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Abstract—This paper describes a biologically-inspired 
network architecture, called SymbioticSphere, which 
allows large-scale data centers to autonomously adapt to 
dynamic environmental changes and survive partial sys-
tem failures. SymbioticSphere follows certain biological 
principles such as decentralization, natural selection, 
emergence and symbiosis to design data centers (applica-
tion services and middleware platforms). Each applica-
tion service and middleware platform is modeled as a 
biological entity, analogous to an individual bee in a bee 
colony, and implements biological concepts such as en-
ergy level, health level, energy exchange, environment 
sensing, migration, replication and death. Simulation 
results show that, like in biological systems, desirable 
system properties in data centers (e.g., adaptability and 
survivability) emerge from collective actions and inter-
actions of application services and platforms. 

1. Introduction 
Data centers have become integral components to op-

erate large-scale Internet services. Since they are rapidly 
increasing in complexity and scale, they face several 
challenges, particularly adaptability and survivability. 
Data centers are expected to autonomously adapt to dy-
namic environment changes such as demand surges and 
resource exhaustion [1, 2]. They are also expected to 
autonomously recover (or self-heal) from partial system 
failures due to, for example, errors by administrators and 
physical damage to data center fabric as a result of unex-
pected events (e.g., hurricanes, blackouts or terrorism 
acts) [3, 4]. Since the majority of the current data centers 
are manually configured, the degree of autonomous 
adaptability and survivability is limited; they often result 
in poor user experience, lower system availability and 
higher maintenance cost [1, 5]. 

Based on the observation that various biological sys-
tems have already achieved the above requirements (i.e., 
autonomy, adaptability and survivability), the proposed 
architecture, called SymbioticSphere, applies biological 
principles to design large-scale data centers (application 
services and middleware platforms). We believe if data 
centers adopt certain biological principles, they may be 
able to meet the above requirements. 

In SymbioticSphere, each application service and 
middleware platform is modeled as a biological entity, 
analogous to an individual bee in a bee colony. Both 
application services and middleware platforms are de-
signed to follow several biological principles such as 

decentralization, natural selection, emergence and sym-
biosis. An application service is implemented as an 
autonomous software agent. Each agent implements a 
functional service and follows simple biological behav-
iors such as replication, death, migration and energy ex-
change. A middleware platform runs on a network host 
and operates agents. Each platform provides a set of run-
time services that agents use to perform their services 
and behaviors, and implements simple biological behav-
iors such as replication, death and energy exchange. 

This paper describes the biologically-inspired mecha-
nisms in SymbioticSphere and evaluates their impacts on 
the adaptability and survivability of data centers. Simula-
tion results show that agents and platforms autono-
mously adapt to dynamic environment changes and sur-
vive (self-heal) partial system failures to retain their 
availability and performance.  

2. Design Principles in SymbioticSphere 
SymbioticSphere consists of two components: agents 

and middleware platforms. Agents run on platforms, 
which in turn run on network hosts. Agents and plat-
forms are designed based on the following principles. 

(1) Decentralization: There are no central entities to 
control and coordinate agents/platforms (i.e., no direc-
tory servers and no resource managers). Decentralization 
allows agents/platforms to be scalable, survivable and 
simple by avoiding a single point of performance bottle-
necks and failures [6, 7] and by avoiding any central 
coordination in deploying agents/platforms [8]. 

(2) Autonomy: Agents and platforms sense their local 
network environments, and based on the sensed envi-
ronmental conditions, they autonomously behave, and 
interact with each other without any intervention from/to 
other agents, platforms and human users. 

(3) Natural selection: Agents and platforms store and 
expend energy for living. Each agent gains energy in 
exchange for performing its service to other agents or 
human users, and expends energy to use network and 
computing resources (e.g., memory space and CPU). 
Each platform gains energy in exchange for providing 
resources to agents, and continuously evaporates energy. 
The abundance or scarcity of stored energy triggers to 
execute natural selection of agents/platforms. For exam-
ple, an abundance of stored energy indicates higher de-
mand for an agent/platform; thus the agent/platform rep-
licates itself. A scarcity of stored energy (an indication 
of lack of demand) causes death of the agent/platform. 



Like in biological natural selection where more favorable 
species in a particular environment becomes more abun-
dant, the population of agents/platforms dynamically 
changes based on the demands for them.  
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Fig. 2 Energy Exchange in SymbioticSphere 

(4) Emergence: Agents and platforms behave against 
dynamically changing environment conditions (e.g., user 
demands, user locations and resource availability). For 
example, an agent may invoke migration behavior to 
move towards a platform that forwards a large number of 
request messages for its services. Also, a platform may 
replicate itself on a neighboring host where resource 
availability is high. SymbioticSphere is designed to ex-
hibit emergence of desirable system properties such as 
adaptability and survivability. In a swarm of agents and 
platforms, these properties emerge from collective be-
haviors and interactions of individual agents and plat-
forms, although the properties are not present in any sin-
gle agent/platform.  

(5) Symbiosis: SymbioticSphere models agents and 
platforms as different species. In certain circumstances, 
agents and platforms spontaneously cooperate in a sym-
biotic manner to pursue their mutual benefits (i.e., to 
increase their adaptability and survivability), although 
each of them is not explicitly designed to do so. 

3. SymbioticSphere  
This section presents the design of SymbioticSphere. 

3.1 The Architecture of SymbioticSphere 
SymbioticSphere models agents and platforms as dif-

ferent species, and follows ecological principles to de-
sign energy exchange among agents, platforms and envi-
ronment. Fig. 1 shows a simplified energy flow in the 
ecological system. The Sun gives light energy, and pro-
ducers (e.g., plants and microorganisms) convert it to 
chemical energy. The chemical energy flows through 
multiple species, called consumers. It will be eventually 
transferred to decomposers (e.g., bacteria and fungi). For 
example, shrubs (producers) convert the Sun light energy 
to chemical energy, hares (primary consumers) consume 
shrubs, and foxes (secondary consumers) consume hares. 
In energy exchange between different species, it is 
known that about 10% of the energy maintained by one 
species is transferred to another species [9]. The remain-
ing 90% of the energy is used for metabolism, growth 
and actions/behaviors (e.g., moving and reproduction).   

 
Fig. 2 shows the energy exchange in SymbioticSphere. 

SymbioticSphere models each user as the Sun, agents as 

producers and platforms as (primary) consumers. Similar 
to the Sun, users have unlimited amount of energy. 
Agents gain energy from users1, and expend energy to 
consume resources provided by platforms (e.g., memory 
space). They periodically transfer 10% of the current 
energy level to platforms on which they operate. Plat-
forms periodically gain energy from agents, and evapo-
rate 10 % of the current energy level to the environment.  

3.2 Agents 
Each agent consists of three parts: attributes, body and 

behaviors. Attributes carry descriptive information re-
garding the agent, such as agent ID, energy level and 
description of a service it provides. Body implements a 
service that the agent provides. For example, an agent 
may implement a web service and contains web pages in 
its body while another agent may implement a physical 
model for scientific simulations. Behaviors implement 
actions that are inherent to all agents. Although Symbiot-
icSphere defines nine standard agent behaviors [10], this 
paper focuses on three of them. 
• Replication: Agents may make a copy of themselves 

as a result of abundance of energy. A replicated (child) 
agent is placed on the platform that its parent agent re-
sides on, and it receives the half amount of the par-
ent’s energy level. 

• Death: Agents die due to energy starvation. When an 
agent dies, an underlying platform removes the agent 
and releases all resources allocated to the agent. 

• Migration: Agents may move from one platform to 
another. 

3.3 Platforms 
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Each platform runs on a network host and operates 
agents. It consists of attributes, behaviors and runtime 
services. Attributes carry descriptive information regard-
ing the platform, such as platform ID, energy level and 
health level. Health level indicates how healthy an un-
derlying host is. It is defined as a function of resource 
availability on, age of and freshness of a host. Resource 
                                                 
1 Each agent specifies the price (in energy units) of service that it pro-
vides.  



availability indicates how much resources (e.g. memory 
space) are available for agents and platforms on a host. 
Age indicates how long a host has been alive (i.e. how 
much stable a host is). Freshness indicates how recently 
a host joined the network. After a new host joined the 
network, its freshness gradually decreases from a maxi-
mum value. When a host resumes from a failure, its 
freshness starts with the value that the host has when it 
went down. Using age and freshness, unstable hosts and 
new hosts can be distinguished. Unstable node tends to 
have lower freshness and higher age, and new hosts tend 
to have higher freshness and lower age (Table 1).  
 
Table 1.Freshness and Age in Different Types of Hosts 

Host Type Freshness Age 
Unstable host Lower Lower 
New host Higher Lower 
Stable host Lower Higher 

 
Health level affects behaviors of a platform and agent. 

For example, higher health level indicates higher stabil-
ity of and higher resource availability on a host that a 
platform resides on. Thus, the platform may replicate 
itself on a healthier neighboring host.  

Behaviors are the actions inherent to all platforms.  
• Replication. Platforms may make a copy of themselves 

as a result of abundance of energy (i.e. higher demand 
for resources available on the platforms). The child 
platform receives the half amount of the parent’s en-
ergy level. 

• Death. Platforms die due to the lack of energy. A dy-
ing platform uninstalls itself and releases all resources 
the platform uses. Despite the death of a platform, an 
underlying host remains active so that other platforms 
can run on it in the future. 
Runtime services are middleware services that agents 

and platforms use to perform their behaviors. In order to 
maximize decentralization and autonomy of 
agents/platforms, they only use their local runtime ser-
vices. They are not allowed to invoke any runtime ser-
vices running on a remote platform. 

3.4 Behavior Policies of Agents and Platforms 
Each agent and platform has policies for its behaviors. 

A behavior policy defines when to and how to invoke a 
particular behavior. Each behavior policy consists of one 
or more factors (Fi), which evaluate environment condi-
tions (e.g. network traffic and resource availability) or 
the status of agent/platform/host (e.g. energy level and 
health level)2. Each factor is given a weight (Wi) relative 
to its importance. Behaviors are invoked if the weighted 
sum of factor values (Σ Fi*Wi) exceeds a threshold.  

                                                 
2 Each agent and platform can sense its local environment. An agent 
can sense agent population, network traffic and resource availability on 
a local and neighboring platforms. A platform can sense agent popula-
tion on itself, and health level of a local and neighboring hosts.   

The factors in agent migration behavior include: 
• Health level Ratio: encourages agents to move to plat-

forms running on healthier hosts. Health level ratio is 
calculated with the following equation. HostProperty 
includes resource availability, freshness and age. 
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• Service Request Ratio: the ratio of the number of ser-
vice requests on a remote platform by the number of 
service requests on a local platform, which encour-
ages agents to move towards users. 

• Migration interval: interval from the time of a previ-
ous migration, which discourages agents to migrate 
too often. 
If there are multiple neighboring platforms that an 

agent can migrate to, the agent calculates a weighted 
sum of the above factors for each platform, and move to 
a platform that generates the highest weighted sum. 

Agent replication and death behaviors have a factor 
that evaluates the current energy level of agent.  
 Platform replication behavior has a factor of health 
level ratio, which encourages platforms to replicate 
themselves on a healthier neighboring host. A replicated 
(child) platform is placed on a host whose health level is 
highest among neighboring hosts. 

Platform death behavior has a factor that evaluates the 
current energy level of platform. Platforms never die 
while an agent(s) runs on the platform.  

Each agent/platform incurs energy loss to invoke be-
haviors (i.e. behavior cost) except death behavior. When 
the energy level of an agent/platform exceeds the cost of 
a behavior, the agent/platform decides whether it per-
forms the behavior by calculating a weighted sum of 
factor values.  

4. Simulation Results  
This section shows simulation results to evaluate how 

biologically-inspired mechanisms in SymbioticSphere 
impact the self-healing (survivability) of data centers3. In 
this paper, self-healing means the ability of agents and 
platforms to autonomously survive unexpected events 
(e.g., host failures, network link failures and demand 
surges) through their adaptation activities and to retain 
the availability (service availability and resource avail-
ability) and performance (response time and throughput) 
of data centers. Service availability is measured as the 
number of available agents. Resource availability is 
measured as the number of platforms that make re-
sources available for agents.  

Fig. 3 shows a pseudo code to run users, agents and 
platforms in each simulation cycle.  

                                                 
3 Simulations were carried out with the SymbioticSphere simulator, 
which contains 14,120 lines of Java code. It is available for researchers 
who investigate autonomic network systems (dssg.cs.umb.edu).  



While (not the last cycle in a simulation) 
For each user Do 
 Send service requests to each of available agents according to 

                    a configured service request rate. 
End For 
For each platform Do 

Make a decision on replication and death behaviors. 
Update health level. 
Expend (evaporate) energy. 

End For 
For each agent Do 

If (a service request(s) arrived) 
             Process the request(s) and gain energy. 

     End If 
Make a decision on replication, migration and death behaviors. 
Expend energy to the local platform.  

End For 
End While 

Fig. 3 Pseudo Code of Each Simulation Cycle  

When a user issues a service request, the service re-
quest is passed to the local platform where the user re-
sides on, and the platform performs a discovery process 
to search a target agent that can process the issued ser-
vice request. The platform (discovery originator) for-
wards a discovery message to its neighboring platforms, 
asking whether they host a target agent. If a neighboring 
platform hosts a target agent, it returns a discovery re-
sponse to the discovery originator. Otherwise, it for-
wards the discovery message again to its neighboring 
platforms. Fig. 4 shows this peer-to-peer agent discovery 
through platform connectivity4.  
While (not simulation last cycle) 
      If ( Discovery messages arrived) 

For each of discovery messages (under the max # of messages to be 
processed in each simulation cycle) Do 
If ( Discovery message matches one of the local agents) 

          Returns a discovery response to discovery originator 
Else   

           Forward the discovery message to neighboring platforms 
End If 

End For 
      End If 
End While 

Fig. 4 Pseudo Code for Agent Discovery Process 
in each Simulation Cycle 

Fig. 4 shows a simulated network. A data center con-
sists of hosts connected in an N x N grid topology, and 
service requests travel from users to agents via user ac-
cess point. This simulation study assumes that a single 
(emulated) user runs on the access point and sends ser-
vice requests to agents. Each host has 256MB memory5. 
Out of the memory space, an operating system consumes 

                                                                                                                              
4 Note that there is no centralized directory to keep track of agents. 

128 MB, and Java virtual machine consumes 64MB. 
Thus, 64MB is available for a platform and agents on 
each host. Each agent and platform consumes 5 MB and 
20 MB, respectively. This assumption is obtained from a 
prior empirical experiment [10]. 

4.1. Self-Healing against Demand Surges 
The first simulation study evaluates the self-healing of 

agents and platforms to survive unexpected demand 
surges. A simulation runs for 24 hours in simulation 
time. Service request rate starts with 3,000 requests/min, 
spikes to 210,000 requests/min at 8:00, and drops to 
3,000 requests/min at 16:30 (Fig. 6). The peak demand 
and spike ratio (1:70) are taken from a workload trace of 
the 1998 World Cup web site [11]. A simulated data cen-
ter is 7x7 (49 hosts) from 0:00 to 12:00 and 15x15 (225 
hosts) from 12:00 to 24:00. At the beginning of simula-
tion, an agent and platform is deployed on each host. 

 

 
Fig. 5 shows how service availability (i.e., the number 

of agents) and resource availability (i.e., the number of 
platforms) change dynamically. Starting with 49 agents 
and 49 platforms at 0:00, they autonomously adapt their 
population to demand changes. When service request 
rate spikes at 8:00, agents gain more energy form users 
and replicate themselves more often. In response to 
higher energy intake, they also transfer more energy to 
platforms. As a result, platforms also increase their 
population through replications. From 8:00 to 12:00, the 
populations of agents and platforms do not grow due to 
physical limitation of available hosts. When the size of a 
data center expands from 49 hosts to 225 hosts at 12:00, 
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5 Currently, memory availability represents resource availability on 
each platform/host. 



agents and platforms recognize the environment change 
and rapidly perform replications and migrations on the 
new hosts. When service request rate drops at 16:30, 
most agents die due to energy starvation because they 
cannot balance energy gain and expenditure. The popula-
tion of platforms also decreases due to less energy trans-
fer from agents. (It happens after 24:00.) Fig. 5 shows 
that biological mechanisms in SymbioticSphere contrib-
ute for agents and platforms to adaptively adjust their 
availability to dynamic demand changes, and avoid their 
crashes or malfunctions due to overloading. 

Fig. 6 shows the service request rate from users and 
the throughput achieved by agents. At 8:00, service re-
quest rate spikes. Through replications, agents increase 
throughput to 5,000 messages/min. The throughput stops 
increasing because of the limitation of available hosts for 
agents to utilize. When new 176 hosts are introduced to a 
data center at 12:00, platforms replicate themselves on 
the new hosts, and agents increase throughput by migrat-
ing to the replicated platforms and replicating themselves 
on the platforms. Fig. 6 shows that the biological mecha-
nisms in SymbioticSphere contribute for agents and plat-
forms to adapt their availability to dynamic demand 
changes and host availability, and collectively retain 
throughput performance.  

 
Fig. 7 shows the average response time for agents to 

respond users. This includes the message transmission 
latency between a user and agent, and the processing 
overhead for an agent to process a service request. From 
0:00 to 8:00, response time gradually decrease because 
agents migrate closer to users. At 8:00, response time 
spikes because service request rate spikes. Agents in-
crease their population through replications, and their 
response time drops from 2.7 to 1.1 seconds at 8:20. 
When new hosts are added to a data center at 12:00, 
agents increase their population again and some of them 
migrate to the newly added hosts, in order to increase 

their throughput. As a result, the average distance be-
tween agents and users increases, and agent response 
time also increases. However, agents keep response time 
low enough (2.3 seconds) while they achieve the 
throughput of 210,000 requests/min. Fig. 7 shows the 
biological mechanisms in SymbioticSphere contribute 
for agents and platforms to recover the degradation of 
their response against service demand surge.   

Fig 8 shows dynamic changes in Load Balancing In-
dex (LBI), which indicates how workload is distributed 
over available platforms. (the lower, the better.) LBI is 
measured with the following equation. 

 
Xi represents (the # of messages processed by agents 

running on platform i) / (resource utilization on platform 
i). μ represents the expected average of X, which means 
(the total # of messages processed by all agents) / (the 
total amount of resource utilization on all platforms) / 
(the number of platforms; N). LBI drops at 12:00, be-
cause platforms replicate themselves on newly available 
hosts, and agents migrate to and perform replications on 
the replicated platforms. Fig. 8 shows that biological 
mechanisms in SymbioticSphere contribute for agents 
and platforms to collectively avoid overloading plat-
forms by balancing workload over them.  

Fig. 8 also shows an example of symbiotic emergence 
between agents and platforms. Agent migration behavior 
policy encourages agents to move towards platforms on 
healthier hosts. Platform replication behavior policy en-
courages platforms to replicate themselves on healthier 
hosts. As a result, workload is spread over the platforms 
running on healthy hosts. This contributes to balance 
workload on each platform, although agent migration 
policy and platform replication policy do not consider 
agent population, platform population and load balancing. 
This results in a mutual benefit for both agents and plat-
forms. Platforms help agents increase their throughput 
by making more resources available for them. Agents 
help platforms to keep their stability by avoiding exces-
sive resource utilization on them.  

4.2. Self-Healing against Host Failures 
The next simulations study evaluates the self-healing 

of agents and platforms against host failures. Each simu-
lation runs for 12 hours in simulation time. Service re-
quest rate is constantly 7,200 requests/min, which was 
the peak in a workload trace of the IBM web site in 2001 
[12]. In each simulation, randomly chosen 30% or 60% 
of hosts go down at 5:00 for an hour. The size of a data 
center is 7x7 (49 hosts). At the beginning of simulation, 
an agent and platform is deployed on each host. 

Figs. 9 and 10 show resource availability (i.e., the 
number of platforms) and service availability (i.e., the 
number of agents), respectively. Fig. 11 shows the 
throughput of agents. Fig. 12 shows the average response 
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time of agents in the case that 60% of hosts go down. 
When a host goes down, agents and platforms running 
on the host die. This is why throughput drops from 7,200 
requests/min and response time spikes from 1 second at 
5:00. After host failures, the remaining agents increase 
their populations through replications on remaining hosts 
(Fig. 10), and throughput goes back to 7,200 re-
quests/min (Fig. 11). When failed hosts are back to a 
data center, platforms recognize that and replicate them-
selves on the hosts (Fig. 9). Some of agents migrate to 
the replicated platforms in order to come near users. As a 
result, response time drops back to 1 second (Fig. 12). 
Figs. 9, 10, 11 and 12 show that the biological mecha-
nisms in SymbioticSphere contribute for agents and plat-
forms to survive host failures and retain service avail-
ability, resource availability, throughput performance 
and response time performance.   

 

 

 
 

4.3. Self-Healing against Data Center Failures 
The next simulation study evaluates the self-healing of 

agents and platforms against data center failures. Each 
simulation runs for 24 hours in simulation time. Service 
request rate is constantly 7,200 requests/min. At the be-
ginning of a simulation, an agent and a platform are de-
ployed in each host. In this simulation study, there are 
two data centers as shown in Fig. 13. Service requests 
are distributed to the two data centers evenly (i.e., in a 
round-robin manner).  The size of each data center is 5x5 
(25 hosts).  Data center 1 and data center 2 go down for 
4 hours at 6:00 and 18:00, respectively, due to network 
link failures between a data center and the user access 
point. When a failed network link is fixed, this simula-
tion study assumes that an administrator deploy an agent 
and a platform on each host again. 

 

 
Fig. 14 shows how service availability (i.e., the num-

ber of agents) changes in data centers. When a network 
link goes down between the user access point and data 
center 1 at 6:00, agents and platforms in the data center 
die off in about 15 minutes due to energy starvation. In 
this failure, all service requests are forwarded to data 
center 2. (the workload in data center 2 changes from 
3,600 requests/min to 7,200 requests/min.) In response to 
demand changes, agents increase their populations 
through replications. At 10:00, a link failure is fixed and 
data center 1 becomes available again. Since service re-
quests are distributed to data centers 1 and 2, agents in 
data center 1 increase their populations through replica-
tions, and agents in data center 2 decrease their popula-
tions through death. As a result, the number of agents in 
the two data centers becomes close with each other. At 
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Fig 14 The Number of Agents in Data Center 1 and 2 
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16:00, data center 2 becomes unavailable due to a net-
work link failure between the user access point and data 
center 2. Agents and platforms in data center 2 die off in 
a short time, and agents in data center 1 increase their 
populations through replications in response to demand 
changes in the data center. Fig. 14 shows that the bio-
logical mechanisms in SymbioticSphere contribute for 
agents to survive data center failures (or network link 
failures) and retain service availability for users.  

 
Fig. 15 shows the average response time of agents. 

From 0:00 to 1:00, agents reduce their response time 
through replicating themselves and migrating towards 
users. From 1:00 to 6:00, response time is constantly at 
0.62 second. When data center 1 becomes unavailable at 
6:00, response time spikes up to 15 seconds. Then, 
agents in data center 2 increases their population to com-
pensate of the failure of data center 1, and decrease aver-
age response time to 0.65 second at 8:00. When data 
center 1 becomes available again at 10:00, response time 
increases while agents in data center 1 replicate them-
selves to efficiently respond users. At 11:00, response 
time becomes stable at 0.62 second. When data center 2 
becomes unavailable at 16:00, agents in data center 1 
increases their population to compensate of the failure of 
data center 2, and decrease average response time. Fig. 
15 shows the biological mechanisms in SymbioticSphere 
contributes for agents to survive data center failures 
(network link failures) and retain response time for users.   

 
Fig. 16 shows the throughput of agents. Throughput 

drops when data centers become unavailable at 6:00 and 
16:00, because agents in a failed data center do not re-
spond users. However, remaining agents in a remaining 
data center cover the failure and increase throughput to 
process 7,200 requests/min in a short time. Fig. 16 shows 
that the biological mechanisms in SymbioticSphere con-

tribute for agents to survive data center failures (network 
link failures) and maintain high throughput for users.  

5. Related Work  
This work is an extension to the Bio-Networking Ar-

chitecture [10, 13]. In this architecture, biologically-
inspired agents achieve adapt their population and loca-
tions to dynamic environment changes in a decentralized 
manner. However, platforms do not adapt to environ-
ment changes because they are static and non-biological 
entities. Also, the Bio-Networking Architecture does not 
study survivability (self-healing) of agents and platforms. 
In SymbioticSphere, both agents and platforms are bio-
logical entities, and they achieve autonomous adaptabil-
ity and survivability. SymbioticSphere also exhibits a 
new from of adaptation, symbiotic emergence, which 
does not appear in the Bio-Networking Architecture. 
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Resource Broker [14] and Muse [12] are designed to 
dynamically adjust resource allocation for server clusters 
via centralized system monitor. Resource Broker in-
spects the stability and resource availability of each host, 
and adjusts resource allocation for applications. Muse 
inspects electric power consumption by a server cluster 
and adjusts resource allocation for applications. Rather 
than following centralized architectures, Symbiotic-
Sphere achieves adaptive allocation of agents and plat-
forms in a decentralized manner. Resource Broker and 
Muse do not consider survivability (self-healing) against 
system failures.  

The Willow Architecture [15] addresses survivability 
of distributed systems. Centralized system components 
monitor and analyze the operating environment condi-
tions and detect failures. Based on type of failures, Wil-
low performs system reconfiguration to, for example,  
add, removes and replace system components. It tends to 
be complicated to define and operate system reconfigura-
tion in Willow. In contrast, SymbioticSphere does not 
require any complex survivability configuration before 
running agents and platforms. It also does not depend on 
any centralized system components to avoid single point 
of failures.  
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The concept of energy in SymbioticSphere is similar 
to money in economy. MarketNet [16] and WALRAS 
[17] apply the concept of money to address market-based 
access control for network applications. Instead of access 
control, SymbioticSphere focuses on adaptability and 
survivability of network systems (network applications 
and middleware platforms).  

[18] implements the concept of symbiosis between 
groups of peers in peer-to-peer networks. Peer groups 
symbiotically connect or disconnect with each other to 
improve search speed and quality.  A special type of 
peers implements the symbiotic behaviors in peer groups. 
Since the number of them is statically fixed, they do not 
scale well to network size and traffic. They also do not 
address survivability of peers from host failures. In 



SymbioticSphere, all agents and platforms can spontane-
ously exhibit symbiotic behaviors. They scale well to 
network size and traffic, and survive from host failures. 

[19] implements the programming paradigm based 
on the actions of biological cells and demonstrates the 
ability of systems to survive massive failures. How-
ever, the robustness of the demonstrated network is 
achieved because of configuration parameters (the 
number of transmission attempts and time out). In 
SymbioticSphere, service availability (the number of 
agents) and resource availability (the number of plat-
form) are adapted automatically to the environment 
conditions. SymbioticSphere scale well to network 
size and traffic, and survive from host failures. 

Termite [20] is a biologically inspired algorithm to 
route messages in mobile wireless ad-hoc networks. 
Termite applied the concept of four social insects 
principles ( positive feed back, negative feed back, 
randomness, and multiple interactions). The routing 
table in each node is locally updated on the run time 
based on the probabilistic function and historical data. 
The termite can achieve robustness of routing through 
the use of multiple paths. However, the initial values 
of configuration parameters are fixed and randomly 
generate. The authors cannot provide the relationship 
between configuration parameters and optimal results. 
SymbioticSphere focuses on the wired network. Ro-
bustness is achieved by symbiosis of agent and plat-
form based on the current environment condition.  
 

6. Concluding Remarks  
This paper overviews SymbioticSphere, and presents 

how it implements biological principles to improve 
adaptability and survivability (self-healing) of large-
scale data centers. Simulation results show Symbiotic-
Sphere allows data centers to autonomously adapt to and 
survive partial system failures.  
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