antibody1 suppresses Antibody3 when it is stimu-
lated (i.e. when resource availability is low on the local 
platform). Now, suppose that (1) local resource availabil-
ity is low on the local platform, (2) network traffic is low 
on the local platform, and (3) user location is close. In this 
case, three antigens stimulate Antibodies1, 2 and 4 simul-
taneously. The populations of these antibodies increase, 
and it is likely that Antibody2’s concentration value be-
comes highest because Antibody2 suppresses Antibody4, 
which suppresses Antibody1. As a result, Antibody2 (i.e. 
migration behavior) would be selected. 

This section shows several preliminary results 
cal measurement to evaluate the performance of the iNet, 
both the EE and BS facility, and the adaptability of an ap-
plication developed with iNet.  

4.1 Measurement Configuration 

The first set of measurements is to
ance of the iNet (Sections 4.2, 4.3 and 4.4). They were 
performed on a Java 2 standard edition VM (version 1.5 
from Sun Microsystems) on a Windows XP PC with a 
2.5GHz Celeron CPU and 1GB memory. 

The second part of measurements (Section 4.5) is to 
evaluate the adaptability of an application developed with 
iNet. It was conducted assuming varying numbers of 
agents (from 1 through approx 100 agents) and NetSphere 
platforms (from 1 through 16 platforms). A maximum of 
8 Windows XP PCs are used, each running a Java2 stan-
dard edition JVM (version 1.4.2_04 from Sun Microsys-
tems). These 8 PCs were divided into 4 groups of 2 PCs, 
depending on their CPU speed and memory size (Table II). 
They were connected through 100Mbps Ethernet. 

rmance of Environment Evaluation Fa

This subsection shows the overhead of the EE facility
containing Decision Tree classifier in order to verify its 
efficiency. The overhead includes initialization time Tinit 
and classification time Tclassify. Tinit consists of t1, the time 
to create a feature table (i.e. to generate environment de-
tectors), and t2, the time to build its decision tree. Tclassify 
is the time to classify a current environment condition. So, 
the total overhead of the EE facility is considered as TEE = 
Tinit+Tclassify. This value is affected by three parameters: N, 
the size of a feature table, A, the number of features (i.e. 
environment conditions) in a feature vector, and S, the 
number of user-defined self environment conditions used 
in initialization step. Figure 9 shows Tinit (t1 (1)-(3) and t2 
(4)) to create a feature table having N feature vectors as 
parameter A and S vary; and Table III shows the classifi-

Table I. Paratopes and Agent Behaviors Supported in Antibodies

jor ID M
LOCAL RESOURCE
AVAILABILITY (RA) HIGH, LOW TOWARDS

_USER

LOCAL TRAFFIC HEAVY,
LIGHT

HIGHER_T
RAFFIC

REMOTE TRAFFIC HEAVY,
LIGHT

COMM-SERV N/A

NUM LOCAL AGENTS LARGE,
SMAL

Major ID Minor ID Ma inor ID

L
REPLICATION N/A

ENERGY LEVEL HIGH, LOW RANDOM

USER LOCATION FAR,
CLOSE

HIGHER_E
NERGY

REPRODUCTION

HIGH, LOWREMOTE RESOURCE
AVAILABILITY (RA)

MIGRATION HIGHER_R
A

Paratope Agent Behavior

Table II. Configurations of PCs used in empirical evaluation 

A Intel Celeron 2.0 GHz 512 MB
B Intel Celeron 2.4 GHz 640 MB
C Intel Pentium4 2.8 GHz 1000 MB
D Intel Pentium4 3.0 GHz 1000 MB

Group CPU Memory

 

(1)

0

2

4

6

8

10

10 20 30 40 50 60 70 80 90
# of feature vectors in a feature table

Ti
m

e 
(m

se
c)

S = 5
S = 10
S = 15

 

(2)

0

5

10

15

20

25 75 125 175 225
# of feature vectors in a feature table

Ti
m

e 
(m

se
c)

S = 5
S = 10
S = 15

 
(3)

0
5

10
15
20
25
30
35

50 150 250 350 450
# of feature vectors in a feature table

Ti
m

e 
(m

se
c)

S = 5
S = 10
S = 15

 

(4)

0

10

20

30

40

50

10 85 160 235 310 385
# of feature vectors in a feature table

Ti
m

e 
(s

ec
)

A=4
A=5
A=6

 
Figure 9. Tinit: Initialization overhead of the EE facility. 
(1)-(3) shows t1: time to create a feature table of size N when A=4, 
5 ,and 6, and (4) shows t2: time to build its decision tree of size N. 

Antibody 3

Remote RA
Low

Comm
Service

Local RA
Low

Migration
Higher RA

Antibody 1

User Loc
Close

Migration
Toward User

Local Traffic
Heavy

Comm
Service

Antibody 4

stimulation suppression

Antibody 2

Antibody 3

Remote RA
Low

Comm
Service

Local RA
Low

Migration
Higher RA

Antibody 1

User Loc
Close

Migration
Toward User

Local Traffic
Heavy

Comm
Service

Antibody 4

stimulation suppression

Antibody 2

Figure8. Example of antibodies in BS 

Relationships to other
antibodies (behaviors)

Precondition
under which this

antibody is selected

Agent
Behavior ID

Antibody

BehaviorParatope Idiotope

Relationships to other
antibodies (behaviors)

Precondition
under which this

antibody is selected

Agent
Behavior ID

Antibody

BehaviorParatope Idiotope  
 
 

Figure6. Antibody structure 

precondition behavior

Antibody i
precondition behavior

precondition behavior

precondition behavior

Antibody 1

Antibody k

Antibody M

precondition behavior

precondition behavior

precondition behavior

Antibody 1

Antibody j

Antibody N

Antigen

mi1

miM

mik

m1i

mNi

mji

mi

…
…

…
…

stimulation suppression

precondition behavior

Antibody i
precondition behaviorprecondition behaviorbehavior

precondition behaviorprecondition behaviorbehavior

precondition behaviorprecondition behaviorbehavior

Antibody 1

Antibody k

Antibody M

precondition behaviorbehavior

precondition behaviorprecondition behaviorbehavior

precondition behaviorprecondition behaviorbehavior

Antibody 1

Antibody j

Antibody N

AntigenAntigenAntigen

mi1

miM

mik

m1i

mNi

mji

mi

…
…

…
…

stimulation suppression

Figure7. Interactions among antibodies 

  



cation time, Tclassify. In the results, Tinit (both t1 and t2) 
gradually increases in proportion to the parameters. How-
ever, at runtime the EE facility only consumes an amount 
of time Tclassify because we assume that the classification 
algorithm will not rebuild the decision tree; i.e. Tinit is 
considered only once in the initialization step. Once the 
decision tree is given, iNet always uses the same decision 
tree classifier during runtime execution. 

The accuracy of classification algorithm is measured by 

 the EE facility 

tibodies 

 

comparing the actual class of the current environment 
condition (i.e. the class that it should be in) with the clas-
sified result. The accuracy is also affected by two parame-
ters: N and A, and how these parameters vary the accuracy 
is shown in Figure10. In general, a classification algo-
rithm achieves high classification accuracy with more 
sample data and features (i.e. larger N and A). As ex-
plained above, the decision tree will not be rebuilt at run-
time (although its accuracy might be improved by rebuild-
ing). So, in this experiment, it is important to decide an 
appropriate size of the parameter N for both reducing 
overhead and improving classification accuracy. There is 
a trade-off between the efficiency and accuracy; so appli-
cation developers need to determine the value of N, based 
on the experimental results shown in Table IV, depending 
on the requirements of their application. 

Figure11 shows memory footprints which
consumes for (1) initializing a feature table, (2) building a 
decision tree and (3) classifying a feature vector. They are 
measured when N is 150 and A is 5 (i.e. guaranteed 85% 
classification accuracy from Table IV). The result indi-
cates that the EE facility requires more memory space for 
a feature table as N increases (see black bar). Also it re-
quires more space to build a decision tree until the tree is 
fully expanded (see gray bar; e.g. # of tree nodes is 364 
when A=5 and V=3; V is # of distinct values of each fea-
ture, i.e. # of branches); however, the EE facility con-
sumes a constant memory space (around 25KB, see white 
bar) for classification regardless of parameter values.  

4.3 Performance of Behavior Selection Facility 

The BS facility considers the time to initialize an
and the time to select a behavior (Section 3.2.2). However, 

(like T
the BS initialization does not affect runtime execution

init in EE). So, the overhead of BS facility, TBS, just 
takes the behavior selection time.  

The number of antibodies, AB, is determined by the num-
ber of features, A, the number of distinct values of each 
feature, V, and the number of behaviors that each agent 
supports, B, as AB = (A*V)*B. Figure12 shows how much 
time the BS facility spends to select a behavior. It is 
shown that the selection time exponentially increases as 
AB increases (i.e. with larger A, larger V, larger B). Fig-
ure13 shows memory footprints that the BS facility con-
sumes for (1) initializing the antibodies and (2) selecting a 
behavior. The BS facility requires more memory space in 
proportion to the number of antibodies. 

4.4 Performance Impact of the EE Facility on iNet 

As described in the previous subsections, Tclassify is dra-
matically fast as compared with Tinit and also TBS. For ex-
ample, based on assumption that V=3 and B=5, only a pa-
rameter A affects the amount of TBS. When A=5 (i.e. 
AB=75), TBS=135.41msec (Figure12) will be skipped if 
the EE facility spends Tclassify=3msec (Table III) and says 
that a current environment condition is “Self”. In fact, the 
decision tree, constructed from N feature vectors each of 
which has A features, might have the height of A at most. 
For example, when A is 4, 5 or 6 in a feature vector, the 
classification needs only 4, 5 or 6 comparisons to search a 
leaf node (i.e. class value). 

In order to verify how the EE facility effectively contrib-

Table IV. Recommended size of feature table (underlined) Table III. Tclassify: Overhead of classification 
# of features (A) 3 4 5 6 … 10
# of nodes in fully
expanded DT

27 81 243 729 59049

Tclassify (msec) 1.5 3.0 3.0 3.0 4.5  

according to the initialization overhead Tinit and 
lassification accuracy. (with A=3, DT couldn’t achieve 90%

3 4 5# of features (A)
# of po n of

c ) 

27 81 243

t1 0.0015 0.0016 0.0034
t2 2.21 3.913 9.874
Total 2.212 3.915 9.877

20 40 75
t1 0.0015 0.0031 0.0094
t2 2.767 7.121 16.101
Total 2.769 7.124 16.111

25 70 150
t1 - 0.0034 0.0141
t2 - 8.748 18.528
Total - 8.751 18.542

- 90 225

ssible combinatio
feature vectors

Tinit (sec)

Tinit (sec)

Size of feature table (N)

Size of feature table (N)

80%

85%

90% Tinit (sec)

Size of feature table (N)

AB=75
TBS=135.4

0
25
50
75

100
125
150
175
200

10 20 30 40 50 60 70 80 90
# of Antibodies

Ti
m

e 
(m

se
c)

Figure12. TBS, Overhead of BS facility, 
i.e. time for selecting a behavior 

0
5

10
15
20
25
30
35
40

60
65
70
75
80
85
90
95

45100

10 30 50 70 90 200 400 600 800 100
# of feature vectors (detectors) in a feature table

M
em

or
y 

U
til

iz
at

io
n 

(K
B Initializing a feature table

Building a decision tree
Classifying 

Figure11. Memory utilization that 

10 70 130 190 250 310 370 430 490 550 610
# of feature vectors (detectors) in a feature table

A
cc

ur
ac

y 
(%

)

A = 4
A = 5
A = 6

 
Figure10. Accuracy of classification on 100 

testing data when A=3, 4, 5, and 6  EE facility consumes 

  



0

50

100

150

200

250

5 15 25 35 45 55 65 75 85 95
# of Antibodies

M
em

or
y 

U
til

iz
at

io
n 

(K
B

Before selection
After selection

 
Figure13. Memory utilization 

that BS facility consumes 

utes to iNet in terms of efficiency, the overhead of the BS 
facility (TBS) is compared with the overhead of executing 
both EE and BS (TEE+TBS) under the following three sce-
narios. 

• Self environment conditions only: EE facility monitors 
only self environment conditions. This simulates a static 
network environment where the environment does not dy-
namically change, and an agent always adapts to the envi-
ronment well (i.e. the degree of adaptation is always high).  
• Non-self environment conditions only: EE facility 
monitors only non-self environment conditions. This 
simulates a dynamic network environment where envi-
ronment conditions dynamically change and a situation 
where an agent tries to adapt to environmental changes by 
performing their behaviors, but changed too often, so the 
degree of the agent adaptation is always low. 
• Random environment conditions: EE facility randomly 
monitors self and non-self environment conditions. This 
simulates a dynamic network environment where envi-
ronment conditions dynamically change and an agent does 
not always adapt to the environment well. 

Figure14 shows the execution overhead of iNet (i.e. both 
EE and BS) according to each scenario described above. 
X-axis, the number of antigens (i.e. environment condi-
tions) each of which is monitored at particular time inter-
vals, implies how long iNet is running. Y-axis indicates 
the accumulated time overhead of iNet. Figure15 de-
scribes CPU utilization that iNet consumes in the case of 
the third scenario (random antigens). The peaks indicates 
CPU usage for (1) initializing a feature table, (2) building 
a decision tree, (3-a) both classification and behavior se-
lection (EE+BS), and (3-b) only classification (EE). It is 
shown that the execution of BS facility is skipped at some 
point (e.g. 3-b) where EE facility classifies a current envi-
ronment condition as “Self”. These results (Figure14 and 
15) exactly show that EE facility effectively works. If 
iNet does not have EE facility, then it always executes BS 
facility regardless of whether if an agent adapts to the en-
vironment well or not (i.e. the degree of adaptation). In 
other words, iNet will avoid unnecessary execution and 
computations thus save the selection time which might 
exponentially increase (Figure12), and resource consump-
tions such memory and CPU.  

4.5 Autonomous Adaptability of Agents 

This measurement evaluates autonomous adaptability of 
agents. In this measurement, 16 NetSphere platforms are 

deployed on 8 PCs (i.e. 2 platforms per PC), and they are 
connected with each other based on a grid topology (Fig-
ure16-(1)). At the beginning of a measurement, a single 
web service agent is randomly deployed on a platform. 
Each web service agent contains a behavior selection en-
gine that is configured with 5 behavior policies (i.e. anti-
bodies) and 7 environment conditions (i.e. paratopes) 
shown in Table I. A workload generator generates HTTP 
request messages and randomly sends them to web service 
agents. It keeps track of their locations. When a web ser-
vice agent migrates, the agent notifies its new location to 
the workload generator. The workload generator pays en-
ergy units to a web service when it receives a HTTP re-
sponse message from the agents. 

0
10
20
30
40
50
60
70

10 100 200 300 400 500
# of Antigens

Ti
m

e 
(s

ec
)

TBS
TEE+TBS (self only)
TEE+TBS (non-self only)
TEE+TBS (random)

Figure14. Execution overhead of iNet ac-
cording to three different scenarios (A=5) 

0

10

20

30

40

50

0.5 7.0 13.5 20.0 26.5 33.0 39.5 46.0 52.5 59.0
Time (sec)

C
PU

 U
til

iz
at

io
n 

(%
) N=150,A=5,AB=75(1) (2) (3)-a

(3)-b

 
Figure15: CPU utilization that iNet consumes 

In Figure16, (2) shows the workload for web service 
agents, i.e. how many HTTP request messages are gener-
ated and sent to web service agents. The workload gradu-
ally grows in this measurement. (3) shows how the num-
ber of web service agents changes against the workload 
change. As web service agents replicate in response to 
enough energy gain from the workload generator, they 
autonomously change their population, up to 84 agents, so 
that they can process more HTTP request messages. (4) 
shows how many HTTP response messages web service 
agents send back to the workload generator. Since these 
agents migrate to platforms where resource availability is 
higher, they change their locations so that they can proc-
ess HTTP request messages more efficiently. 

16 NetSphere platforms on 8 PCs

Workload
generator

16 NetSphere platforms on 8 PCs

Workload
generator

16 NetSphere platforms on 8 PCs

Workload
generator

16 NetSphere platforms on 8 PCs

Workload
generator

0
2000
4000
6000
8000

10000
12000
14000

0 50 100 150 200 250 300 350
time (min)

w
or

kl
oa

d 
(#

 o
f m

sg
s/

m
in

)

0
10
20
30
40
50
60
70
80
90

0 50 100 150 200 250 300 350
time (min)

# 
of

 a
ge

nt
s

0
2000
4000
6000
8000

10000
12000
14000

0 50 100 150 200 250 300 350
time (min)

th
ro

ug
hp

ut
 (#

 o
f m

sg
s/

m
in

)

Figure16. (1) Testbed Architecture, (2) generated workload, 
(3) the number of agents, (4) throughput of agents. 

  



5. Related Work 

Artificial immune systems have been proposed and used 
in various application domains such as anomaly detection 
[10] and pattern recognition [11]. [10] mainly focuses on 
the generation of detectors for self/non-self classification 
and improves the negative selection process of the artifi-
cial immune system. [11] focuses on the accuracy for the 
matchmaking of an antigen and antibody. On the other 
hand, this paper proposes an artificial immune system to 
improve autonomous adaptability in network applications. 
To the best of our knowledge, this work is the first at-
tempt to apply an artificial immune system to this auto-
nomic applications domain.  

This work is an extension to the Bio-Networking project 
[6, 7, 8]. In the Bio-Networking architecture, each agent 
does not have the EE facility. It periodically performs one 
of its behaviors regardless of whether the agent adapts 
well to the current environment conditions. This results in 
wasting resources caused by unnecessary behavior selec-
tion. In the NetSphere architecture, each agent has the EE 
facility, which examines whether it adapts well to the cur-
rent environment conditions. It activates the BS facility 
only when the agent does not adapt to the current envi-
ronment. This way, agents can save resources and reduce 
execution overhead in their adaptation activities. 

Similar work has been proposed in Organic Grid [12] pro-
ject. [12] attempts to the decentralized task scheduling for 
large-scale computation on grid environment over the 
Internet. Similar to iNet, mobile agents autonomously 
executes their services (e.g. computing subtasks) on the 
platform embedded in each host and perform their replica-
tion behavior to achieve their objectives (e.g. compute as 
fast as possible). Yet, iNet project focuses on the adapta-
tion of network applications. Not only a replication be-
havior but agents consider more behaviors for the adapta-
tion. Because of those various adaptation decisions, the 
high service adaptability of network applications (i.e. 
agents) is achieved. 

SORA [13] attempts to achieve efficient resource alloca-
tion in sensor networks. In SORA, an agent runs on each 
sensor node, based on economic principles, it selects sen-
sor behaviors (e.g. sending/receiving messages and idling) 
adaptively to the current network environment. In 
NetSphere architecture, each agent adaptively selects its 
biological behaviors (e.g. migration, replication and 
death), based on immunological mechanisms. Also, 
SORA does not provide a mechanism like the EE facility. 
Each agent periodically selects one of its behaviors with-
out examining whether it needs to adapt to the network 
environment by invoking the behaviors. 

There are several research efforts that allow network sys-
tems to adapt to application and end-user requirements 
with a technique of runtime component replacement. For 
example, [14, 15] can dynamically replace running com-
ponents (e.g. byte code) with others. Since they can up-

date any components, it is possible to change the func-
tional aspect of components. iNet does not modify the 
body (functional part) of agents at runtime; it focuses on 
adapting the behavior (non-functional part) of agents in 
order to minimize runtime adaptation overhead generated 
by iNet. The overhead should be cheap because iNet as-
sumes that each agent often perform its behavior to keep 
adapting to dynamically changing environments. It should 
be considerably expensive to perform even a single run-
time component replacement. [14, 15] assumes a central-
ized network architecture where a centralized server col-
lects environment conditions from each component and 
make component replacement decisions. In contrast, iNet 
assumes a decentralized network architecture where each 
agent monitors its surrounding environment conditions 
and makes adaptation decisions. 

Similar to [16, 17], iNet contributes to develop an adap-
tive monitoring system for Grid computing. One main dif-
ference is that [16, 17] have a centralized environment 
monitoring system. Probes and gauges [16] or Sensor-
hosts [17] can be distributed to collect environment condi-
tions, but the environment conditions will eventually go to 
a centralized entity (e.g. Gauge Consumer). In our archi-
tecture, the environment sensing service on each platform 
(i.e. each host) collects and stores environment conditions, 
and makes them available to agents running on the same 
host. There are no centralized entities to store global envi-
ronment conditions.  

In addition, adaptation strategies and tactics tend to be 
more fine-grained when making systems more adaptable, 
resulting in the greater number of strategies and tactics. 
The greater the number of them, the more complicated 
and difficult it is to maintain and coordinate them. Fine-
grained strategies and tactics are often not orthogonal with 
each other, but have complicated constraints with each 
other. [17] does not address the process to inspect the de-
pendencies between strategies/tactics and coordi-
nate/prioritize them. iNet provides a generic and consis-
tent mechanism for each agent to identify its behaviors 
suitable for given environment conditions, prioritize them 
based on the relationships between them, and choose the 
most suitable behavior. 

6. Concluding Remarks 

This paper describes and empirically evaluates an immu-
nologically-inspired mechanism that allows network ap-
plications to autonomously adapt to dynamic changes in 
the network. The proposed mechanism, called iNet artifi-
cial immune system, allows each application component 
to autonomously sense its local environment conditions to 
evaluate whether it adapts well to the conditions, and if it 
does not, adaptively perform a behavior suitable for the 
conditions. Measurement results show that iNet works ef-
ficiently and makes network applications adaptive. 

Extended simulations are planned to investigate more per-
formance implications of iNet, such as resource utilization 

  



to execute the iNet immunological process. In addition, 
iNet will be evaluated on larger-scale experimental envi-
ronments (e.g. PlanetLab2). It will provide more realistic 
results of the performance and adaptability of applications 
developed with iNet. 

References 

[1] P. Dini, W. Gentzsch, M. Potts, A. Clemm, M. 
Yousif and A. Polze, “Internet, Grid, Self-
adaptability and Beyond: Are We Ready?,” In Proc. 
of IEEE Int’l Workshop on Self-Adaptable and Auto-
nomic Computing Systems, Aug. 2004. 

[2] Large Scale Networking Coordinating Group of the 
Interagency Working Group for Information Tech-
nology Research and Development (IWG/IT R&D), 
Report of Workshop on New Visions for Large-scale 
Networks: Research and Applications, Mar 2001. 

[3] R. Sterritt and D. Bustard, “Towards an Autonomic 
Computing Environment,” In Proc. of 14th IEEE Int’l 
Workshop on Database and Expert Systems Applica-
tions, Sep 2003. 

[4] N. Minar, K. H. Kramer and P. Maes, “Cooperating 
Mobile Agents for Dynamic Network Routing,” In A. 
Hayzelden and J. Bigham (eds.) Software Agents for 
Future Communications Systems, Springer, 1999 

[5] G. Cabri, L. Leonardi and F. Zambonelli, “Mobile-
Agent Coordination Models for Internet Applica-
tions,” In IEEE Computer, Feb 2000. 

[6] T. Suda, T. Itao and M. Matsuo, “The Bio-
Networking Architecture: The Biologically Inspired 
Approach to the Design of Scalable, Adaptive, and 
Survivable/Available Network Applications,” In K. 
Park and W. Willinger (eds.) The Internet as a Large-
Scale Complex System, Princeton University Press, 
June 2005. to appear. 

[7] J. Suzuki and T. Suda, “A Middleware Platform for a 
Biologically-inspired Network Architecture Support-
ing Autonomous and Adaptive Applications,” In 
IEEE Journal on Selected Areas in Communications, 
vol 23, 2005. 

[8] T. Nakano and T. Suda, “Adaptive and Evolvable 
Network Services,” In Proc. of the Genetic and Evo-
lutionary Computation Conference (GECCO-2004), 
lncs. vol. 3102, Springer, pp. 151-162.  

[9] N. K. Jerne, “Idiotypic Networks and Other Precon-
ceived Ideas,” In Immunological Review, vol. 79, 
1984. 

[10] F. A. González, D. Dasgupta, “Anomaly Detection 
Using Real-Valued Negative Selection,” Genetic 
Programming and Evolvable Machines, 4(4): 383-
403 (2003). 

[11] L. N. de Castro, J. I. Timmis, “Artificial Immune 
Systems: A Novel Paradigm to Pattern Recognition,” 
In Artificial Neural Networks in Pattern Recognition, 
J. M. Corchado, L. Alonso, and C. Fyfe (eds.), 
SOCO-2002, University of Paisley, UK, pp. 67-84. 

                                                 
2 http://www.planet-lab.org 

[12] A.J. Chakravarti, G. Baumgartner, M. Lauria, “The 
Organic Grid: Self-organizing Computational Biol-
ogy on Desktop Grid,” In A. Zomaya (ed.), Parallel 
Computing for Bioinformatics, John Wiley & Sons, 
2005. 

[13] Geoff Mainland, David C. Parkes, and Matt Welsh. 
“Decentralized Adaptive Resource Allocation for 
Sensor Networks (SORA),” In Proc. of the 2nd 
USENIX/ACM Symposium on Networked Systems 
Design and Implementation (NSDI 2005), May 2005  

[14] J. Appavoo, K. Hui, C. A. N. Soules, R. W. 
Wisniewski, D. M. Da Silva, O. Krieger, M. A. 
Auslander, D. J. Edelsohn, B. Gamsa, G. R. Ganger, 
P. McKenney, M. Ostrowski, B. Rosenburg, M. 
Stumm, and J. Xenidis, “Enabling Autonomic Behav-
ior in Systems Software with Hot Swapping,” In IBM 
Systems Journal 42, 2003. 

[15] C. Poellabauer, K. Schwan, S. Agarwala, A. 
Gavrilovska, G. Eisenhauer, S. Pande, C. Pu, and M. 
Wolf, “Service Morphing: Integrated System- and 
Application-Level Service Adaptation in Autonomic 
Systems,” In Proc. of the 5th Annual International 
Workshop on Active Middleware Services, June 2003.  

[16] S. Cheng, D. Garlan, B. Schmerl, P. Steenkiste, and 
N. Hu, “Software Architecture-based Adaptation for 
Grid Computing,” In the 11th IEEE Conference on 
High Performance Distributed Computing, July 2002. 

[17] K Shirose, S Matsuoka, H Nakada, and H Ogawa, 
“Autonomous Configuration of Grid Monitoring Sys-
tems,” In the 2004 Symposium on Application and the 
Internet (SAINT2004), Japan, January 2004. 

[18] S. T. Brugger, “Data Mining Methods for Network 
Intrusion Detection,” University of California, Davis. 

[19] P. Berkhin, “Survey of Clustering Data Mining Tech-
niques,” Accrue Software, Inc., San Jose, CA, USA, 
2002. 

[20] T. Mitchell, “Decision Tree Learning,” In T. Mitchell, 
Machine Learning, The McGraw-Hill Companies, 
Inc., 1997, pp. 52-78 

  

http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/g/Gonz=aacute=lez:Fabio_A=.html
http://www.informatik.uni-trier.de/~ley/db/journals/gpem/gpem4.html#GonzalezD03
http://www.informatik.uni-trier.de/~ley/db/journals/gpem/gpem4.html#GonzalezD03
ftp://ftp.dca.fee.unicamp.br/pub/docs/vonzuben/lnunes/aispr.pdf
ftp://ftp.dca.fee.unicamp.br/pub/docs/vonzuben/lnunes/aispr.pdf
http://www.cc.gatech.edu/systems/papers/schwan/Poellabauer03SMI.pdf
http://www.cc.gatech.edu/systems/papers/schwan/Poellabauer03SMI.pdf
http://www.cc.gatech.edu/systems/papers/schwan/Poellabauer03SMI.pdf

