
A Service-Oriented Design Framework for Secure Network Applications

Hiroshi Wada and Junichi Suzuki
Department of Computer Science

University of Massachusetts, Boston
Boston, MA 02125-3393
{shu, jxs}@cs.umb.edu

Katsuya Oba
OGIS International, Inc.

Palo Alto, CA 94301
oba@ogis-international.com

Abstract—-Service Oriented Architecture (SOA) is an archi-
tectural style to reuse and integrate existing systems for design-
ing new applications. Each application is designed in an im-
plementation independent manner using two major abstract con-
cepts: services and connections between services. In SOA, the
non-functional aspects (e.g., security and fault tolerance) of ser-
vices and connections should be described separately from their
functional aspects (i.e., business logic) because different applica-
tions use services and connections in different non-functional con-
texts. This paper presents a UML profile to graphically describe
and maintain non-functional aspects in SOA in an implementation
independent manner. This paper also describes how the proposed
profile is used to develop secure service-oriented applications.

1. Introduction
One of the current key issues in large-scale distributed

systems is to reuse and integrate existing systems to build
new applications in a cost effective manner [1, 2]. Ser-
vice Oriented Architecture (SOA) addresses this issue by
improving the reusability and maintainability of distributed
systems [3, 4]. It is an architectural style to design applica-
tions in an implementation independent manner using two
major abstract concepts: services and connections between
services. Each service encapsulates the function of a sub-
system in an existing system. Each connection defines how
services are connected with each other and how messages
are exchanged through the connection. SOA hides the im-
plementation details of services and connections (e.g., pro-
gramming language and remoting middleware) from appli-
cation designers. They can reuse and combine services with
connections to build their applications without knowing the
implementation details of services and connections.

In SOA, the non-functional aspects (e.g., security and
fault tolerance) of services and connections should be de-
fined separately from their functional aspects (i.e., business
logic) because different applications use services and con-
nections in different non-functional contexts. For example,
an application may send signed and encrypted messages
to a service when the messages travel to a destination ser-

vice through third-party intermediaries, in order to prevent
the intermediaries from maliciously sniffing or altering the
messages. Another application may send plain messages
to the service via unsecured connection when the service
is hosted in-house. The separation of functional and non-
functional aspects improves the reusability of services and
connections. It also allows two different aspects to evolve
independently, and improves the ease of understanding ap-
plication design. This contributes to improve the maintain-
ability of applications.

This paper proposes a Unified Modeling Language
(UML) profile to graphically model the non-functional as-
pects in SOA, including security aspects, as UML diagrams
(composite structure diagrams and class diagrams). A UML
profile specializes the standard UML model elements (e.g.,
class and association) to precisely describe domain specific
or application specific concepts [5, 6]. Using the proposed
UML profile, non-functional aspects in SOA can be mod-
eled without depending on any particular implementation
technologies. Supporting tools accept the UML models
defined with the proposed profile and transform them into
application code using certain implementation technologies
such as Enterprise Service Buses (ESBs) [7] and secure file
transfer systems. This paper focuses on the design details
of the proposed UML profile, and describes how it is used
to develop secure service-oriented applications.

This paper is structured as follows. Section 2 motivates
the proposed UML profile with an example, and Section 3
describes the design details of the proposed profile. Sec-
tion 4 demonstrates how the proposed profile is used in a
service-oriented application development. Sections 5 and 6
conclude with discussion on related work and future work.

2. Background and a Motivating Example
UML is a modeling language to describe application de-

signs as graphical diagrams. It specifies the syntax (or nota-
tion) and semantics of every model element that appears in
diagrams (e.g., class, interface and association). The syn-
tax and semantics are defined in the UML metamodel [5],

which is the grammar specification for a standard (default)
set of model elements in UML.

In addition to standard model elements, UML provides
extension mechanisms (e.g., stereotypes and tagged-values)
to specialize the standard model elements to precisely de-
scribe domain or application specific concepts [6]. A stereo-
type is applied to a standard model element, and special-
izes its semantics to a particular domain or application.
Each stereotyped model element can have data fields, called
tagged-values, specific to the stereotype. Each tagged-value
consists of a name and value. A particular set of stereotypes
and tagged-values is called a UML profile.

Figure 1 shows an example model defined with the
proposed UML profile. It illustrates a loan application
processing in which a bank assesses whether to grant
a loan to an applicant based on the applicant’s credit
rating evaluated by a credit agency. In this example,
three services (Applicant, Bank and CreditAgency) ex-
change messages. Each service is defined as a class dec-
orated with the stereotype ¿ServiceÀ. Services ex-
change four types of messages (LoanApp, LoanApproval,
RatingInquiry and Rating), each of which is stereo-
typed with ¿MessageÀ. The data fields steteotyped
with ¿EncryptedPropertyÀ in RatingInquiry and
Rating are encrypted with the algorithms specified as
tagged-values (algorithm = ...).

《Service》Applicant

《Logger》: Logger
《Connector》RatingConn

reply
source sink

《Message》Rating

《Message》LoanApprequest

sink

source
reply

《Connector》LoanAppConn

SSN: String

《EncryptedProperty》SSN: String
《Service》CreditAgency《Service》Bank

《Message》RatingInquiry 《EncryptedProperty》creditRating: int

algorithm = http://www.w3.org/2001/04/xmlenc#tripledes-cbc algorithm =http://www.w3.org/2001/04/xmlenc#aes256-cbc
APR : float

request

《MessageExchange》LoanAppProcessing

《MessageExchange》CreditRating

synchrony = Synctimeout = 00:02:00.00encryptionAlgorithm = http://www.w3.org/2001/04/xmlenc#tripledes-cbc
1*
*

1 1 1* *

《Message》LoanApproval

synchrony = Synctimeout = 00:02:00.00
Figure 1. An Example UML Model

Each pair of a request and reply messages is repre-
sented by ¿MessageExchangeÀ. ¿ConnectorÀ rep-

resents a connection that transmits messages between ser-
vices. In this example, messages are delivered through
two connectors (LoanAppConn and RatingConn). Ev-
ery message exchange is bound with a connector in or-
der to specify which connector is used to deliver mes-
sages. Figure 1 shows that an Applicant sends a LoanApp
message through LoanAppConn to a Bank, which in turn
sends a RatingInquiry message through RatingConn

to a CreditAgency. A CreditAgency sends a Rating

back to a Bank, which returns a LoanApproval to an
Applicant. Each connector can have multiple tagged-
values to specify message transmission semantics. In this
example, LoanAppConn specifies the synchrony of mes-
sage transmission (synchronous) and the timeout of mes-
sage transmission (two minutes).

As shown above, the proposed UML profile provides a
visual and intuitive abstraction to model the architectures
and non-functional aspects of service-oriented applications.

3. Design of the Proposed UML Profile

The proposed UML profile provides key model elements
to specify service-oriented applications: service, message
exchange, message, connector and filter, each of which is
defined as stereotypes (Table 1).

Table 1. Stereotypes
Stereotype Description
Service Represents a service.
MessageExchange Represents a pair of a request and reply

messages. Specifies which services send
and receive the messages.

Message Represents a (request or reply) message.
Connector Represents a connection between ser-

vices (i.e., message source and destina-
tion). Defines the semantics of message
transmission and processing. Specifies
which messages (message exchange) to
transmit.

Filter Specifies the semantics of message
transmission and message processing in
each connector.

Figure 2 shows how the proposed UML profile de-
fines its stereotypes by extending the UML metamodel.
Each stereotype is defined as a metaclass stereotyped with
¿stereotypeÀ. Except Connector, four stereotypes
inherit the Class metaclass in the Kernel package of the
UML metamodel. Thus, they are applied to classes in user-
defined models (see Figure 1). A Service can be a source
or sink of each request/reply message. The source and sink
are identified with source and sink, roles on two associ-
ations between a MessageExchange and Services (Fig-
ures 1). Each MessageExchange may have multiple re-

ply messages per request message (Figure 2). Using multi-
plicity on two associations between a MessageExchange

and Services, MessageExchange can indicate one-to-
one (unicast) and one-to-many (multicast or manycast) mes-
sage exchanges. For example, Figure 1 shows a one-to-one
message exchange between an Applicant and a Bank.

Connector is a stereotype extending the Class meta-
class in the InternalStructures package of the UML
metamodel (Figure 2). This metaclass defines a compos-
ite class, a special type of class, which can contain other
model elements (e.g., inner classes)1 and have Ports to
specify how internal model elements interact with exter-
nal elements. In the proposed UML profile, a Connector

can contain Filters to specify the semantics of message
transmission and message processing. The Ports con-
nected with a Connector identify the Messages it receives
and sends out, using association roles input and output.
For example, Figure 1 shows the connector RatingConn,
which contains a filter (a Logger). This filter receives,
records and sends out creditRating messages.

《stereotype》Connector
0..*1

10..*

UML 2.0 metamodel

Proposed UML profile

InternalStructues::StructuredClassifier

1..*

Ports::EncapsulatedClassifierPorts::Port 0..1*InternalStructures::Property 0..1*part

1..*0..*1 0..*1..*source
sink 1 0..*《stereotype》MessageExchange《stereotype》Service 11request reply1 0..*《stereotype》Filter

Kernel::Class InternalStructures::Class

《stereotype》Message
Figure 2. Definition of Stereotypes

3.1. Connector
Connector has five tagged-values (Figure 3). timeout

is a mandatory tagged-value to specify the timeout period
(in millisecond) in which a connector needs to deliver each
message. If a message is not delivered to its destination
(sink) within the timeout period, a connector discards the
message. In Figure 1, the timeout period of the connector
LoanAppConn is specified as two minutes.

synchrony is a mandatory tagged-value to specify the
synchrony semantics of message transmissions between
a message source and destination. Synchronous, asyn-
chronous and oneway non-blocking semantics are defined
as an enumeration in Synchrony (Figure 3), and each con-
nector chooses one of them. In Figure 1, Applicants and

1Precisely, a composite class can contain any classifiers, defined in the
UML metamodel.

《enumeration》SynchronySyncAsyncOneway

1synchrony

《enumeration》DeliveryAssuranceAtMostOnceAtLeastOnceExactlyOnce
0..1deliveryAssurance

《stereotype》Connectortimeout : TimeencryptionAlgorithm[0..1]: StringinOrder : boolean

Figure 3. Tagged-Values of Connector

Banks exchange LoanApp and LoanApproval messages
synchronously.

inOrder is a mandatory tagged-value to specify
whether the order of messages that a service (message des-
tination) receives is same as the order of messages that the
other service (message source) sends out. The default value
of inOrder is false.

deliveryAssurance is an optional tagged-value to
specify the assurance level of message delivery. Three
different semantics are defined as an enumeration in
DeliveryAssurance (Figure 3), and each Connector

chooses one of them at a time (see Figure 1). AtLeastOnce
means that a connector retries delivering a message until its
destination receives the message. (A message retransmis-
sion is triggered with the timeout tagged-value.) However,
the message may be delivered to its destination more than
once. AtMostOnce means that a connector discards a mes-
sage if the message has already been delivered to its desti-
nation; however, there is no guarantee of message delivery.
ExactlyOnce satisfies the requirements of the above both
semantics. It guarantees that a connector delivers a mes-
sage to its destination without duplications. When inOrder
is true, ExactlyOnce is implicitly (automatically) set to
deliveryAssurance because duplicated or missing mes-
sages violate the inOrder semantics.

Figure 4 shows an example model using inOrder and
deliveryAssurance. This example illustrates an ex-
tension to an order processing application in Figure 1.
In this example, a Buyer transmits an OrderMsg to a
Supplier via Retailer. After a Retailer forwards an
OrderMsg from a Buyer to a Supplier, the Buyer can
cancel the order by transmitting a CancellationMsg to
the Retailer, and in turn, to the Supplier. In this ex-
ample, the order of message transmissions is important be-
tween Retailer and Supplier because an order must be
delivered to Supplier before a corresponding order can-
cellation. Therefore, the inOrder semantics is assigned
to the RetailerOrder connector. This semantics implic-
itly assigns ExactlyOnce to the deliveryAssuarance

semantics in the RetailerOrder connector.
encryptionAlgorithm is an optional tagged-value

used for transport-level (point-to-point) encryption in a

《Message》OrderMsg

《Message》ConfirmationMsg

《Message》CancellationMsg

orderID: int

orderID: int requestrequest

reply

1

*

1

*

1

*

1

*

source

sink

source

sink

《Service》Buyer
《Connector》 BuyerOrder

《Connector》 RetailerOrder

《Service》Retailer

《Service》Supplier

《MessageExchange》OrderCancellation 《MessageExchange》Order

timeout = 00:05:00synchrony = SyncdeliveryAssurance= ExactlyOnce

timeout = 00:05:00synchrony = SyncinOrder = true

sinksink
sourcesource
1 *
1 *

1*
1*

Figure 4. An Example of inOrder and deliv-
eryAssurance

connector. (see Section 3.4 for message-level (end-
to-end) encryption) This tagged-value defines an algo-
rithm to secure a connection upon which request and
reply messages are transmitted. The encryption algo-
rithm is specified as a URI defined in the XML Encryp-
tion specification [8]. For example Triple DES is repre-
sented with http://www.w3.org/2001/04/xmlenc#tripledes-cbc,
and AES-256 (Advanced Encryption Standard) is repre-
sented with http://www.w3.org/2001/04/xmlenc#aes256-cbc. In
Figure 1, the connector LoanAppConn uses Triple DES.

3.2. Filter
This paper describes five of the filters that the proposed

UML profile defines. Filters are defined as stereotypes ex-
tending the Filter stereotype (Figure 5). New filters can
be defined as its subclasses. This section shows five filters
to specify message transmission semantics and a filter to
specify message processing semantics.

《stereotype》Filter

《stereotype》Validator
《stereotype》 Logger

《stereotype》 Multicast

《stereotype》 Anycast

《stereotype》 ManycastgroupSize : intstandby : Standbybacktracking : Backtrackingquorum : inttimeout : Time
selection : Selectionretry : inttimeout : Time

priority : int

《enumeration》SelectionRandomRoundRobin《enumeration》BacktrackingFCFBVoting《enumeration》StandbyHotWarmCold
Figure 5. Tagged-Values of Filters

The stereotypes Multicast, Manycast, Anycast,
Logger and Digester are used to define the message
transmission semantics in a connector. Multicast receives

a request message from its source and transmits it to multi-
ple destinations simultaneously (one-to-many message ex-
change). When the Multicast filter receives reply mes-
sages from the destinations, it sends them back to the source
of the request message. Multicast is used to improve the
efficiency of message transmissions.

Manycast is used to improve fault tolerance by for-
warding a request message to a group of replicated destina-
tions (i.e., to the same type of services). The tagged-value
groupSize specifies how many services are deployed as a
group. standby specifies the operation of replicated ser-
vices: hot standby, warm standby or cold standby. In hot
standby, all services in a group remain active to receive
request messages. A Manycast filter sends a message to
all services in a group. Manycast returns only one reply
message to the source of a request message, out of multiple
replies from services. backtracking defines two policies
to decide which reply message to be returned. When FCFB

(first-come-first-backtracked) is selected, a Manycast filter
returns the first reply that it receives from destination ser-
vices. When Voting is selected, the Manycast filter per-
forms a voting process. It counts the number of reply mes-
sages and inspects their contents. If the number of replies
that have the same content reaches quorum, the Manycast
filter returns one of the replies. If the number does not reach
quorum within timeout, the Manycast filter returns the
reply that generates the highest voting count.

In warm standby, all services in a group remain active
to receive request messages. A Manycast filter sends a
message to all services in a group, but only one service re-
turns a reply. In this case, backtracking is not used. In
cold standby, only one service in a group is active, and a
Manycast filter sends a message to the service. If the ser-
vice does not respond within timeout, the filter activates
another service in the group and sends a message to the ser-
vice. In cold standby, backtracking is not used.

An example model in Figure 6 uses a manycast filter,
Replicator, in the connection RecordConn. The filter
intercepts each Inquiry (request) message and sends it
to three replicated instances of MedicalRecordServer,
which is maintained with the hot standby policy.
Replicator returns a MedicalRecord (reply message)
to a Patient on FCFB basis.

Anycast is a variation of the hot standby policy in
Manycast. It forwards a request message to only one desti-
nation in a group of replicated services. This filter is used to
balance workload placed on services. selection defines
how to choose a destination from multiple services; ran-
domly, on round robin or on destination’s priority basis (the
service with the highest priority in a group is selected). If
an Anycast filter fails to deliver a request message within
timeout, it retries to forward the request message. retry
specifies the maximum number of retries. If the Anycast

filter fails the maximum number of retries, it returns an error
message to the source of the request message.

Logger records the transmission of each message whose
priority value is higher than priority. When priority is
omitted, all message transmissions are recorded. In Figure
1, the connector RatingConn uses a logger to record all
RatingInquiry messages.

In addition to the filters regarding message transmission
semantics, the proposed UML profile provides several other
filters to specify message processing semantics in a connec-
tor. This paper describes one of them: Validator (Fig-
ure 5). It validates an incoming message against rules (e.g.,
rules specifying valid message types or data ranges), and
transmits only validated messages. When a connector is
encrypted with encryptionParameter, a Validator in
the connector cannot validate messages. (all messages are
transmitted to their destinations.)

《Service》Terminal

《Manycast》: Replicator
《Connector》 RecordConn

reply
sinksource * 3

groupSize = 3Standby = Hotbacktracking = FCFBtimeout = 00:05:00.00

redundancy = 3securityTokens = {X509v3, Kerberosv5ST}
《MessageExchange》RecordExchange 《AccessControlledService》MedicalRecordServer

signatureMethod =http://www.w3.org/2000/09/xmldsig#dsa-sha1 《Message》MedicalRecord
request
《Message》Inquiry 《EncryptedProperty》diagnoses: Diagnosis[]

algorithm = http://www.w3.org/2001/04/xmlenc#tripledes-cbc

*1

timeout = 00:05:00synchrony= Sync

Figure 6. An Example of Manycast

3.3. Service
Service has three optional tagged-values (Figure 7).

priority is the priority of each message that a service
issues. Each Anycast filter uses priority to select the
destination of each message, as described in Section 3.2.
The range of priority is from 0 to 255. (0 is the lowest
and 255 is the highest.)

timeout specifies the timeout period (in millisecond) of
each message that a service issues. If a message is not de-
livered to its destination within this time period, a connector
discards the message.

redundancy specifies the number of runtime instances
of a service. This tagged-value must be specified when a
service is accessed by Manycast or Anycast filters (Sec-
tion 3.2). In Figure 6, Replicator (a Manycast filter)
accesses three instances of MedicalRecordServer to im-
prove the service’s fault tolerance.

AccessControlledService is a stereotype extend-
ing Service (Figure 7). It represents a special type
of service that enforces an access control policy. The

tagged-value securityTokens is a mandatory tagged-
value to specify security tokens (or certificates). Each
AccessControlledService uses security tokens to au-
thenticate the source (service) of each incoming mes-
sage. This tagged-value can contain multiple values in
order of precedence. The values use the names defined
in the WS-SecurityPolicy specification [9]. In Figure 6,
MedicalRecordServers control accesses from Termials
using X.509 certificates or Kerberos tickets. X.509 cer-
tificate is used if a message sender gives both security
tokens. Since UML does not provide a good means to
describe policies (or rules), the proposed UML profile
does not define how to specify access control policies.
AccessControlledService is used only for indicating
a service implements a certain access policy. A support-
ing tool transforms an AccessControlledService to a
skeleton program code or an access control description in
accordance with an implementation technology that an ap-
plication developer chooses. Application developers are re-
quired to complete implementing access control policies.

《stereotype》 Servicepriority[0..1] : inttimeout[0..1] : Timeredundancy[0..1] : int
《stereotype》AccessControlledServicesecurityTokens [1..*] : String

Figure 7. Tagged-Values of Service

3.4. Message
Message has a mandatory tagged-value, schemaURI,

and three optional tagged-values: priority, timeout and
signatureMethod (Figure 8). schemaURI identifies the
schema of a message. The default value of schemaURI

is message’s qualified name (a combination of a package
name and message’s name).

priority and timeout specifies the priority and
timeout period of messages. Connector and Service

also have those tagged-values. The precedence is that
Message’s tagged-values override Service’s ones, and
Service’s tagged-values override Connector’s ones.

In order to ensure the integrity of a message,
signatureMethod is used to specify an algorithm for
generating the message’s degital signature. The al-
gorithm is represented with a URI defined in the
XML Signature specification [10]. For example,
DSA (Digital Signature Algorithm) is represented with
http://www.w3.org/2000/09/xmldsig#dsa-sha1. In Figure 6,
each Inquiry and MedicalRecord message is signed
with DSA. When signatureMethod is specified, each
message is expected to maintain its signature in a data field
called signature.

The stereotype EncryptedProperty is used for
message-level (end-to-end) encryption (see Section 3.1 for
transport-level (point-to-point) encryption). It is defined

as a stereotype extending Property in the UML meta-
model (Figure 8). This stereotype is attached to data fields
to be encrypted in a message. For example, in Figure 1,
EncryptedProperty is attached to the SSN data filed of
the RatingInquiry message and the creditRating data
filed of the Rating message. EncryptedProperty has
a tagged-value, algorithm, to specify an algorithm used
to encrypt a message. The semantics of this tagged-value
is same as that of encryptionAlgorithm in Connector

(Section 3.1). An encryption algorithm is specified as a URI
that the XML Encryption specification defines [8]. In Fig-
ure 1, SSN in Rating is encrypted with Triple DES. Differ-
ent data fields in a message can be encrypted with different
encryption algorithms.

AccessControlledMessage is a stereo-
type extending Message (Figure 8). Similar to
AccessControlledService, it is a special type of
message that enforces an access control policy. The
tagged-value securityTokens is mandatory to specify
security tokens (or certificates). The security tokens
are used to authenticate entities (e.g., services) that
access a message. This tagged-value can contain mul-
tiple values in order of precedence. The values use the
names defined in the WS-SecurityPolicy specification
[9]. Since UML does not provide a good means to
describe policies (or rules), the proposed UML profile
does not define how to specify access control policies.
AccessControlledMessage is used to indicate a mes-
sage implements a certain access policy. A supporting
tool transforms an AccessControlledMessage to a
skeleton program code or an access control description
in accordance with an implementation technology that an
application developer chooses. Application developers are
required to complete implementing access control policies.

《stereotype》MessageschemaURI : Stringpriority[0..1] : inttimeout[0..1] : TimesignatureMethod[0..1] : String

Kernel::Class Kernel::Property0..*

《stereotype》EncryptedPropertyalgorithm : String

UML 2.0 metamodel

Proposed UML Profile
《stereotype》AccessControlledMessagesecurityTokens [1..*] : String

Figure 8. Tagged-Values of Message

4. Secure Application Development with the
Proposed UML Profile

This section describes a model-driven development
(MDD) tool, called Ark, which accepts a UML model de-

signed with the proposed profile and transforms the model
into a skeleton of application code (source code and deploy-
ment descriptor).

Currently, Ark implements a transformation mapping be-
tween the proposed UML profile and MuleESB2. Ark takes
a UML model in the XML Metadata Interchange (XMI) for-
mat. It has been tested with MagicDraw3, a visual UML
modeling tool that can serialize UML models to XMI. An
input UML model (XMI file) is validated against the UML
metamodel and the proposed profile, and transformed to
Java programs and deployment descriptors for MuleESB. A
mapping rule between the proposed profile and MuleESB is
implemented as a set of Velocity4 transformation templates,
which define how to transform UML model elements to ap-
plication code elements.

Figure 9 shows some of the Java classes and deploy-
ment descriptors that Ark generates from the UML model
in Figure 1. Ark maps a UML class stereotyped with
¿MessageÀ to a Java class that has the same class name
and the same data fields (Figure 9). The Java class imple-
ments the interface Serializable. This is required to im-
plement messages exchanged with MuleESB.

A UML class stereotyped with ¿ServiceÀ is mapped
to a Java class that has the same class name and the same
data fields. Ark inserts several operations to the Java class,
depending on whether its association role is source or
sink against a message exchange. The operations are
used to send and receive messages: sendX() to send mes-
sages where X references the name of a message exchange,
and onMessage() to receive messages. For example, in
Figure 9, Bank has sendLoanAppProcessing() to send
LoanApproval messages and onMessage() to receive
LoanApp messages.

UML classes stereotyped with ¿MessageExchangeÀ
and ¿ConnectorÀ are not mapped to particular Java
classes. The message transmission/processing semantics
specified in a Connector is implemented in the Java
classes of message source and destination. For exam-
ple, in Figure 1, an Appricant sends each LoanApp

message to a Bank synchronously. Therefore, Ark
generates a code fragment to send the message syn-
chronously using MuleESB’s API5, and embeds the
code in sendLoanAppProcessing() of Applicant.
Ark also generates a code fragment to handle time-
out using MuleESB’s API, and embeds the code in
sendLoanAppProcessing() of Applicant.

As Figure 1 shows, SSN in the RatingInquiry mes-
sage and creditRating in the Rating message are en-

2A major open-source ESB implementation. http://mule.codehaus.org/
3http://www.magicdraw.com/
4A template-based code generation engine. jakarta.apache.org/velocity
5MuleESB provides three different APIs to send messages in syn-

chronous, asynchronous and oneway (non-blocking) manner.

ApplicantonMessage(LoanApproval)sendLoanAppProcessing (LoanApp)
BankonMessage(LoanApp)sendLoanAppProcessing(LoanApproval)…

LoanApp
LoanApproval

<transformer name=“Encrypt" className=“edu.cs.umb.Encryption"><properties><property name=“algorithm“value=“TripleDES"/><property name=“field”value=“RatingInquiry.SSN”/></properties></transformer>

CreditAgency…
RatingInquiry

Rating
SSN: String
APR : float CreditRating: intBank’s deployment descriptor

…UMOEventContext context =org.mule.umo.RequestContext.getEventContext();LoanApproval request = arg;UMOMessage result = context.sendEvent(request);…Bank.sendLoanAppProcessing()implementation

Figure 9. Generated Code for MuleESB

crypted. Since MuleESB does not support message-level
encryption, Ark provides a pair of message transform-
ers to encrypt and decrypt data fields in messages. In
MuleESB, each service can have an arbitrary number of
message transformers as the classes implementing the inter-
face org.mule.transformer.UMOTransformer. Mes-
sage transformers are invoked when a service receives a
message or when it sends out a message. Ark generates a
deployment descriptor to configure services that send or re-
ceive encrypted messages so that the services use the mes-
sage encryption/decryption transformers in Ark. Figure 9
shows a fragment of generated deployment descriptor for
Bank. It configures Bank to use a message encryption trans-
former (edu.cs.umb.Encryption) to encrypt the data
field SSN in RatingInquiry using Triple DES.

5. Related Work
There are several UML profiles proposed for SOA. [11]

and [12] propose UML profiles to specify functional as-
pects in SOA. Both profiles are defined based on the XML
schema of Web Service Description Language (WSDL).
Each of the profiles provides a set of stereotypes and tagged-
values that correspond to elements in WSDL, such as
Service, Port, Messages and Binding6. Since WSDL
is designed to define only functional aspects of web ser-
vices, non-functional aspects are beyond of the scope of
[11] and [12]. The proposed profile focuses on specifying
non-functional aspects in SOA.

[13] proposes a UML profile to describe both func-
tional and non-functional aspects in SOA. The stereo-
types in this profile are generic enough to specify a wide
range of applications. However, their semantics tend to
be ambiguous. For example, the stereotypes for non-
functional aspects include ¿policyÀ, ¿permissionÀ

6In WSDL, Service defines an interface of a web service. Port
specifies an operation in a Service, and Message defines parameters
of a Port. Binding specifies communication protocols used by Ports.

and ¿obligationÀ, and ¿obligationÀ is intended to
specify the responsibility of a service. [13] does not pre-
cisely define what developers have to (or can) specify with
this stereotype and how to represent service responsibility
(e.g., using natural languages or parameter values). In con-
trast, the proposed profile carefully defines its stereotypes
and tagged-values in an unambiguous manner so that sup-
porting tools can interpret and transform models to code.

[14] describes a UML profile for data integration in
SOA. It provides data structures to specify messages so that
users can build data dictionaries that maintain message data
used in existing systems and new applications. This profile
separates a non-functional aspect in data integration from
functional aspects, and enables data integration in an im-
plementation independent manner. The proposed profile fo-
cuses on non-functional semantics in message transmission,
message processing, security and service deployment (e.g.,
service redundancy), rather than data integration.

[15] proposes a UML profile to facilitate service dis-
covery in SOA. This profile provides a set of stereotypes
(e.g., ¿usesÀ, ¿requiresÀ and ¿satisfiesÀ) to
specify relationships among service implementations, ser-
vice interfaces and functional requirements. For examples,
users can specify relationships in which a service uses other
services, and a service requires other services that satisfy
certain functional requirements. These relationship speci-
fications are intended to effectively aid dynamic discovery
of services. The proposed profile and [15] focus on dif-
ferent issues in SOA. Service discovery is beyond of the
scope of the proposed profile, and [15] does not consider
non-functional aspects in message transmission, message
processing, security and service deployment.

[16], [17] and [18] define UML profiles to specify ser-
vice orchestration and map it to Business Process Execu-
tion Language (BPEL) [19]. These profiles provide a lim-
ited support of non-functional aspects in message transmis-
sion, such as messaging synchrony. The proposed profile
does not focus on service orchestration, but a comprehen-
sive support of non-functional aspects in message transmis-
sion, message processing, security and service deployment.

[20] proposes a UML profile, called SecureUML, to
define role-based access control for network applica-
tions. SecureUML provides the notations to assign roles
(¿security.roleÀ) and access control permissions
(¿security.constraintÀ) to classes. SecureUML
employs Object Constraint Language (OCL) to define ac-
cess control. [21] defines another UML profile, called
UMLsec, to define data encryption (¿data securityÀ)
and secure network links (¿encryptedÀ). [22, 23, 24]
also propose UML profiles to define security aspects. These
UML profiles are parallel to the proposed profile in terms
of the ability to describe security aspects in network appli-
cations. However, the proposed UML profile allows users

to consistently specify many other non-functional aspects
(message transmission, message processing and service de-
ployment) as well as security aspects in SOA.

There are several specifications and research efforts to
investigate implementation techniques for non-functional
aspects in SOA [19, 25, 26, 27, 28, 29]. Each specifica-
tion and technique provides a means to implement non-
functional requirements in, for example, performance, re-
liability and security and to enforce services to follow the
requirements. Rather than providing specific implementa-
tions of non-functional aspects in SOA, the proposed UML
profile is intended to provide a means for users to model
and maintain non-functional aspects in an implementation
independent manner so that they can be mapped on differ-
ent specifications or implementation technologies.

6. Concluding Remarks
This paper proposes a UML profile to graphically spec-

ify and maintain non-functional aspects in SOA (partic-
ularly security aspect) in an implementation independent
manner. This paper presents design details of the proposed
profile, and describes how MDD tools can use it to de-
velop secure service-oriented applications. As an example
of MDD tools, this paper demonstrates a tool that accepts
a UML model defined with the proposed profile and trans-
forms it into application code for Mule ESB and GridFTP.

7. Acknowledgement
This work is supported in part by OGIS International,

Inc. and Electric Power Development Co., Ltd.

References

[1] S. Vinoski. Integration with Web Services. IEEE Internet
Computing, November/December 2003.

[2] Z. Zhang and H. Yang. Incubating Services in Legacy Sys-
tems for Architectural Migration. Asia-Pacific Software En-
gineering Conference, December 2004.

[3] M. Endrei, J. Ang, A. Arsanjani, S. Chua, P. Comte, P. Krog-
dahl, M. Luo, and T. Newling. Patterns: Service-Oriented
Architecture and Web Services. IBM Red Books, 2004.

[4] G. Lewis, E. Morris, L. Brien, D. Smith, and L. Wrage.
SMART: The Service-Oriented Migration and Reuse Tech-
nique. Technical report, Software Engineering Institute,
Carnegie Mellon University, September 2005.

[5] Object Management Group. UML2.0 Super Structure Spec-
ification, October 2004.

[6] L. Fuentes and A. Vallecillo. An Introduction to UML Pro-
files. The European journal for the Informatics Professional,
April 2004.

[7] D. Chappell. Enterprise Service Bus. O’Reilly, June 2004.
[8] The World Wide Web Comsortium. XML Encryption Syn-

tax and Processing, December 2002.
[9] RSA Security IBM, Microsoft and VeriSign. Web Services

Security Policy Language, December 2002.
[10] The World Wide Web Comsortium. XML Signature Syntax

and Processing, February 2002.

[11] E. Marcos, V. de Castro, and B. Vela. Representing Web
services with UML: A Case Study. the Int’l Conference on
Service Oriented Computing, December 2003.

[12] IBM. UML 2.0 Profile for Software Services. developer-
Works, April 2005.

[13] R. Amir and A. Zeid. A UML Profile for Service Oriented
Architectures. ACM OOPSLA Poster session, 2004.

[14] M. Vokäc. Using a Domain-Specific Language and Custom
Tools to Model a Multi-tier Service-Oriented Application–
experiences and challenges. ACM/IEEE Int’l Conference on
Model Driven Engineering Languages and Systems, October
2005.

[15] R. Heckel, M. Lohmann, and S. Thöne. Towards a UML
Profile for Service-Oriented Architectures. Workshop on
Model Driven Architecture: Foundations and Applications,
2003.

[16] T. Gardner. UML Modeling of Automated Business Pro-
cesses with a Mapping to BPEL4WS. ECOOP Workshop on
OO and Web Services, July 2003.

[17] IBM. UML 1.4 Profile for Software Services with a Mapping
to BPEL 1.0. developerWorks, July 2004.

[18] Object Management Group. Business Process Definition
Metamodel, January 2003.

[19] OASIS. Web Services Business Process Execution Lan-
guage, April 2003.

[20] T. Lodderstedt, D. Basin, and J. Doser. SecureUML: A
UML-Based Modeling Language for Model-Driven Secu-
rity. ACM/IEEE Int’l Conference on Unified Modeling Lan-
guage, October 2002.

[21] J. Jr̈jens. UMLsec: Extending UML for Secure Systems
Development. ACM/IEEE Int’l Conference on Unified Mod-
eling Language, October 2002.

[22] L. Wang and L. Lee. UML-based Modeling of Web Ser-
vices Security. IEEE European Conference on Web Services
Poster session, 2005.

[23] Y. Nakamura, M. Tatsubori, T. Imamura, and K. Ono.
Model-Driven Security Based on a Web Services Security
Architecture. IEEE Int’l Conference on Services Comput-
ing, July 2005.

[24] R. Villarroel, E. Medina, M. Piattini, and J. Trujillo. A UML
2.0/OCL Extension for Designing Secure Data Warehouses.
Journal of Research and Practice in Information Technol-
ogy, February 2006.

[25] OASIS. Web Service Reliable Messaging, September 2004.
[26] OASIS. Web Service Reliability 1.1, November 2004.
[27] F. Baligand and V. Monfort. A Concrete Solution for Web

Services Adaptability Using Policies and Aspects. Int’l
Conf. on Service Oriented Computing, December 2004.

[28] G. Wang, A. Chen, C. Wang, C. Fung, and S. Uczekaj. In-
tegrated Quality of Service (QoS) Management in Service-
Oriented Enterprise Architectures. IEEE Enterprise Dis-
tributed Object Computing Conference, 2004.

[29] N. Mukhi, R. Konuru, and F. Curbera. Cooperative Mid-
dleware Specialization for Service Oriented Architectures.
ACM Int’l World Wide Web Conference, 2004.

