
 A Biologically-Inspired Autonomic Architecture for Self-Healing Data Centers

Paskorn Champrasert and Junichi Suzuki
Department of Computer Science

University of Massachusetts, Boston
{paskorn, jxs}@cs.umb.edu

Abstract—This paper describes a biologically-inspired
network architecture, called SymbioticSphere, which
allows large-scale data centers to autonomously adapt to
dynamic environmental changes and survive partial sys-
tem failures. SymbioticSphere follows certain biological
principles such as decentralization, natural selection,
emergence and symbiosis to design data centers (applica-
tion services and middleware platforms). Each applica-
tion service and middleware platform is modeled as a
biological entity, analogous to an individual bee in a bee
colony, and implements biological concepts such as en-
ergy level, health level, energy exchange, environment
sensing, migration, replication and death. Simulation
results show that, like in biological systems, desirable
system properties in data centers (e.g., adaptability and
survivability) emerge from collective actions and inter-
actions of application services and platforms.

1. Introduction
Data centers have become integral components to op-

erate large-scale Internet services. Since they are rapidly
increasing in complexity and scale, they face several
challenges, particularly adaptability and survivability.
Data centers are expected to autonomously adapt to dy-
namic environment changes such as demand surges and
resource exhaustion [1, 2]. They are also expected to
autonomously recover (or self-heal) from partial system
failures due to, for example, errors by administrators and
physical damage to data center fabric as a result of unex-
pected events (e.g., hurricanes, blackouts or terrorism
acts) [3, 4]. Since the majority of the current data centers
are manually configured, the degree of autonomous
adaptability and survivability is limited; they often result
in poor user experience, lower system availability and
higher maintenance cost [1, 5].

Based on the observation that various biological sys-
tems have already achieved the above requirements (i.e.,
autonomy, adaptability and survivability), the proposed
architecture, called SymbioticSphere, applies biological
principles to design large-scale data centers (application
services and middleware platforms). We believe if data
centers adopt certain biological principles, they may be
able to meet the above requirements.

In SymbioticSphere, each application service and
middleware platform is modeled as a biological entity,
analogous to an individual bee in a bee colony. Both
application services and middleware platforms are de-
signed to follow several biological principles such as

decentralization, natural selection, emergence and sym-
biosis. An application service is implemented as an
autonomous software agent. Each agent implements a
functional service and follows simple biological behav-
iors such as replication, death, migration and energy ex-
change. A middleware platform runs on a network host
and operates agents. Each platform provides a set of run-
time services that agents use to perform their services
and behaviors, and implements simple biological behav-
iors such as replication, death and energy exchange.

This paper describes the biologically-inspired mecha-
nisms in SymbioticSphere and evaluates their impacts on
the adaptability and survivability of data centers. Simula-
tion results show that agents and platforms autono-
mously adapt to dynamic environment changes and sur-
vive (self-heal) partial system failures to retain their
availability and performance.

2. Design Principles in SymbioticSphere
SymbioticSphere consists of two components: agents

and middleware platforms. Agents run on platforms,
which in turn run on network hosts. Agents and plat-
forms are designed based on the following principles.

(1) Decentralization: There are no central entities to
control and coordinate agents/platforms (i.e., no direc-
tory servers and no resource managers). Decentralization
allows agents/platforms to be scalable, survivable and
simple by avoiding a single point of performance bottle-
necks and failures [6, 7] and by avoiding any central
coordination in deploying agents/platforms [8].

(2) Autonomy: Agents and platforms sense their local
network environments, and based on the sensed envi-
ronmental conditions, they autonomously behave, and
interact with each other without any intervention from/to
other agents, platforms and human users.

(3) Natural selection: Agents and platforms store and
expend energy for living. Each agent gains energy in
exchange for performing its service to other agents or
human users, and expends energy to use network and
computing resources (e.g., memory space and CPU).
Each platform gains energy in exchange for providing
resources to agents, and continuously evaporates energy.
The abundance or scarcity of stored energy triggers to
execute natural selection of agents/platforms. For exam-
ple, an abundance of stored energy indicates higher de-
mand for an agent/platform; thus the agent/platform rep-
licates itself. A scarcity of stored energy (an indication
of lack of demand) causes death of the agent/platform.

Like in biological natural selection where more favorable
species in a particular environment becomes more abun-
dant, the population of agents/platforms dynamically
changes based on the demands for them.

Platform

Host

SymbioticSphere

Environment

Service

Energy

Energy
evaporation

ResourceEnergy

Agent

Service

Platform

Host Host

Energy

Service request

User

Fig. 2 Energy Exchange in SymbioticSphere

(4) Emergence: Agents and platforms behave against
dynamically changing environment conditions (e.g., user
demands, user locations and resource availability). For
example, an agent may invoke migration behavior to
move towards a platform that forwards a large number of
request messages for its services. Also, a platform may
replicate itself on a neighboring host where resource
availability is high. SymbioticSphere is designed to ex-
hibit emergence of desirable system properties such as
adaptability and survivability. In a swarm of agents and
platforms, these properties emerge from collective be-
haviors and interactions of individual agents and plat-
forms, although the properties are not present in any sin-
gle agent/platform.

(5) Symbiosis: SymbioticSphere models agents and
platforms as different species. In certain circumstances,
agents and platforms spontaneously cooperate in a sym-
biotic manner to pursue their mutual benefits (i.e., to
increase their adaptability and survivability), although
each of them is not explicitly designed to do so.

3. SymbioticSphere
This section presents the design of SymbioticSphere.

3.1 The Architecture of SymbioticSphere
SymbioticSphere models agents and platforms as dif-

ferent species, and follows ecological principles to de-
sign energy exchange among agents, platforms and envi-
ronment. Fig. 1 shows a simplified energy flow in the
ecological system. The Sun gives light energy, and pro-
ducers (e.g., plants and microorganisms) convert it to
chemical energy. The chemical energy flows through
multiple species, called consumers. It will be eventually
transferred to decomposers (e.g., bacteria and fungi). For
example, shrubs (producers) convert the Sun light energy
to chemical energy, hares (primary consumers) consume
shrubs, and foxes (secondary consumers) consume hares.
In energy exchange between different species, it is
known that about 10% of the energy maintained by one
species is transferred to another species [9]. The remain-
ing 90% of the energy is used for metabolism, growth
and actions/behaviors (e.g., moving and reproduction).

Fig. 2 shows the energy exchange in SymbioticSphere.

SymbioticSphere models each user as the Sun, agents as

producers and platforms as (primary) consumers. Similar
to the Sun, users have unlimited amount of energy.
Agents gain energy from users1, and expend energy to
consume resources provided by platforms (e.g., memory
space). They periodically transfer 10% of the current
energy level to platforms on which they operate. Plat-
forms periodically gain energy from agents, and evapo-
rate 10 % of the current energy level to the environment.

3.2 Agents
Each agent consists of three parts: attributes, body and

behaviors. Attributes carry descriptive information re-
garding the agent, such as agent ID, energy level and
description of a service it provides. Body implements a
service that the agent provides. For example, an agent
may implement a web service and contains web pages in
its body while another agent may implement a physical
model for scientific simulations. Behaviors implement
actions that are inherent to all agents. Although Symbiot-
icSphere defines nine standard agent behaviors [10], this
paper focuses on three of them.
• Replication: Agents may make a copy of themselves

as a result of abundance of energy. A replicated (child)
agent is placed on the platform that its parent agent re-
sides on, and it receives the half amount of the par-
ent’s energy level.

• Death: Agents die due to energy starvation. When an
agent dies, an underlying platform removes the agent
and releases all resources allocated to the agent.

• Migration: Agents may move from one platform to
another.

3.3 Platforms
 Sun

Producers Primary
Consumers

N-th
Consumers

Decomposers

Ecosystem

Fig. 1 Energy Flow in Ecosystem

Each platform runs on a network host and operates
agents. It consists of attributes, behaviors and runtime
services. Attributes carry descriptive information regard-
ing the platform, such as platform ID, energy level and
health level. Health level indicates how healthy an un-
derlying host is. It is defined as a function of resource
availability on, age of and freshness of a host. Resource

1 Each agent specifies the price (in energy units) of service that it pro-
vides.

availability indicates how much resources (e.g. memory
space) are available for agents and platforms on a host.
Age indicates how long a host has been alive (i.e. how
much stable a host is). Freshness indicates how recently
a host joined the network. After a new host joined the
network, its freshness gradually decreases from a maxi-
mum value. When a host resumes from a failure, its
freshness starts with the value that the host has when it
went down. Using age and freshness, unstable hosts and
new hosts can be distinguished. Unstable node tends to
have lower freshness and higher age, and new hosts tend
to have higher freshness and lower age (Table 1).

Table 1.Freshness and Age in Different Types of Hosts

Host Type Freshness Age
Unstable host Lower Lower
New host Higher Lower
Stable host Lower Higher

Health level affects behaviors of a platform and agent.

For example, higher health level indicates higher stabil-
ity of and higher resource availability on a host that a
platform resides on. Thus, the platform may replicate
itself on a healthier neighboring host.

Behaviors are the actions inherent to all platforms.
• Replication. Platforms may make a copy of themselves

as a result of abundance of energy (i.e. higher demand
for resources available on the platforms). The child
platform receives the half amount of the parent’s en-
ergy level.

• Death. Platforms die due to the lack of energy. A dy-
ing platform uninstalls itself and releases all resources
the platform uses. Despite the death of a platform, an
underlying host remains active so that other platforms
can run on it in the future.
Runtime services are middleware services that agents

and platforms use to perform their behaviors. In order to
maximize decentralization and autonomy of
agents/platforms, they only use their local runtime ser-
vices. They are not allowed to invoke any runtime ser-
vices running on a remote platform.

3.4 Behavior Policies of Agents and Platforms
Each agent and platform has policies for its behaviors.

A behavior policy defines when to and how to invoke a
particular behavior. Each behavior policy consists of one
or more factors (Fi), which evaluate environment condi-
tions (e.g. network traffic and resource availability) or
the status of agent/platform/host (e.g. energy level and
health level)2. Each factor is given a weight (Wi) relative
to its importance. Behaviors are invoked if the weighted
sum of factor values (Σ Fi*Wi) exceeds a threshold.

2 Each agent and platform can sense its local environment. An agent
can sense agent population, network traffic and resource availability on
a local and neighboring platforms. A platform can sense agent popula-
tion on itself, and health level of a local and neighboring hosts.

The factors in agent migration behavior include:
• Health level Ratio: encourages agents to move to plat-

forms running on healthier hosts. Health level ratio is
calculated with the following equation. HostProperty
includes resource availability, freshness and age.

)1.......(
Pr

PrPrRe∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

N

i i

ii

opertyLocalHost
opertyLocalHostopertymoteHostlRatioHealthLeve

• Service Request Ratio: the ratio of the number of ser-
vice requests on a remote platform by the number of
service requests on a local platform, which encour-
ages agents to move towards users.

• Migration interval: interval from the time of a previ-
ous migration, which discourages agents to migrate
too often.
If there are multiple neighboring platforms that an

agent can migrate to, the agent calculates a weighted
sum of the above factors for each platform, and move to
a platform that generates the highest weighted sum.

Agent replication and death behaviors have a factor
that evaluates the current energy level of agent.
 Platform replication behavior has a factor of health
level ratio, which encourages platforms to replicate
themselves on a healthier neighboring host. A replicated
(child) platform is placed on a host whose health level is
highest among neighboring hosts.

Platform death behavior has a factor that evaluates the
current energy level of platform. Platforms never die
while an agent(s) runs on the platform.

Each agent/platform incurs energy loss to invoke be-
haviors (i.e. behavior cost) except death behavior. When
the energy level of an agent/platform exceeds the cost of
a behavior, the agent/platform decides whether it per-
forms the behavior by calculating a weighted sum of
factor values.

4. Simulation Results
This section shows simulation results to evaluate how

biologically-inspired mechanisms in SymbioticSphere
impact the self-healing (survivability) of data centers3. In
this paper, self-healing means the ability of agents and
platforms to autonomously survive unexpected events
(e.g., host failures, network link failures and demand
surges) through their adaptation activities and to retain
the availability (service availability and resource avail-
ability) and performance (response time and throughput)
of data centers. Service availability is measured as the
number of available agents. Resource availability is
measured as the number of platforms that make re-
sources available for agents.

Fig. 3 shows a pseudo code to run users, agents and
platforms in each simulation cycle.

3 Simulations were carried out with the SymbioticSphere simulator,
which contains 14,120 lines of Java code. It is available for researchers
who investigate autonomic network systems (dssg.cs.umb.edu).

While (not the last cycle in a simulation)
For each user Do
 Send service requests to each of available agents according to

 a configured service request rate.
End For
For each platform Do

Make a decision on replication and death behaviors.
Update health level.
Expend (evaporate) energy.

End For
For each agent Do

If (a service request(s) arrived)
 Process the request(s) and gain energy.

 End If
Make a decision on replication, migration and death behaviors.
Expend energy to the local platform.

End For
End While

Fig. 3 Pseudo Code of Each Simulation Cycle

When a user issues a service request, the service re-
quest is passed to the local platform where the user re-
sides on, and the platform performs a discovery process
to search a target agent that can process the issued ser-
vice request. The platform (discovery originator) for-
wards a discovery message to its neighboring platforms,
asking whether they host a target agent. If a neighboring
platform hosts a target agent, it returns a discovery re-
sponse to the discovery originator. Otherwise, it for-
wards the discovery message again to its neighboring
platforms. Fig. 4 shows this peer-to-peer agent discovery
through platform connectivity4.
While (not simulation last cycle)
 If (Discovery messages arrived)

For each of discovery messages (under the max # of messages to be
processed in each simulation cycle) Do
If (Discovery message matches one of the local agents)

 Returns a discovery response to discovery originator
Else

 Forward the discovery message to neighboring platforms
End If

End For
 End If
End While

Fig. 4 Pseudo Code for Agent Discovery Process
in each Simulation Cycle

Fig. 4 shows a simulated network. A data center con-
sists of hosts connected in an N x N grid topology, and
service requests travel from users to agents via user ac-
cess point. This simulation study assumes that a single
(emulated) user runs on the access point and sends ser-
vice requests to agents. Each host has 256MB memory5.
Out of the memory space, an operating system consumes

4 Note that there is no centralized directory to keep track of agents.

128 MB, and Java virtual machine consumes 64MB.
Thus, 64MB is available for a platform and agents on
each host. Each agent and platform consumes 5 MB and
20 MB, respectively. This assumption is obtained from a
prior empirical experiment [10].

4.1. Self-Healing against Demand Surges
The first simulation study evaluates the self-healing of

agents and platforms to survive unexpected demand
surges. A simulation runs for 24 hours in simulation
time. Service request rate starts with 3,000 requests/min,
spikes to 210,000 requests/min at 8:00, and drops to
3,000 requests/min at 16:30 (Fig. 6). The peak demand
and spike ratio (1:70) are taken from a workload trace of
the 1998 World Cup web site [11]. A simulated data cen-
ter is 7x7 (49 hosts) from 0:00 to 12:00 and 15x15 (225
hosts) from 12:00 to 24:00. At the beginning of simula-
tion, an agent and platform is deployed on each host.

Fig. 5 shows how service availability (i.e., the number

of agents) and resource availability (i.e., the number of
platforms) change dynamically. Starting with 49 agents
and 49 platforms at 0:00, they autonomously adapt their
population to demand changes. When service request
rate spikes at 8:00, agents gain more energy form users
and replicate themselves more often. In response to
higher energy intake, they also transfer more energy to
platforms. As a result, platforms also increase their
population through replications. From 8:00 to 12:00, the
populations of agents and platforms do not grow due to
physical limitation of available hosts. When the size of a
data center expands from 49 hosts to 225 hosts at 12:00,

Th
e

nu
m

be
r o

f a
ge

nt
s

Simulation time (hour)

Th
e

nu
m

be
r o

f p
la

tfo
rm

s

0

500

1000

1500

2000

0 2 4 6 8 10 12 14 16 18 20 22 24
0

50

100

150

200

250

300
The number of agents

The number of platforms

Fig. 5 The Number of Agents and Platforms

m

es
sa

ge
 /

m
in

ut
e

Simulation time (hour)

0

50000

100000

150000

200000

250000

0 2 4 6 8 10 12 14 16 18 20 22 24

Service Request rate Throughput

Fig. 6 Service Request and Throughput

Se
rv

ic
e

re
qu

es
t

fr
om

 u
se

rs

User
access point

Data Centers

Host

(Simulated User)

Fig. 4 Simulated Network

5 Currently, memory availability represents resource availability on
each platform/host.

agents and platforms recognize the environment change
and rapidly perform replications and migrations on the
new hosts. When service request rate drops at 16:30,
most agents die due to energy starvation because they
cannot balance energy gain and expenditure. The popula-
tion of platforms also decreases due to less energy trans-
fer from agents. (It happens after 24:00.) Fig. 5 shows
that biological mechanisms in SymbioticSphere contrib-
ute for agents and platforms to adaptively adjust their
availability to dynamic demand changes, and avoid their
crashes or malfunctions due to overloading.

Fig. 6 shows the service request rate from users and
the throughput achieved by agents. At 8:00, service re-
quest rate spikes. Through replications, agents increase
throughput to 5,000 messages/min. The throughput stops
increasing because of the limitation of available hosts for
agents to utilize. When new 176 hosts are introduced to a
data center at 12:00, platforms replicate themselves on
the new hosts, and agents increase throughput by migrat-
ing to the replicated platforms and replicating themselves
on the platforms. Fig. 6 shows that the biological mecha-
nisms in SymbioticSphere contribute for agents and plat-
forms to adapt their availability to dynamic demand
changes and host availability, and collectively retain
throughput performance.

Fig. 7 shows the average response time for agents to

respond users. This includes the message transmission
latency between a user and agent, and the processing
overhead for an agent to process a service request. From
0:00 to 8:00, response time gradually decrease because
agents migrate closer to users. At 8:00, response time
spikes because service request rate spikes. Agents in-
crease their population through replications, and their
response time drops from 2.7 to 1.1 seconds at 8:20.
When new hosts are added to a data center at 12:00,
agents increase their population again and some of them
migrate to the newly added hosts, in order to increase

their throughput. As a result, the average distance be-
tween agents and users increases, and agent response
time also increases. However, agents keep response time
low enough (2.3 seconds) while they achieve the
throughput of 210,000 requests/min. Fig. 7 shows the
biological mechanisms in SymbioticSphere contribute
for agents and platforms to recover the degradation of
their response against service demand surge.

Fig 8 shows dynamic changes in Load Balancing In-
dex (LBI), which indicates how workload is distributed
over available platforms. (the lower, the better.) LBI is
measured with the following equation.

Xi represents (the # of messages processed by agents

running on platform i) / (resource utilization on platform
i). μ represents the expected average of X, which means
(the total # of messages processed by all agents) / (the
total amount of resource utilization on all platforms) /
(the number of platforms; N). LBI drops at 12:00, be-
cause platforms replicate themselves on newly available
hosts, and agents migrate to and perform replications on
the replicated platforms. Fig. 8 shows that biological
mechanisms in SymbioticSphere contribute for agents
and platforms to collectively avoid overloading plat-
forms by balancing workload over them.

Fig. 8 also shows an example of symbiotic emergence
between agents and platforms. Agent migration behavior
policy encourages agents to move towards platforms on
healthier hosts. Platform replication behavior policy en-
courages platforms to replicate themselves on healthier
hosts. As a result, workload is spread over the platforms
running on healthy hosts. This contributes to balance
workload on each platform, although agent migration
policy and platform replication policy do not consider
agent population, platform population and load balancing.
This results in a mutual benefit for both agents and plat-
forms. Platforms help agents increase their throughput
by making more resources available for them. Agents
help platforms to keep their stability by avoiding exces-
sive resource utilization on them.

4.2. Self-Healing against Host Failures
The next simulations study evaluates the self-healing

of agents and platforms against host failures. Each simu-
lation runs for 12 hours in simulation time. Service re-
quest rate is constantly 7,200 requests/min, which was
the peak in a workload trace of the IBM web site in 2001
[12]. In each simulation, randomly chosen 30% or 60%
of hosts go down at 5:00 for an hour. The size of a data
center is 7x7 (49 hosts). At the beginning of simulation,
an agent and platform is deployed on each host.

Figs. 9 and 10 show resource availability (i.e., the
number of platforms) and service availability (i.e., the
number of agents), respectively. Fig. 11 shows the
throughput of agents. Fig. 12 shows the average response

N

X
IndexBalancingLoad i

i∑ −
=

2)(μ ….. (2)

A
ve

ra
ge

 re
sp

on
se

 ti
m

e
(s

ec
)

Simulation time (hour)

0

0.5

1

1.5

2

2.5

3

0 2 4 6 8 10 12 14 16 18 20 22 24

Fig. 7 Average Response Time

Lo
ad

 B
al

an
ci

ng
 In

de
x

Simulation time (hour)

0
5

10
15
20
25
30
35
40
45

0 2 4 6 8 10 12 14 16 18 20 22 24

Fig. 8 Load Balancing Index

time of agents in the case that 60% of hosts go down.
When a host goes down, agents and platforms running
on the host die. This is why throughput drops from 7,200
requests/min and response time spikes from 1 second at
5:00. After host failures, the remaining agents increase
their populations through replications on remaining hosts
(Fig. 10), and throughput goes back to 7,200 re-
quests/min (Fig. 11). When failed hosts are back to a
data center, platforms recognize that and replicate them-
selves on the hosts (Fig. 9). Some of agents migrate to
the replicated platforms in order to come near users. As a
result, response time drops back to 1 second (Fig. 12).
Figs. 9, 10, 11 and 12 show that the biological mecha-
nisms in SymbioticSphere contribute for agents and plat-
forms to survive host failures and retain service avail-
ability, resource availability, throughput performance
and response time performance.

4.3. Self-Healing against Data Center Failures
The next simulation study evaluates the self-healing of

agents and platforms against data center failures. Each
simulation runs for 24 hours in simulation time. Service
request rate is constantly 7,200 requests/min. At the be-
ginning of a simulation, an agent and a platform are de-
ployed in each host. In this simulation study, there are
two data centers as shown in Fig. 13. Service requests
are distributed to the two data centers evenly (i.e., in a
round-robin manner). The size of each data center is 5x5
(25 hosts). Data center 1 and data center 2 go down for
4 hours at 6:00 and 18:00, respectively, due to network
link failures between a data center and the user access
point. When a failed network link is fixed, this simula-
tion study assumes that an administrator deploy an agent
and a platform on each host again.

Fig. 14 shows how service availability (i.e., the num-

ber of agents) changes in data centers. When a network
link goes down between the user access point and data
center 1 at 6:00, agents and platforms in the data center
die off in about 15 minutes due to energy starvation. In
this failure, all service requests are forwarded to data
center 2. (the workload in data center 2 changes from
3,600 requests/min to 7,200 requests/min.) In response to
demand changes, agents increase their populations
through replications. At 10:00, a link failure is fixed and
data center 1 becomes available again. Since service re-
quests are distributed to data centers 1 and 2, agents in
data center 1 increase their populations through replica-
tions, and agents in data center 2 decrease their popula-
tions through death. As a result, the number of agents in
the two data centers becomes close with each other. At

Se
rv

ic
e

re
qu

es
ts

fr

om
 u

se
rs

User
access point

(Simulated User)

(Down at 8:00
for 4 hours)

Data Center 1

Host

Data Center 2

Host

(Down at 18:00
for 4 hours)

Fig. 13 2 Data Centers

Th
e

nu
m

be
r o

f a
ge

nt
s

Simulation time (hour)

0

50

100

0 2 4 6 8 10 12 14 16 18 20 22 24

data center 1 data center 2

Fig 14 The Number of Agents in Data Center 1 and 2

Th
e

nu
m

be
r o

f p
la

tfo
rm

s

Simulation time (hour)

0
10
20
30
40
50

0 2 4 6 8 10 12

0% down
30% down
60% down

Fig. 9 The Number of Platforms

Th
e

nu
m

be
r o

f a
ge

nt
s

Simulation time (hour)

0
20
40
60
80

100

0 2 4 6 8 10 12

0% down
30% down
60% down

Fig. 10 The Number of Agents

Th
ro

ug
hp

ut

Simulation time (hour)

0

2000

4000

6000

8000

0 2 4 6 8 10 12

0% down
30% down
60% down

Fig. 11 Throughput

A
ve

ra
ge

 re
sp

on
se

 ti
m

e
(s

ec
)

Simulation time (hour)

0.5

0.7

0.9

1.1

1.3

1.5

0 2 4 6 8 10 12

Fig. 12 Average Response Time in the case that 60%
of hosts fail

16:00, data center 2 becomes unavailable due to a net-
work link failure between the user access point and data
center 2. Agents and platforms in data center 2 die off in
a short time, and agents in data center 1 increase their
populations through replications in response to demand
changes in the data center. Fig. 14 shows that the bio-
logical mechanisms in SymbioticSphere contribute for
agents to survive data center failures (or network link
failures) and retain service availability for users.

Fig. 15 shows the average response time of agents.

From 0:00 to 1:00, agents reduce their response time
through replicating themselves and migrating towards
users. From 1:00 to 6:00, response time is constantly at
0.62 second. When data center 1 becomes unavailable at
6:00, response time spikes up to 15 seconds. Then,
agents in data center 2 increases their population to com-
pensate of the failure of data center 1, and decrease aver-
age response time to 0.65 second at 8:00. When data
center 1 becomes available again at 10:00, response time
increases while agents in data center 1 replicate them-
selves to efficiently respond users. At 11:00, response
time becomes stable at 0.62 second. When data center 2
becomes unavailable at 16:00, agents in data center 1
increases their population to compensate of the failure of
data center 2, and decrease average response time. Fig.
15 shows the biological mechanisms in SymbioticSphere
contributes for agents to survive data center failures
(network link failures) and retain response time for users.

Fig. 16 shows the throughput of agents. Throughput

drops when data centers become unavailable at 6:00 and
16:00, because agents in a failed data center do not re-
spond users. However, remaining agents in a remaining
data center cover the failure and increase throughput to
process 7,200 requests/min in a short time. Fig. 16 shows
that the biological mechanisms in SymbioticSphere con-

tribute for agents to survive data center failures (network
link failures) and maintain high throughput for users.

5. Related Work
This work is an extension to the Bio-Networking Ar-

chitecture [10, 13]. In this architecture, biologically-
inspired agents achieve adapt their population and loca-
tions to dynamic environment changes in a decentralized
manner. However, platforms do not adapt to environ-
ment changes because they are static and non-biological
entities. Also, the Bio-Networking Architecture does not
study survivability (self-healing) of agents and platforms.
In SymbioticSphere, both agents and platforms are bio-
logical entities, and they achieve autonomous adaptabil-
ity and survivability. SymbioticSphere also exhibits a
new from of adaptation, symbiotic emergence, which
does not appear in the Bio-Networking Architecture.

0

5

10

15

0 2 4 6 8 10 12 14 16 18 20 22 24

A
ve

ra
ge

 re
sp

on
se

 ti
m

e
(s

ec
)

Simulation time (hour)
Fig 15 Average Response Time

Resource Broker [14] and Muse [12] are designed to
dynamically adjust resource allocation for server clusters
via centralized system monitor. Resource Broker in-
spects the stability and resource availability of each host,
and adjusts resource allocation for applications. Muse
inspects electric power consumption by a server cluster
and adjusts resource allocation for applications. Rather
than following centralized architectures, Symbiotic-
Sphere achieves adaptive allocation of agents and plat-
forms in a decentralized manner. Resource Broker and
Muse do not consider survivability (self-healing) against
system failures.

The Willow Architecture [15] addresses survivability
of distributed systems. Centralized system components
monitor and analyze the operating environment condi-
tions and detect failures. Based on type of failures, Wil-
low performs system reconfiguration to, for example,
add, removes and replace system components. It tends to
be complicated to define and operate system reconfigura-
tion in Willow. In contrast, SymbioticSphere does not
require any complex survivability configuration before
running agents and platforms. It also does not depend on
any centralized system components to avoid single point
of failures.

Th
ro

ug
hp

ut

Simulation time (hour)

4000

7000

10000

0 2 4 6 8 10 12 14 16 18 20 22 24

Fig 16 Throughput

The concept of energy in SymbioticSphere is similar
to money in economy. MarketNet [16] and WALRAS
[17] apply the concept of money to address market-based
access control for network applications. Instead of access
control, SymbioticSphere focuses on adaptability and
survivability of network systems (network applications
and middleware platforms).

[18] implements the concept of symbiosis between
groups of peers in peer-to-peer networks. Peer groups
symbiotically connect or disconnect with each other to
improve search speed and quality. A special type of
peers implements the symbiotic behaviors in peer groups.
Since the number of them is statically fixed, they do not
scale well to network size and traffic. They also do not
address survivability of peers from host failures. In

SymbioticSphere, all agents and platforms can spontane-
ously exhibit symbiotic behaviors. They scale well to
network size and traffic, and survive from host failures.

[19] implements the programming paradigm based
on the actions of biological cells and demonstrates the
ability of systems to survive massive failures. How-
ever, the robustness of the demonstrated network is
achieved because of configuration parameters (the
number of transmission attempts and time out). In
SymbioticSphere, service availability (the number of
agents) and resource availability (the number of plat-
form) are adapted automatically to the environment
conditions. SymbioticSphere scale well to network
size and traffic, and survive from host failures.

Termite [20] is a biologically inspired algorithm to
route messages in mobile wireless ad-hoc networks.
Termite applied the concept of four social insects
principles (positive feed back, negative feed back,
randomness, and multiple interactions). The routing
table in each node is locally updated on the run time
based on the probabilistic function and historical data.
The termite can achieve robustness of routing through
the use of multiple paths. However, the initial values
of configuration parameters are fixed and randomly
generate. The authors cannot provide the relationship
between configuration parameters and optimal results.
SymbioticSphere focuses on the wired network. Ro-
bustness is achieved by symbiosis of agent and plat-
form based on the current environment condition.

6. Concluding Remarks
This paper overviews SymbioticSphere, and presents

how it implements biological principles to improve
adaptability and survivability (self-healing) of large-
scale data centers. Simulation results show Symbiotic-
Sphere allows data centers to autonomously adapt to and
survive partial system failures.

Reference
[1] P. Dini, W. Gentzsch, M. Potts, A. Clemm, M. Yousif and A.

Polze, “Internet, Grid, Self-adaptability and Beyond: Are We
Ready?,” Proc. of IEEE International Workshop on Self-
Adaptable and Autonomic Computing Systems, August 2004.

[2] J. Rolia and S. Singhal and R. Friedrich, “Adaptive Internet Data
Centers,” Proc. SSGRR’00, July 2000.

[3] Nguyen-Tuong, A. S. Grimshaw, G. Wasson, M. Humphrey, J.C.
Knight, “Towards Dependable Grids,” University of Virginia,
TR-CS-2004-11, 2004.

[4] A Fox and D Patteron, “Self-Repairing Computers,” Scientific
American, June 2003.

[5] S. Ranjan and J. Rolia and E. Knightly and H. Fu, “QoS-Driven
Server Migration for Internet Data Centers,” Proc. of IWQoS,
2002.

[6] R. Albert, H. Jeong and A. Barabasi, “Error and Attack Tolerance
of Complex Networks,” Nature 406, July 2000.

[7] N. Minar, K. H. Kramer and P. Maes, “Cooperating Mobile
Agents for Dynamic Network Routing,” Software Agents for Fu-
ture Communications Systems, Chapter 12, Springer, 1999.

[8] G Cabri, L. Leonardi and F Zambonelli, “Mobile-Agent Coordi-
nation Models for Internet Applications,” IEEE Computer, Feb-
ruary 2000.

[9] R. M. Alexander, “Energy for Animal Life,” Oxford University
Press, May 1999.

[10] J. Suzuki and T. Suda, “A Middleware Platform for a Biologi-
cally-inspired Network Architecture Supporting Autonomous and
Adaptive Applications” IEEE J. on Selected Areas in Comm. Feb-
ruary 2005.

[11] M.F. Arlitt and T. Jin, “A Workload Characterization Study of
the 1998 World Cup Web Site,” IEEE Network, vol. 14, no. 3, pp.
30–37, May/June 2000

[12] J. Chase, D. Anderson, P. Thakar, and A. Vahdat, “Managing
Energy and Server Resources in Hosting Centers,” Proc. of ACM
SOSP'01, October 2001

[13]
[14] T. Suda, T. Itao and M. Matsuo, “The Bio-Networking Architec-

ture: The Biologically Inspired Approach to the Design of Scal-
able, Adaptive, and Survivable/Available Network Applications,”
The Internet as a Large-Scale Complex System, Oxford Univer-
sity Press, June 2005.

[15] A. Othman, P. Dew, K. Djemame, I, Gourlay, “Adaptive Grid
Resource Brokering,” Proc. of IEEE Int’l Conference on Cluster
Computing, Dec. 2003

[16] J. C. Knight, D. Heimbigner, A. Wolf, A. Carzaniga, J. Hill, P.
Devanbu, and M. Gertz, " The Willow Architecture: Comprehen-
sive Survivability for Large-Scale Distributed Applications," In
Proc. of the International Conference on Dependable Systems
and Networks (DSN-2002), June 2002.

[17] Y. Yemini, A. Dailianas, and D. Florissi, ”MarketNet: A Market-
based Architecture for Survivable Large-scale Information Sys-
tems," Proc. of ISSAT International Conference on Reliability
and Quality in Design, Aug. 1998

[18] M. P. Wellman, “A Market-Oriented Programming Environment
and Its Application to Distributed Multicommodity Flow Prob-
lems,” Journal of Artificial Intelligence Research, Vol. 1, 1993.

[19] N. Wakamiya and M. Murata, ``Toward Overlay Network Sym-
biosis,'' Proc. of P2P 2005, September 2005.

[20] S. George, D. Evans, and S. Marchette, “A Biologically Inspired
Programming Model for Self-healing System,” First ACM Work-
shop on Survivable and Self-Regenerative Systems, October 31,
2003

[21] M. Roth, S. Wicker, “Termite: Ad-Hoc Networking with Stig-
mergy,” In Proc. of Globecom 2003, December 2003.

