
MAKING GRID SYSTEMS SELF-ORGANIZING AND ADAPTIVE: AN
APPROACH LEVERAGING BIOLOGICAL CONCEPTS AND MECHANISMS

Paskorn Champrasert and Junichi Suzuki

Department of Computer Science
University of Massachusetts Boston,

Boston, MA 02125-3393
{paskorn, jxs}@cs.umb.edu

ABSTRACT
Grid computing systems are expected to be more scalable
and adaptive. Based on the observation that various bio-
logical systems have already overcome these requirements,
the proposed architecture, called SymbioticSphere, ap-
plies biological concepts and mechanisms to design grid
systems (application services and middleware platforms).
In SymbioticSphere, each application service and mid-
dleware platform is designed as a biological entity, and
implements biological concepts and mechanisms such as
decentralization, energy exchange, migration, replication
and death. Simulation results show SymbioticSphere ex-
hibits self-organization with inherent support of scalabil-
ity and adaptability through collective actions and interac-
tions of application services and middleware platforms.
Preliminary simulation results show that application ser-
vices and middleware platforms collectively adapt to dy-
namic changes in the network (e.g. user location, network
traffic and resource availability).

KEY WORDS
Autonomous adaptive agents, Autonomic grid system,
biologically-inspired computing

1. Introduction

Grid systems are expected to autonomously scale to
enormous demand placed upon them, survive from partial
systems failures and adapt to dynamic network environ-
ments in order to improve user experience, expand sys-
tem’s operational longevity and reduce maintenance cost
[1, 2, 3]. Based on the observation that various biological
systems have already achieved these requirements (i.e.
autonomy, scalability, survivability and adaptability), the
proposed network architecture, called SymbioticSphere,
applies biological concepts and mechanisms to design
network systems (application services and middleware
platforms) 1. The authors of the paper believe if grid sys-
tems adopt certain biological concepts and mechanisms,
they may be able to meet these requirements.

1 SymbioticSphere is an extension to the Bio-Networking Architecture [4,
5, 6, 7]. The Bio-Networking Architecture was adopted by Object Man-
agement Group as a part of its standard specification [8].

In SymbioticSphere, each application service and mid-
dleware platform is designed as a biological entity, analo-
gous to an individual bee in a bee colony. An application
service is implemented as an autonomous and distributed
software agent. Each agent implements a functional ser-
vice and follows simple behaviors similar to biological
entities, such as replication, death, migration and energy
exchange. A middleware platform runs on a network host
and operates agents. Each platform implements a set of
runtime services that agents use to perform their services
and behaviors, and follows biological behaviors such as
replication, death and environment sensing.

Similar to biological entities, agents and platforms in
SymbioticSphere store and expend energy for living. Each
agent gains energy in exchange for performing its service
to other agents or human users, and expends energy to use
network and computing resources. Each platform gains
energy in exchange for providing resources to agents, and
continuously evaporates energy to the network environ-
ment. SymbioticSphere models agents and platforms as
different species, and follows several concepts in ecologi-
cal food chain to determine how much energy
agents/platforms expend at a time and how often they
expend energy. The abundance and scarcity of stored en-
ergy affect behaviors of an agent/platform. For example,
an abundance of stored energy is indicates higher demand
for the agent/platform; thus the agent/platform may be
designed to favor replication in response to higher energy
level. A scarcity of stored energy (an indication of lack of
demand) may cause death of the agent/platform.

Similar to biological systems, SymbioticSphere exhibits
self-organizing emergence of desirable system character-
istics such as scalability and adaptability. These character-
istics emerge from collective behaviors and interactions of
agents and platforms, rather than they are not present in
any single agent/platform. Simulation results show that
agents and platforms autonomously scale to rapid demand
changes and adapt to dynamic changes in the network (e.g.
user location and resource availability). In certain circum-
stances, agents and platforms spontaneously cooperate in
a symbiotic manner to pursue their mutual benefits (i.e. to
increase their scalability and adaptability), although each
of them is not designed to do so.

This paper is organized as follows. Section 2 summarizes
key design principles of SymbioticSphere. Section 3 de-
scribes the designs of agents and platforms. Section 4
shows simulation results Sections 5 and 6 conclude with
discussion on related work and future work.

2. Design Principles in SymbioticSphere

SymbioticSphere consists of two major system compo-
nents: agents (applications services) and middleware plat-
forms. Agents run on platforms, which in turn run on
network hosts. Agents and platforms are designed based
on the three principles described below.

• Decentralization: Agents and platforms are decentral-

ized. There are no central entities that control or coor-
dinate agents/platforms (i.e. no directory servers and no
resource managers). Decentralization allows
agents/platforms to be scalable, survivable and simple
by avoiding a single point of performance bottleneck
and failure [9, 10] and by avoiding any central coordi-
nation in deploying agents/platforms [11].

• Autonomy: Agents and platforms are autonomous.
They monitor their local network environments, and
based on the monitored environmental conditions, they
autonomously behave and interact with each other
without any interventions from/to other agents, plat-
forms and human users.

• Adaptability: Agents and platforms are adaptive to
changing environment conditions (e.g. user demands,
user locations and resource availability). Adaptation is
achieved through designing agent/platform behavior
policies to consider local environment conditions. For
example, agents may implement a migration policy of
moving towards a platform that forwards a large num-
ber of request messages for their services. This results
in the adaptation of agent locations, and agents concen-
trate around the users who request their services. Also,
platforms may invoke replication and death behaviors
when their energy levels become over and below
thresholds. This results in the adaptation of platform
population, and platforms adjust resource availability
on them against the demands for resources.

3. SymbioticSphere

This section describes the designs of agents and platforms.

3.1. Agents

Each agent consists of three parts: attributes, body, and
behaviors. Attributes carry descriptive information regard-
ing the agent, such as agent ID, energy level, description
of a service it provides, and price (in energy units) of the
service. Body implements a service that the agent pro-
vides. For example, an agent may implement a genetic

algorithm for an optimization problem, while another one
may implement a mathematical model for scientific simu-
lations. Behaviors implement actions that are inherent to
all agents. Although SymbioticSphere defines nine stan-
dard agent behaviors [5, 12], this paper focuses on three
of them

• Migration: Agents may migrate from one platform to

another.
• Replication: Agents may make copies of themselves as

a result of abundance of energy. A replicated (child)
agent is placed on the platform that its parent agent re-
sides on, and it receives the half amount of the parent’s
energy level.

• Death: Agents may die due to energy starvation. When
an agent dies, an underlying platform removes the agent
from the network and releases all resources allocated to
the agent.

3.2 Platforms

Each platform runs on a network host and operates
agents2. It consists of attributes, behaviors and runtime
services. Attributes carry descriptive information regard-
ing the platform, such as platform ID, energy level and
healthy level. Healthy level is defined as a function of the
age of and resource availability on a network host that the
platform runs on. The age indicates how long a network
host remains alive (i.e. how much stable a network host
is). Resource availability indicates how much resources
(e.g. memory space) are available for agents and plat-
forms on a network host. Healthy level affects behaviors
of a platform and agent. For example, higher healthy level
indicates higher stability of and higher resource availabil-
ity on a network host that the platform resides on. Thus,
the platform may be designed to replicate itself on a
healthier neighboring host than the current local host. This
results in the adaptation of platform locations. Platforms
work on stable and resource rich network hosts.

Behaviors are the actions that are inherent to all plat-
forms. Although SymbioticSphere defines six standard
platform behaviors [12], this paper focuses on two of
them.

• Replication. Platforms may make copies of themselves

as a result of abundance of energy (i.e. high demand for
resources available on them). The child platform re-
ceives the half amount of the parent’s energy level.

• Death. Platforms may die due to the lack of energy. A
dying platform uninstalls itself from the network and
releases all resources the platform uses. Despite the
death of a platform, an underlying network host remains
active so that other platforms can run on it in the future.

Runtime services are services that agents and platforms
use to perform their behaviors. In order to maximize de-

2 Currently, SymbioticSphere assumes that at most one platform runs on
each network host.

centralization and autonomy, they only use their local
runtime services. They are not allowed to invoke any run-
time services running on a remote platform.

3.3 Behavior Policies of Agents and Platforms

Each agent and platform has policies for its behaviors. A
behavior policy defines when to and how to invoke a par-
ticular behavior. Each behavior policy consists of one or
more factors (Fi), which evaluate environment conditions
(e.g. resource availability on a local platform) or
agent/platform status (e.g. energy level and healthy level).
Each factor is given a certain weight (Wi) relative to its
importance. Behaviors are invoked if the weighted sum of
factor values (Σ Fi*Wi) exceeds a threshold.

Agent migration behavior has three factors listed below.
If there are multiple neighboring platforms that an agent
can migrate to, the agent calculates a weighted sum of the
above factor values for each of the platform, and migrates
to a platform that generates the highest weighted sum.

• Service Request Ratio, (# of service requests on a re-
mote platform)/(# of service requests on a local plat-
form), which encourages agents to move towards users.

• Healthy Level ratio, (healthy level on remote platform -
healthy level local on local platform) / (healthy level on
local platform), which encourages agents to move to-
wards platforms running on healthier hosts.

• Migration interval, interval from the time of a previous
migration, which discourages too many agents to mi-
grate too often.

Agent replication and death behaviors have a factor that
evaluates the current energy level of agent.

Platform replication behavior has a factor described below.
A replicated (child) platform is placed on a host whose
healthy level is highest among neighboring hosts2.

• Healthy Level Ratio, (healthy level on a remote
host)/(healthy level on a local host), which encourages
platforms to replicate themselves on a healthier host.

Platform death behavior has a factor that evaluates the
current energy level of platform. Each platform never
performs death behavior while an agent(s) runs on the
platform.

Each agent/platform incurs energy loss (i.e. behavior cost)
to invoke behaviors except death behavior. When the en-
ergy level of an agent/platform goes over the cost of a
behavior, the agent/platform decides if it performs the
behavior by calculating a weighted sum of factor values.

3.4 Energy Exchange among Agents and Platforms

SymbioticSphere models agents and platforms as different
biological species, and follows several ecological con-
cepts to determine how often agents/platforms expend

energy and how much energy they expend at a time. Fig.
1 shows a simplified energy flow in the ecological system.
The sun gives light energy, and producers (e.g. plants and
microorganisms) convert it to chemical energy. The
chemical energy flows through multiple species, called
consumers. It will be eventually transferred to decompos-
ers (e.g. bacteria and fungi). For example, shrubs (produc-
ers) convert the sun light energy to chemical energy, hares
(primary consumers) consume shrubs, and foxes (secon-
dary consumers) consume hares. When energy is trans-
ferred from one species to another, it is known that about
10% of the energy maintained by one species goes to an-
other species [13]. The remaining 90% is used for me-

tabolism, growth and actions/behaviors (e.g. moving).

 Sun

Producers Primary
Consumers

N-th
Consumers

Decomposers

Ecosystem

Fig. 1 Energy Flow in Ecosystem

Fig. 2 shows the energy exchange in SymbioticSphere.
SymbioticSphere models users as the sun, agents as pro-
ducers, and platforms as (primary) consumers. Similar to
the sun, users have unlimited amount of energy. Agents
gain energy from users3, and pay energy to consume re-
sources provided by platforms. They pay 10% of the cur-
rent energy level to platforms. Platforms gain energy from
agents, and pay (evaporate) 10 % of the current energy
level to the environment.

Platform

Host

SymbioticSphere

Environment

Energy

Energy

Energy

Resource Energy

Agent

Service

Platform

Host Host

User request

Energy

Fig. 2 SymbioticSphere

Agents dynamically change the rate of transferring energy
to platforms, based on the rate of accepting service re-
quests from users. When agents process more service re-
quests, they consume more resources. Thus, agents trans-
fer energy (i.e. 10% of the current energy level) to plat-
forms more often. In contrast, they reduce their energy
transfer rate in response to lower energy intake from users.

3 Each agent specifies, in its body, the price (in energy units) of service
that it provides.

In order to dynamically change energy transfer rate, each
agent keeps an interval time between an incoming service
request and a previous request. It records the average,
shortest and maximum intervals of previous N service
requests (Ts, Ta and Tm, respectively). Fig. 3 shows how
often each agent transfers energy to platforms. First, an
agent waits for Ts and pay energy to an underlying plat-
form. Then, the agent checks if a new service request(s)
has arrived during the previous Ts interval. If arrived, the
agent updates Ts, Ta and Tm values, waits for Ta, and
then pays energy to a platform. Otherwise, it waits for Ta
and pays energy to a platform. Similarly, each agent re-
peats energy transfers in Ts, Ta and Tm intervals.

Ta is a simple moving average calculated from the inter-
vals of previous N service requests. The shortest and
longest intervals play a role of weighted values to make
energy transfer rate follow dynamic changes in service
request rate. Ts and Tm values are periodically reset
(every M service requests). A previous simulation result
shows that the proposed energy exchange mechanism
allows agents to change their energy expenditure rate well
against dynamic change in energy intake [12].

Platforms also dynamically change the rate to evaporate
energy, depending on the rate of accepting energy trans-
fers from agents. The more often they receive energy
transfer from agents, the more often they evaporate en-
ergy (10% of the current energy level). Each platform
changes its energy evaporation rate in the same way as
each agent changes its energy expenditure rate. (i.e., each
platform follows the mechanism described in Fig. 3.)

4. Preliminary Simulation Results

This section shows preliminary simulation results to
evaluate how the biologically-inspired mechanisms in

SymbioticSphere impact on scalability and adaptability of
grid systems (i.e. agents and platforms)4.

In this paper, adaptability is evaluated as service adapta-
tion and resource adaptation. Service adaptation is the
activities to adaptively improve the quality and availabil-
ity of services provided by agents. Quality of service is
measured as response time of agents for service requests
from users. Service availability is measured as the number
of available agents. Resource adaptation is the activities
to adaptively improve availability of resources provided
by platforms and efficiency to utilize the resources. Re-
source availability is measured as the number of platforms
that make resources available for agents. Resource effi-
ciency indicates how many service requests can be proc-
essed against resource utilization.

Wait for the
shortest interval (Ts)

and pay energy

Update
Ta, Ts, and Tm

User request
has arrived? Yes Yes

No

No

Yes

No

Wait for the
average interval (Ta)

and pay energy

Wait for the
max interval (Tm)

and pay energy

User request
has arrived?

User request
has arrived?

Fig. 3 Energy Transfer between Agents and Platforms

A simulated network is a 8x8 grid topology network with
64 network hosts (Fig. 4). At the beginning of each simu-
lation, a platform is initialized on the network host 63, and
an agent is deployed on the platform. Transmission la-
tency is 0.1 second between two network hosts. (one

simulation cycle corresponds to 1 sec in simulation time.)

0

4

1

2

3

7

5

6

24

28

25

26

27

31

29

30

32

36

33

34

35

39

37

38

40

44

41

42

43

47

45

46

48

52

49

50

51

55

53

54

56

60

57

58

59

63

61

62

8

12

9

10

11

15

13

14

16

20

17

18

19

23

21

22

Fig. 4 Simulated Network

Each network host has 256MB memory 5 . Out of the
memory space, an operating system consumes 128 MB
and Java virtual machine consumes 64MB. Thus, 64MB
is available for a platform and agents on each network
host. Each agent and platform consumes 5 MB and 20
MB, respectively. This assumption is obtained from a
prior empirical experiment [5].

4.1 Single User Simulations

In this simulation study, a user is placed on the network
host 19, and propagates service requests for 24 hours
(from 0:00 to 24:00) at a rate shown in Fig. 5. Three simu-
lation scenarios are implemented. Scenario 1 initializes a
platform as non-biological entity (on the network host
63); thus it does not replicate and die. There is only one
platform running throughout a simulation. Scenario 2 ini-
tializes a non-biological platform on each network host

4 Simulations were carried out with the SymbioticSphere simulator,
which contains 14,100 lines of Java code. This simulator is freely avail-
able at http;//dssg.cs.umb.edu/symbiosis/ for researchers who investigate
autonomic grid systems.
5 Currently, memory availability represents resource availability.

(i.e. 64 platforms on 64 network hosts). The platforms do
not replicate and die. In Scenario 3, a biological platform
is initialized on network host 63. The platform can dy-
namically replicate and die based on the behavior policy
described in Section 3. In either scenario, agents are im-
plemented as biological entities; they can migrate, repli-
cate and die. A key simulation objective is to investigate
the behavior of agents and platforms in Scenario 3 against
the other two extreme cases (i.e. Scenarios 1 and 2).

Fig. 6 shows how service availability (i.e. the number of
agents) changes. In Scenarios 1, 2 and 3, agents autono-
mously adapt their population to demand change for their
services. When service request rate becomes high, agents
gain more energy and replicate themselves. In contrast,
when service request rate becomes low, some agents die
due to energy starvation since they cannot balance energy
gain and expenditure. Biological mechanisms contribute
for agents to improve service availability as a group.

Fig. 7 shows how resource availability (i.e. the number of
platforms) changes. Since platforms are not designed as
biological entities in Scenarios 1 and 2, the number of
platforms do not change (i.e. one and 64 platforms in Sce-
narios 1 and 2, respectively). In Scenario 3, in which plat-
forms are designed as biological entities, platforms dy-
namically adapt their population to demand change for
resources. When service request rate becomes high,
agents gain more energy and transfer more energy to plat-
forms. As a result, platforms replicate themselves more
often. In contrast, when service request rate becomes low,
some platforms die due to energy starvation since they
cannot gain enough energy to keep their population. Fig. 7
shows biological mechanisms contribute for a group of
platforms to adaptively improve resource availability.

0

20

40

60

0 2 4 6 8 10 12 14 16 18 20 22 24

time (hour)

scnario1
scenario2
scenario3

th
e

nu
m

be
r o

f p
la

tfo
rm

s

Fig. 7 the Number of Platforms

0

1

2

3

4

5

6

0 2 4 6 8 10 12 14 16 18 20 22 24

time (hour)

of

 re
qu

es
ts

 /s
ec

Fig. 5 Change in Service Request

Fig. 8 shows the average distance between a user and
agents (in network hop counts). In Scenario 1, the dis-
tance remains constant (5 hop counts) because a platform
does not make its children platforms that agents may mi-
grate to. In Scenario 2, the distance rapidly decreases be-
cause agents can migrate to platforms that are closer to a
user. The distance becomes zero in 1.5 hours. (agents
reach user’s location in 1.5 hours.) In Scenario 3, the dis-
tance gradually decreases and becomes zero in 8 hours.
Unlike Scenario 2, Scenario 3 begins with a single (bio-
logical) platform. At the beginning of a simulation, the
platform needs to wait for agents to grow their population
and transfer it enough energy so that it can replicate itself
on a neighboring host. If the child platform is placed on a
host that is closer to a user, agents move to the platform,
thereby decreasing the distance to a user by one hop count.
This process takes more time than how agents move to-
ward a user in Scenario 2.

0

2

4

6

8

10

0 2 4 6 8 10 12 14 16 18 20 22 24

time (hour)

scnario1
scenario2
scenario3

A
ve

ra
ge

 D
is

ta
nc

e
be

tw
ee

n
A

ge
nt

s a
nd

 U
se

r

0

2

4

6

8

10

0 2 4 6 8 10 12 14 16 18 20 22 24

time (hour)

scnario1
scenario2
scenario3

A
ve

ra
ge

 D
is

ta
nc

e
be

tw
ee

n
A

ge
nt

s a
nd

 U
se

r

Fig. 8 Average Distance between Agents and User
 0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14 16 18 20 22 24
time (hour)

scnario1
scenario2
scenario3

th
e

nu
m

be
r o

f a
ge

nt
s

Fig. 6 the Number of Agents

Fig. 9 depicts the average distance between a user and
platforms. It shows platforms gradually move toward a
user, although platform replication policy does not con-
sider user location. This is an example of symbiotic emer-
gence. If replicated platforms are placed on hosts that
agents want to migrate to (i.e. hosts closer to users), the
platforms will survive. Otherwise, they will die because
agents do not migrate to them and transfer energy to them.
In a sense, agents indirectly instruct platforms where to
replicate themselves. This results in a mutual benefit for
agents and platforms. Agents can work closer to users and
gain more energy from the users, and platforms gain more
energy from agents.

Fig. 10 shows the quality of services (i.e. the average re-
sponse time for agents to process service requests from a
user). In the first three hours, response time becomes very
high in either scenario, because agents have to store en-
ergy for a while to start replications. After the first three
hours, agents increase their population to process more
service requests (Fig 10); thereby decreasing response
time dramatically. In Scenario 1, response time is greater
than in Scenarios 2 and 3 because agents do not migrate
toward a user. Please note that response time include
transmission latency between two network hosts. (i.e. the
closer agents work from a user, the shorter their response
time becomes). In scenario 2, which is the best case sce-
nario for the response time measurement, agents migrate
toward a user, and response time drops to 1 second in four
hours. In scenario 3, agents have to wait for platforms to
accumulate enough energy to start replications. Response
time drops to 0.5 second in eight hours. Fig. 14 shows
biological mechanisms contribute for agents and plat-
forms to collectively adapt response time for users.

Fig. 11 shows resource efficiency. It is measured as (the
total number of user requests processed by agents) / (the
total amount of resources consumed by agents and plat-
forms). Scenario 1 is the best case scenario because only
one platform is used to process all service requests. Sce-
nario 2 is the worst case scenario because all service re-
quests are processed by 64 platforms including idle ones
that do not operate agents. In Scenario 3, both agents and
platforms dynamically change their populations. Resource

efficiency in Scenario 3 is often close to the best case re-
sult in Scenario 1. Fig. 11 shows that biological mecha-
nisms contribute for agents and platforms to autono-
mously keep resource efficiency high.

0

2

4

6

8

10

0 2 4 6 8 10 12 14 16 18 20 22 24
time (hour)

scnario1
scenario2
scenario3

A
ve

ra
ge

 D
is

ta
nc

e
be

tw
ee

n
Pl

at
fo

rm
s a

nd
 U

se
r

0

2

4

6

8

10

0 2 4 6 8 10 12 14 16 18 20 22 24
time (hour)

scnario1
scenario2
scenario3

A
ve

ra
ge

 D
is

ta
nc

e
be

tw
ee

n
Pl

at
fo

rm
s a

nd
 U

se
r

Fig. 9 Average Distance between Platforms and User

0

2

4

6

8

0 2 4 6 8 10 12 14 16 18 20 22 24
time (hour)

scnario1 scenario2 scenario3

R
es

ou
rc

e
Ef

fic
ie

nc
y

Fig. 11 Resource Efficiency

4.2 Multiple Users Simulations

A series of the following simulations is to evaluate how
agents and biological platforms behave in a network envi-
ronment where multiple users propagate service requests.

Fig. 12 shows how each user changes its service request
rate. A user always resides on each of the hosts 9 and 14,
and the third user enters the network (on the host 59).

Fig. 13 shows how service availability (i.e. the number of
agents) changes. When service request rate spikes at 8:00,
agents autonomously increase their population rapidly
because they gain more energy from users and perform
replication more often. This result shows agents scale well
to rapid changes in service demand.

0
3
6
9

12
15

0 2 4 6 8 10 12 14 16 18 20 22 24

time (hour)

Host 9 and 14 Host 59

of

 se
rv

ic
e

re
qu

es
ts

 /
se

c

Fig. 12 Change in Service Request

0

100

200

300

400

500

600

700

800

0 2 4 6 8 10 12 14 16 18 20 22 24

time (hour)

scnario1
scenario2
scenario3

0
5

10
15
20
25

0 2 4 6 8 10 12 14 16 18 20 22 24

time (hour)

A
ve

ra
ge

 R
es

po
ns

e
tim

e
(s

ec
)

Fig. 10 Average Response Time
0
5

10
15
20
25
30
35

0 2 4 6 8 10 12 14 16 18 20 22 24

time (hour)

th
e

nu
m

be
r o

f a
ge

nt
s

Fig. 13 the Number of Agents

Fig. 14 shows how resource availability (i.e. the number
of platforms) changes. Platforms adaptively adjust re-
source availability by changing their population against
the demand for their resources.

Fig. 15 shows quality of service (i.e. the average response
time for agents to process service requests from users). In
the first two hours, response time becomes very high be-
cause agents have to store energy for a while to start rep-
lications. After that, response time dynamically drops to
20 seconds at 2:00. Then, agents start migrating towards
users. Response time decreases to 10 seconds at 8:00.
When the third user enters the network, response time
increases to 20 seconds. Two hour later, it decreases to 10
seconds again because agents work close from the third
user. Fig. 15 shows that agents autonomously adapt their
response time against dynamic changes in service request
rate and the number of users by adjusting their population
and locations.

Fig 16 shows how workload (i.e. service requests) is dis-
tributed over available platforms. Load Balancing Index
(LBI) is measured with the Equation 1 (LBI is a standard
deviation of xi).

N

X
IndexBalancingLoad i

i∑ −
=

2)(μ
 (1)

xi indicates (the number of messages processed by
agents running on platform i) / (resource utilization on

platform i). μ represents the expected average of x, which
is means (the total number of messages processed by all
agents) / (the total amount of resource utilization on all
platforms) / (the number of platforms; N). W2 in Fig. 16
indicates the weight value for healthy level ratio factor in
agent migration policy. When a higher weight value is
given, agents distribute workload more aggressively. Ap-
plication designers can configure this value based on the
requirements to their applications. Fig. 16 also shows that
agents and platforms gradually increase the degree of load
balancing over time. This is an example of symbiotic
emergence. Agent migration behavior policy encourages
agents to move towards platforms running on healthier
hosts. Platform replication behavior policy encourages
platforms to replicate themselves on healthier hosts. As a
result, service requests are processed by agents that are
spread over the platforms running on healthy hosts. This
contributes to balance workload per platform, although
agent migration policy and platform replication policy do
not consider agent population, platform population nor
load balancing. This results in a mutual benefit for both
agents and platforms. Platforms help agents decrease re-
sponse time by making more resources available for them.
Agents help platforms to keep their stability by distribut-
ing workload on them (i.e. by avoiding excessive resource
utilization on them).

0

5

10

15

20

0 2 4 6 8 10 12 14 16 18 20 22 24
time (hour)

th
e

nu
m

be
r o

f p
la

tfo
rm

s

 Fig. 14 the Number of Platforms

0

50

100

150

0 2 4 6 8 10 12 14 16 18 20 22 24

time (hour)

av
er

ag
e

re
sp

on
se

 ti
m

e
(s

ec
)

Fig. 15 Average Response Time

5. Related Work

This work is an extended work to the Bio-Networking
Architecture, as described in Section I. In the Bio-
Networking Architecture, agents are designed as biologi-
cal entities, and they achieve service adaptation in a de-
centralized and collective manner [4, 6]. However, plat-
forms are static and non-biological entities. Since they do
not change their population and locations dynamically,
they cannot achieve resource adaptation. In Symbiotic-
Sphere, agents and platforms achieve both service adapta-
tion and resource adaptation in a decentralized, collective
and symbiotic manner.

0

50

100

150

200

0 2 4 6 8 10 12 14 16 18 20 22 24

time (hour)

W2=1 W2=2 W2=3

Lo
ad

 B
al

an
ci

ng
 In

de
x

Fig. 22 Load Balancing Index

Resource Broker [14] proposes a resource adaptation
mechanism for grid systems. In this mechanism, a central-
ized system component monitors heterogeneous environ-
ments where different network hosts have different levels
of stability and different resource availability. Given
monitored environment conditions, the mechanism adapts
resource allocations for grid applications. Unlike Re-
source Broker, SymbioticSphere service adaptation as
well as resource adaptation with decentralized agents and
platforms.

[15] and [16] propose generic adaptation frameworks for
grid systems. They can be used to achieve both service
adaptation and resource adaptation. In these frameworks,
centralized system components store the current environ-
ment conditions, and decide which adaptation strategy to
execute against the monitored conditions. In contrast,

SymbioticSphere does not assume any centralized system
components. Each of agents and platforms collects and
stores environment conditions, and autonomously decide
which behavior to invoke.

The concept of energy in SymbioticSphere is similar to
money in economy. MarketNet [17] applies the concept of
money to achieve market-based access control for net-
work applications. However, it does not mention the de-
tails on how much and how often application components
make payments with each other. SymbioticSphere cur-
rently focuses on service adaptability and resource
adaptability. It also provides application developers the
details on energy exchange between system components
(i.e. agents and platforms) so that they can consistently
develop adaptive network systems.

6. Conclusions

This paper overviews the architectural design of Symbiot-
icSphere, and presents how it implements biological con-
cepts and mechanisms to make grid systems (i.e. services
and platforms) scalable, survivable and adaptive. This
paper also describes how agents and platforms interact
with each other to collectively exhibit emergence of desir-
able system characteristics (e.g. adaptability). Preliminary
simulation results show that agents and platforms collec-
tively adapt to dynamic changes in the network (e.g. user
location, network traffic and resource availability) in a
decentralized and autonomous manner.

An extended set of simulations is planned to investigate
how the proposed biologically-inspired mechanisms im-
pact on scalability, survivability and adaptability of grid
systems. For example, future simulations will operate
agents and platforms on larger heterogeneous networks
where different network hosts have different resource
availability, intermittent unstable networks where network
hosts and network links between them can be occasionally
down, and mobile networks where users dynamically
move.

Reference:

[1] P. Dini, W. Gentzsch, M. Potts, A. Clemm, M. Yousif and

A. Polze, “Internet, Grid, Self-adaptability and Beyond:
Are We Ready?,” In Proc. of the IEEE International Work-
shop on Self-Adaptable and Autonomic Computing Systems,
August 2004.

[2] R. Sterritt and D. Bustard, “Towards an Autonomic Com-
puting Environment,” In Proc. of 14th IEEE International
Workshop on Database and Expert Systems Applications,
September 2003.

[3] Large Scale Networking Coordinating Group of the Inter-
agency Working Group for Information Technology Re-
search and Development (IWG/IT R&D), Report of Work-
shop on New Visions for Large-scale Networks: Research
and Applications, March 2001.

[4] T. Suda, T. Itao and M. Matsuo, “The Bio-Networking
Architecture: The Biologically Inspired Approach to the
Design of Scalable, Adaptive, and Survivable/Available
Network Applications,” In K. Park (ed.) The Internet as a
Large-Scale Complex System, Oxford University Press,
June 2005.

[5] J. Suzuki and T. Suda, “A Middleware Platform for a Bio-
logically-inspired Network Architecture Supporting
Autonomous and Adaptive Applications” In IEEE Journal
on Selected Areas in Communications (JSAC), vol. 23, no.
2, February 2005.

[6] J. Suzuki, “Biologically-inspired Adaptation of Autonomic
Network Applications,” In International Journal of Paral-
lel, Emerging and Distributed Computing, vol. 20, no. 2,
June 2005.

[7] T. Nakano and T. Suda, "Adaptive and Evolvable Network
Services," In Proc. of the Genetic and Evolutionary Com-
putation Conference, 2004.

[8] S. Sameshima, J. Suzuki, S. Steglich and T. Suda, Platform
Independent Model (PIM) and Platform Specific Model
(PSM) for Super Distributed Objects, Object Management
Group, Final Recommended Specification, 95 pages, No-
vember 2004.

[9] N. Minar, K. H. Kramer and P. Maes, “Cooperating Mobile
Agents for Dynamic Network Routing,” In A. L. G.
Hayzelden and J. Bigham (eds.) Software Agents for Future
Communications Systems, Springer, 1999.

[10] R. Albert, H. Jeong and A. Barabasi, “Error and Attack
Tolerance of Complex Networks,” Nature 406, 2000.

[11] G Cabri, L. Leonardi and F Zambonelli, “Mobile-Agent
Coordination Models for Internet Applications,” IEEE
Computer, February 2000.

[12] P. Champrasert and J. Suzuki, "SymbioticSphere: A Bio-
logically-inspired Network Architecture for Autonomic
Grid Computing," In Proc. of the 2nd IEEE/Create-Net
Int’l Workshop on Networks for Grid Applications, Boston,
MA, October 2005. to appear.

[13] R. M. Alexander, “ Energy for Animal Life,” Oxford Uni-
versity Press, May 1999.

[14] A. Othman, P. Dew, K. Djemame, I, Gourlay, “Adaptive
Grid Resource Brokering,” In IEEE International Confer-
ence on Cluster Computing, December 2003

[15] S. Cheng, D. Garlan, B. Schmerl, P. Steenkiste, and N. Hu,
“Software Architecture-based Adaptation for Grid Comput-
ing,” In the 11th IEEE Conference on High Performance
Distributed Computing, July 2002.

[16] K Shirose, S Matsuoka, H Nakada, and H Ogawa,
“Autonomous Configuration of Grid Monitoring Systems,”
In the 2004 Symposium on Application and the Internet,
January 2004.

[17] M. P. Wellman, “A Market-Oriented Programming Envi-
ronment and Its Application to Distributed Multicom-
modity Flow Problems,” Journal of Artificial Intelligence
Research, Vol. 1, 1993

