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ABSTRACT 
Grid computing systems are expected to be more scalable 
and adaptive. Based on the observation that various bio-
logical systems have already overcome these requirements, 
the proposed architecture, called SymbioticSphere, ap-
plies biological concepts and mechanisms to design grid 
systems (application services and middleware platforms). 
In SymbioticSphere, each application service and mid-
dleware platform is designed as a biological entity, and 
implements biological concepts and mechanisms such as 
decentralization, energy exchange, migration, replication 
and death. Simulation results show SymbioticSphere ex-
hibits self-organization with inherent support of scalabil-
ity and adaptability through collective actions and interac-
tions of application services and middleware platforms. 
Preliminary simulation results show that application ser-
vices and middleware platforms collectively adapt to dy-
namic changes in the network (e.g. user location, network 
traffic and resource availability). 
 
KEY WORDS 
Autonomous adaptive agents, Autonomic grid system, 
biologically-inspired computing 
 
 
1. Introduction 
 
Grid systems are expected to autonomously scale to 
enormous demand placed upon them, survive from partial 
systems failures and adapt to dynamic network environ-
ments in order to improve user experience, expand sys-
tem’s operational longevity and reduce maintenance cost 
[1, 2, 3]. Based on the observation that various biological 
systems have already achieved these requirements (i.e. 
autonomy, scalability, survivability and adaptability), the 
proposed network architecture, called SymbioticSphere, 
applies biological concepts and mechanisms to design 
network systems (application services and middleware 
platforms) 1. The authors of the paper believe if grid sys-
tems adopt certain biological concepts and mechanisms, 
they may be able to meet these requirements. 
 

                                                 
1 SymbioticSphere is an extension to the Bio-Networking Architecture [4, 
5, 6, 7]. The Bio-Networking Architecture was adopted by Object Man-
agement Group as a part of its standard specification [8]. 

In SymbioticSphere, each application service and mid-
dleware platform is designed as a biological entity, analo-
gous to an individual bee in a bee colony. An application 
service is implemented as an autonomous and distributed 
software agent. Each agent implements a functional ser-
vice and follows simple behaviors similar to biological 
entities, such as replication, death, migration and energy 
exchange. A middleware platform runs on a network host 
and operates agents. Each platform implements a set of 
runtime services that agents use to perform their services 
and behaviors, and follows biological behaviors such as 
replication, death and environment sensing. 
 
Similar to biological entities, agents and platforms in 
SymbioticSphere store and expend energy for living. Each 
agent gains energy in exchange for performing its service 
to other agents or human users, and expends energy to use 
network and computing resources. Each platform gains 
energy in exchange for providing resources to agents, and 
continuously evaporates energy to the network environ-
ment. SymbioticSphere models agents and platforms as 
different species, and follows several concepts in ecologi-
cal food chain to determine how much energy 
agents/platforms expend at a time and how often they 
expend energy. The abundance and scarcity of stored en-
ergy affect behaviors of an agent/platform. For example, 
an abundance of stored energy is indicates higher demand 
for the agent/platform; thus the agent/platform may be 
designed to favor replication in response to higher energy 
level. A scarcity of stored energy (an indication of lack of 
demand) may cause death of the agent/platform. 
 
Similar to biological systems, SymbioticSphere exhibits 
self-organizing emergence of desirable system character-
istics such as scalability and adaptability. These character-
istics emerge from collective behaviors and interactions of 
agents and platforms, rather than they are not present in 
any single agent/platform. Simulation results show that 
agents and platforms autonomously scale to rapid demand 
changes and adapt to dynamic changes in the network (e.g. 
user location and resource availability). In certain circum-
stances, agents and platforms spontaneously cooperate in 
a symbiotic manner to pursue their mutual benefits (i.e. to 
increase their scalability and adaptability), although each 
of them is not designed to do so.  



This paper is organized as follows. Section 2 summarizes 
key design principles of SymbioticSphere. Section 3 de-
scribes the designs of agents and platforms. Section 4 
shows simulation results Sections 5 and 6 conclude with 
discussion on related work and future work. 
 
 
2. Design Principles in SymbioticSphere 
 
SymbioticSphere consists of two major system compo-
nents: agents (applications services) and middleware plat-
forms. Agents run on platforms, which in turn run on 
network hosts. Agents and platforms are designed based 
on the three principles described below. 
 
• Decentralization: Agents and platforms are decentral-

ized. There are no central entities that control or coor-
dinate agents/platforms (i.e. no directory servers and no 
resource managers). Decentralization allows 
agents/platforms to be scalable, survivable and simple 
by avoiding a single point of performance bottleneck 
and failure [9, 10] and by avoiding any central coordi-
nation in deploying agents/platforms [11]. 

• Autonomy: Agents and platforms are autonomous. 
They monitor their local network environments, and 
based on the monitored environmental conditions, they 
autonomously behave and interact with each other 
without any interventions from/to other agents, plat-
forms and human users. 

• Adaptability: Agents and platforms are adaptive to 
changing environment conditions (e.g. user demands, 
user locations and resource availability). Adaptation is 
achieved through designing agent/platform behavior 
policies to consider local environment conditions. For 
example, agents may implement a migration policy of 
moving towards a platform that forwards a large num-
ber of request messages for their services. This results 
in the adaptation of agent locations, and agents concen-
trate around the users who request their services. Also, 
platforms may invoke replication and death behaviors 
when their energy levels become over and below 
thresholds. This results in the adaptation of platform 
population, and platforms adjust resource availability 
on them against the demands for resources. 

 
 
3. SymbioticSphere 
 
This section describes the designs of agents and platforms. 
 
3.1. Agents 
  
Each agent consists of three parts: attributes, body, and 
behaviors. Attributes carry descriptive information regard-
ing the agent, such as agent ID, energy level, description 
of a service it provides, and price (in energy units) of the 
service. Body implements a service that the agent pro-
vides. For example, an agent may implement a genetic 

algorithm for an optimization problem, while another one 
may implement a mathematical model for scientific simu-
lations. Behaviors implement actions that are inherent to 
all agents. Although SymbioticSphere defines nine stan-
dard agent behaviors [5, 12], this paper focuses on three 
of them 
 
• Migration: Agents may migrate from one platform to 

another. 
• Replication: Agents may make copies of themselves as 

a result of abundance of energy. A replicated (child) 
agent is placed on the platform that its parent agent re-
sides on, and it receives the half amount of the parent’s 
energy level. 

• Death: Agents may die due to energy starvation. When 
an agent dies, an underlying platform removes the agent 
from the network and releases all resources allocated to 
the agent. 

 
3.2 Platforms   
 
Each platform runs on a network host and operates 
agents2. It consists of attributes, behaviors and runtime 
services. Attributes carry descriptive information regard-
ing the platform, such as platform ID, energy level and 
healthy level. Healthy level is defined as a function of the 
age of and resource availability on a network host that the 
platform runs on. The age indicates how long a network 
host remains alive (i.e. how much stable a network host 
is). Resource availability indicates how much resources 
(e.g. memory space) are available for agents and plat-
forms on a network host. Healthy level affects behaviors 
of a platform and agent. For example, higher healthy level 
indicates higher stability of and higher resource availabil-
ity on a network host that the platform resides on. Thus, 
the platform may be designed to replicate itself on a 
healthier neighboring host than the current local host. This 
results in the adaptation of platform locations. Platforms 
work on stable and resource rich network hosts.  

Behaviors are the actions that are inherent to all plat-
forms. Although SymbioticSphere defines six standard 
platform behaviors [12], this paper focuses on two of 
them. 
 
• Replication. Platforms may make copies of themselves 

as a result of abundance of energy (i.e. high demand for 
resources available on them). The child platform re-
ceives the half amount of the parent’s energy level. 

• Death. Platforms may die due to the lack of energy. A 
dying platform uninstalls itself from the network and 
releases all resources the platform uses. Despite the 
death of a platform, an underlying network host remains 
active so that other platforms can run on it in the future. 

 
Runtime services are services that agents and platforms 
use to perform their behaviors. In order to maximize de-

                                                 
2 Currently, SymbioticSphere assumes that at most one platform runs on 
each network host. 



centralization and autonomy, they only use their local 
runtime services. They are not allowed to invoke any run-
time services running on a remote platform. 
 
3.3 Behavior Policies of Agents and Platforms 
 
Each agent and platform has policies for its behaviors. A 
behavior policy defines when to and how to invoke a par-
ticular behavior. Each behavior policy consists of one or 
more factors (Fi), which evaluate environment conditions 
(e.g. resource availability on a local platform) or 
agent/platform status (e.g. energy level and healthy level). 
Each factor is given a certain weight (Wi) relative to its 
importance. Behaviors are invoked if the weighted sum of 
factor values (Σ Fi*Wi) exceeds a threshold. 
 
Agent migration behavior has three factors listed below.  
If there are multiple neighboring platforms that an agent 
can migrate to, the agent calculates a weighted sum of the 
above factor values for each of the platform, and migrates 
to a platform that generates the highest weighted sum. 

• Service Request Ratio, (# of service requests on a re-
mote platform)/(# of service requests on a local plat-
form), which encourages agents to move towards users. 

• Healthy Level ratio, (healthy level on remote platform - 
healthy level local on local platform) / (healthy level on 
local platform), which encourages agents to move to-
wards platforms running on healthier hosts. 

• Migration interval, interval from the time of a previous 
migration, which discourages too many agents to mi-
grate too often.  

Agent replication and death behaviors have a factor that 
evaluates the current energy level of agent. 
 
Platform replication behavior has a factor described below. 
A replicated (child) platform is placed on a host whose 
healthy level is highest among neighboring hosts2. 

• Healthy Level Ratio, (healthy level on a remote 
host)/(healthy level on a local host), which encourages 
platforms to replicate themselves on a healthier host.  

Platform death behavior has a factor that evaluates the 
current energy level of platform. Each platform never 
performs death behavior while an agent(s) runs on the 
platform.  
 
Each agent/platform incurs energy loss (i.e. behavior cost) 
to invoke behaviors except death behavior. When the en-
ergy level of an agent/platform goes over the cost of a 
behavior, the agent/platform decides if it performs the 
behavior by calculating a weighted sum of factor values. 
 
3.4 Energy Exchange among Agents and Platforms 
 
SymbioticSphere models agents and platforms as different 
biological species, and follows several ecological con-
cepts to determine how often agents/platforms expend 

energy and how much energy they expend at a time. Fig. 
1 shows a simplified energy flow in the ecological system. 
The sun gives light energy, and producers (e.g. plants and 
microorganisms) convert it to chemical energy. The 
chemical energy flows through multiple species, called 
consumers. It will be eventually transferred to decompos-
ers (e.g. bacteria and fungi). For example, shrubs (produc-
ers) convert the sun light energy to chemical energy, hares 
(primary consumers) consume shrubs, and foxes (secon-
dary consumers) consume hares. When energy is trans-
ferred from one species to another, it is known that about 
10% of the energy maintained by one species goes to an-
other species [13]. The remaining 90% is used for me-

tabolism, growth and actions/behaviors (e.g. moving).  
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Fig. 1 Energy Flow in Ecosystem 

Fig. 2 shows the energy exchange in SymbioticSphere. 
SymbioticSphere models users as the sun, agents as pro-
ducers, and platforms as (primary) consumers. Similar to 
the sun, users have unlimited amount of energy. Agents 
gain energy from users3, and pay energy to consume re-
sources provided by platforms. They pay 10% of the cur-
rent energy level to platforms. Platforms gain energy from 
agents, and pay (evaporate) 10 % of the current energy 
level to the environment. 
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Fig. 2 SymbioticSphere 

Agents dynamically change the rate of transferring energy 
to platforms, based on the rate of accepting service re-
quests from users. When agents process more service re-
quests, they consume more resources. Thus, agents trans-
fer energy (i.e. 10% of the current energy level) to plat-
forms more often. In contrast, they reduce their energy 
transfer rate in response to lower energy intake from users. 
 

                                                 
3 Each agent specifies, in its body, the price (in energy units) of service 
that it provides.  



In order to dynamically change energy transfer rate, each 
agent keeps an interval time between an incoming service 
request and a previous request. It records the average, 
shortest and maximum intervals of previous N service 
requests (Ts, Ta and Tm, respectively). Fig. 3 shows how 
often each agent transfers energy to platforms. First, an 
agent waits for Ts and pay energy to an underlying plat-
form. Then, the agent checks if a new service request(s) 
has arrived during the previous Ts interval. If arrived, the 
agent updates Ts, Ta and Tm values, waits for Ta, and 
then pays energy to a platform. Otherwise, it waits for Ta 
and pays energy to a platform. Similarly, each agent re-
peats energy transfers in Ts, Ta and Tm intervals. 

Ta is a simple moving average calculated from the inter-
vals of previous N service requests. The shortest and 
longest intervals play a role of weighted values to make 
energy transfer rate follow dynamic changes in service 
request rate. Ts and Tm values are periodically reset 
(every M service requests). A previous simulation result 
shows that the proposed energy exchange mechanism 
allows agents to change their energy expenditure rate well 
against dynamic change in energy intake [12]. 
 
Platforms also dynamically change the rate to evaporate 
energy, depending on the rate of accepting energy trans-
fers from agents. The more often they receive energy 
transfer from agents, the more often they evaporate en-
ergy (10% of the current energy level). Each platform 
changes its energy evaporation rate in the same way as 
each agent changes its energy expenditure rate. (i.e., each 
platform follows the mechanism described in Fig. 3.) 
 
4. Preliminary Simulation Results  
 
This section shows preliminary simulation results to 
evaluate how the biologically-inspired mechanisms in 

SymbioticSphere impact on scalability and adaptability of 
grid systems (i.e. agents and platforms)4.  
 
In this paper, adaptability is evaluated as service adapta-
tion and resource adaptation. Service adaptation is the 
activities to adaptively improve the quality and availabil-
ity of services provided by agents. Quality of service is 
measured as response time of agents for service requests 
from users. Service availability is measured as the number 
of available agents. Resource adaptation is the activities 
to adaptively improve availability of resources provided 
by platforms and efficiency to utilize the resources. Re-
source availability is measured as the number of platforms 
that make resources available for agents. Resource effi-
ciency indicates how many service requests can be proc-
essed against resource utilization. 
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Fig. 3 Energy Transfer between Agents and Platforms 

 
A simulated network is a 8x8 grid topology network with 
64 network hosts (Fig. 4). At the beginning of each simu-
lation, a platform is initialized on the network host 63, and 
an agent is deployed on the platform. Transmission la-
tency is 0.1 second between two network hosts. (one 

simulation cycle corresponds to 1 sec in simulation time.)  
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Fig. 4 Simulated Network 

Each network host has 256MB memory 5 . Out of the 
memory space, an operating system consumes 128 MB 
and Java virtual machine consumes 64MB. Thus, 64MB 
is available for a platform and agents on each network 
host. Each agent and platform consumes 5 MB and 20 
MB, respectively. This assumption is obtained from a 
prior empirical experiment [5]. 
 
4.1 Single User Simulations 
 
In this simulation study, a user is placed on the network 
host 19, and propagates service requests for 24 hours 
(from 0:00 to 24:00) at a rate shown in Fig. 5. Three simu-
lation scenarios are implemented. Scenario 1 initializes a 
platform as non-biological entity (on the network host 
63); thus it does not replicate and die. There is only one 
platform running throughout a simulation. Scenario 2 ini-
tializes a non-biological platform on each network host 

                                                 
4  Simulations were carried out with the SymbioticSphere simulator, 
which contains 14,100 lines of Java code. This simulator is freely avail-
able at http;//dssg.cs.umb.edu/symbiosis/ for researchers who investigate 
autonomic grid systems.  
5 Currently, memory availability represents resource availability. 



(i.e. 64 platforms on 64 network hosts). The platforms do 
not replicate and die. In Scenario 3, a biological platform 
is initialized on network host 63. The platform can dy-
namically replicate and die based on the behavior policy 
described in Section 3. In either scenario, agents are im-
plemented as biological entities; they can migrate, repli-
cate and die. A key simulation objective is to investigate 
the behavior of agents and platforms in Scenario 3 against 
the other two extreme cases (i.e. Scenarios 1 and 2). 

 
Fig. 6 shows how service availability (i.e. the number of 
agents) changes. In Scenarios 1, 2 and 3, agents autono-
mously adapt their population to demand change for their 
services. When service request rate becomes high, agents 
gain more energy and replicate themselves. In contrast, 
when service request rate becomes low, some agents die 
due to energy starvation since they cannot balance energy 
gain and expenditure. Biological mechanisms contribute 
for agents to improve service availability as a group. 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
Fig. 7 shows how resource availability (i.e. the number of 
platforms) changes. Since platforms are not designed as 
biological entities in Scenarios 1 and 2, the number of 
platforms do not change (i.e. one and 64 platforms in Sce-
narios 1 and 2, respectively). In Scenario 3, in which plat-
forms are designed as biological entities, platforms dy-
namically adapt their population to demand change for 
resources. When service request rate becomes high, 
agents gain more energy and transfer more energy to plat-
forms. As a result, platforms replicate themselves more 
often. In contrast, when service request rate becomes low, 
some platforms die due to energy starvation since they 
cannot gain enough energy to keep their population. Fig. 7 
shows biological mechanisms contribute for a group of 
platforms to adaptively improve resource availability. 
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Fig. 5 Change in Service Request 

 
Fig. 8 shows the average distance between a user and 
agents (in network hop counts). In Scenario 1, the dis-
tance remains constant (5 hop counts) because a platform 
does not make its children platforms that agents may mi-
grate to. In Scenario 2, the distance rapidly decreases be-
cause agents can migrate to platforms that are closer to a 
user. The distance becomes zero in 1.5 hours. (agents 
reach user’s location in 1.5 hours.) In Scenario 3, the dis-
tance gradually decreases and becomes zero in 8 hours. 
Unlike Scenario 2, Scenario 3 begins with a single (bio-
logical) platform. At the beginning of a simulation, the 
platform needs to wait for agents to grow their population 
and transfer it enough energy so that it can replicate itself 
on a neighboring host. If the child platform is placed on a 
host that is closer to a user, agents move to the platform, 
thereby decreasing the distance to a user by one hop count. 
This process takes more time than how agents move to-
ward a user in Scenario 2. 
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Fig. 8 Average Distance between Agents and User 
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Fig. 6 the Number of Agents 

 
Fig. 9 depicts the average distance between a user and 
platforms. It shows platforms gradually move toward a 
user, although platform replication policy does not con-
sider user location. This is an example of symbiotic emer-
gence. If replicated platforms are placed on hosts that 
agents want to migrate to (i.e.  hosts closer to users), the 
platforms will survive. Otherwise, they will die because 
agents do not migrate to them and transfer energy to them. 
In a sense, agents indirectly instruct platforms where to 
replicate themselves. This results in a mutual benefit for 
agents and platforms. Agents can work closer to users and 
gain more energy from the users, and platforms gain more 
energy from agents. 
 
 
 
 
 



 
Fig. 10 shows the quality of services (i.e. the average re-
sponse time for agents to process service requests from a 
user). In the first three hours, response time becomes very 
high in either scenario, because agents have to store en-
ergy for a while to start replications. After the first three 
hours, agents increase their population to process more 
service requests (Fig 10); thereby decreasing response 
time dramatically. In Scenario 1, response time is greater 
than in Scenarios 2 and 3 because agents do not migrate 
toward a user. Please note that response time include 
transmission latency between two network hosts. (i.e. the 
closer agents work from a user, the shorter their response 
time becomes). In scenario 2, which is the best case sce-
nario for the response time measurement, agents migrate 
toward a user, and response time drops to 1 second in four 
hours. In scenario 3, agents have to wait for platforms to 
accumulate enough energy to start replications. Response 
time drops to 0.5 second in eight hours. Fig. 14 shows 
biological mechanisms contribute for agents and plat-
forms to collectively adapt response time for users.  

 
Fig. 11 shows resource efficiency. It is measured as (the 
total number of user requests processed by agents) / (the 
total amount of resources consumed by agents and plat-
forms). Scenario 1 is the best case scenario because only 
one platform is used to process all service requests. Sce-
nario 2 is the worst case scenario because all service re-
quests are processed by 64 platforms including idle ones 
that do not operate agents. In Scenario 3, both agents and 
platforms dynamically change their populations. Resource 

efficiency in Scenario 3 is often close to the best case re-
sult in Scenario 1. Fig. 11 shows that biological mecha-
nisms contribute for agents and platforms to autono-
mously keep resource efficiency high.  
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Fig. 9 Average Distance between Platforms and User 
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4.2 Multiple Users Simulations 
 
A series of the following simulations is to evaluate how 
agents and biological platforms behave in a network envi-
ronment where multiple users propagate service requests.  
 
Fig. 12 shows how each user changes its service request 
rate. A user always resides on each of the hosts 9 and 14, 
and the third user enters the network (on the host 59). 

 
Fig. 13 shows how service availability (i.e. the number of 
agents) changes. When service request rate spikes at 8:00, 
agents autonomously increase their population rapidly 
because they gain more energy from users and perform 
replication more often. This result shows agents scale well 
to rapid changes in service demand.  
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Fig. 12 Change in Service Request 

0

100

200

300

400

500

600

700

800

0 2 4 6 8 10 12 14 16 18 20 22 24

time (hour)

scnario1
scenario2
scenario3

0
5

10
15
20
25

0 2 4 6 8 10 12 14 16 18 20 22 24

time (hour)

A
ve

ra
ge

 R
es

po
ns

e 
tim

e 
(s

ec
)

Fig. 10 Average Response Time 
0
5

10
15
20
25
30
35

0 2 4 6 8 10 12 14 16 18 20 22 24

time (hour)

th
e 

nu
m

be
r o

f a
ge

nt
s

Fig. 13 the Number of Agents 
 

Fig. 14 shows how resource availability (i.e. the number 
of platforms) changes. Platforms adaptively adjust re-
source availability by changing their population against 
the demand for their resources.  



 

Fig. 15 shows quality of service (i.e. the average response 
time for agents to process service requests from users). In 
the first two hours, response time becomes very high be-
cause agents have to store energy for a while to start rep-
lications. After that, response time dynamically drops to 
20 seconds at 2:00. Then, agents start migrating towards 
users. Response time decreases to 10 seconds at 8:00. 
When the third user enters the network, response time 
increases to 20 seconds. Two hour later, it decreases to 10 
seconds again because agents work close from the third 
user. Fig. 15 shows that agents autonomously adapt their 
response time against dynamic changes in service request 
rate and the number of users by adjusting their population 
and locations. 

 
Fig 16 shows how workload (i.e. service requests) is dis-
tributed over available platforms. Load Balancing Index 
(LBI) is measured with the Equation 1 (LBI is a standard 
deviation of xi). 

 

   
N

X
IndexBalancingLoad i

i∑ −
=

2)( μ
 (1) 

xi indicates (the number of messages processed by 
agents running on platform i) / (resource utilization on 

platform i). μ represents the expected average of x, which 
is means (the total number of messages processed by all 
agents) / (the total amount of resource utilization on all 
platforms)  / (the number of platforms; N). W2 in Fig. 16 
indicates the weight value for healthy level ratio factor in 
agent migration policy. When a higher weight value is 
given, agents distribute workload more aggressively. Ap-
plication designers can configure this value based on the 
requirements to their applications. Fig. 16 also shows that 
agents and platforms gradually increase the degree of load 
balancing over time. This is an example of symbiotic 
emergence. Agent migration behavior policy encourages 
agents to move towards platforms running on healthier 
hosts. Platform replication behavior policy encourages 
platforms to replicate themselves on healthier hosts. As a 
result, service requests are processed by agents that are 
spread over the platforms running on healthy hosts. This 
contributes to balance workload per platform, although 
agent migration policy and platform replication policy do 
not consider agent population, platform population nor 
load balancing. This results in a mutual benefit for both 
agents and platforms. Platforms help agents decrease re-
sponse time by making more resources available for them. 
Agents help platforms to keep their stability by distribut-
ing workload on them (i.e. by avoiding excessive resource 
utilization on them).  
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Fig. 15 Average Response Time 

 
 
5. Related Work 
 
This work is an extended work to the Bio-Networking 
Architecture, as described in Section I. In the Bio-
Networking Architecture, agents are designed as biologi-
cal entities, and they achieve service adaptation in a de-
centralized and collective manner [4, 6]. However, plat-
forms are static and non-biological entities. Since they do 
not change their population and locations dynamically, 
they cannot achieve resource adaptation. In Symbiotic-
Sphere, agents and platforms achieve both service adapta-
tion and resource adaptation in a decentralized, collective 
and symbiotic manner. 
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Fig. 22 Load Balancing Index 

Resource Broker [14] proposes a resource adaptation 
mechanism for grid systems. In this mechanism, a central-
ized system component monitors heterogeneous environ-
ments where different network hosts have different levels 
of stability and different resource availability. Given 
monitored environment conditions, the mechanism adapts 
resource allocations for grid applications. Unlike Re-
source Broker, SymbioticSphere service adaptation as 
well as resource adaptation with decentralized agents and 
platforms.  
 
[15] and [16] propose generic adaptation frameworks for 
grid systems. They can be used to achieve both service 
adaptation and resource adaptation. In these frameworks, 
centralized system components store the current environ-
ment conditions, and decide which adaptation strategy to 
execute against the monitored conditions. In contrast, 



SymbioticSphere does not assume any centralized system 
components. Each of agents and platforms collects and 
stores environment conditions, and autonomously decide 
which behavior to invoke.  
 
The concept of energy in SymbioticSphere is similar to 
money in economy. MarketNet [17] applies the concept of 
money to achieve market-based access control for net-
work applications. However, it does not mention the de-
tails on how much and how often application components 
make payments with each other. SymbioticSphere cur-
rently focuses on service adaptability and resource 
adaptability. It also provides application developers the 
details on energy exchange between system components 
(i.e. agents and platforms) so that they can consistently 
develop adaptive network systems.   
 
 
6. Conclusions 
 
This paper overviews the architectural design of Symbiot-
icSphere, and presents how it implements biological con-
cepts and mechanisms to make grid systems (i.e. services 
and platforms) scalable, survivable and adaptive. This 
paper also describes how agents and platforms interact 
with each other to collectively exhibit emergence of desir-
able system characteristics (e.g. adaptability). Preliminary 
simulation results show that agents and platforms collec-
tively adapt to dynamic changes in the network (e.g. user 
location, network traffic and resource availability) in a 
decentralized and autonomous manner.  
 
An extended set of simulations is planned to investigate 
how the proposed biologically-inspired mechanisms im-
pact on scalability, survivability and adaptability of grid 
systems. For example, future simulations will operate 
agents and platforms on larger heterogeneous networks 
where different network hosts have different resource 
availability, intermittent unstable networks where network 
hosts and network links between them can be occasionally 
down, and mobile networks where users dynamically 
move.  
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