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Abstract—This paper considers natural neurons as a physical
communication medium and defines a Time Division Multiple
Access (TDMA) communication protocol on top of the physical
layer to construct intrabody nanonetworks, each of which net-
works nanoscale nodes to perform sensing and actuation tasks in
the body for biomedical and prosthetic purposes. The proposed
protocol, called Neuronal TDMA, leverages a novel evolutionary
multiobjective optimization algorithm (EMOA) to seek the opti-
mal signaling schedule for individual nodes in the network with
respect to conflicting optimization objectives such as signaling
delay and fairness while avoiding signal interference. Simulation
results show that the proposed EMOA efficiently obtains quality
TDMA signaling schedules and outperforms existing EMOAs.

I. INTRODUCTION

A nanoscale system consists of nanomachines, which are
nanoscale devices that perform simple computation, sensing
and/or actuation tasks [1], [2] They may be man-made devices
built in the top-down approach, downscaling the current mi-
croelectronic and micro-electromechanical technologies, or in
the bottom-up approach, assembling synthesized nanomaterials
such as graphene nanoribbons and carbon nanotubes. Alterna-
tively, nanomachines may be bio-hybrid, integrating man-made
nanostructures with biological materials such as DNA strands
and genetically engineered cells, or bio-enabled, synthesizing
biological materials without man-made nanostructures.

An emerging design strategy for nanoscale systems is
to network nanomachines for operating in larger physical
spaces in higher spatial and temporal resolutions. Although
individual nanomachines are limited in computation, sensing
and actuation capabilities, an assembly of nanomachines can
potentially organize into a “large-scale” network that spreads
on centimeter to meter scale and collaboratively performs tasks
that no individual nanomachines could.

This paper considers natural neurons as a physical commu-
nication medium and defines a Time Division Multiple Access
(TDMA) communication protocol, called Neuronal TDMA, on
top of the physical layer (Fig. 1) in order to construct intrabody
nanonetworks where nanomachines are networked to perform
sensing and actuation tasks in the human body for biomedical
and prosthetic purposes (e.g., in-situ physiological sensing,
biomedical anomaly detection, neural signal transduction and
neuroprosthesis control). A neuron-based intrabody nanonet-
work consists of a set of nanoscale sensor/actuator nodes and a
network of neurons that are artificially formed into a particular
topology. It allows individual nodes to interface with neurons

and communicate to other nodes with neuronal (i.e., electro-
chemical) signals through a chain of neurons. Neuron-based
communication possesses advantages such as biocompatibility,
energy efficiency, long distance coverage, high speed signaling
(up to 90 m/s) and low signal attenuation over other intrabody
communication schemes (e.g., electromagnetic schemes) [3].

Neuronal TDMA performs single-bit TDMA scheduling
for individual nodes to fire their nearby neurons and multi-
plex/parallelize signal transmissions in a given neuronal net-
work. It uses a novel evolutionary multiobjective optimiza-
tion algorithm (EMOA) to seek the Pareto-optimal signaling
schedule for nodes in the network with respect to conflicting
optimization objectives such as signaling delay and fairness.

The proposed EMOA, called SMSP-EMOA, heuristically
seeks the optimal TDMA schedules (i.e., which neurons to
fire and when to fire them to trigger signal transmissions) for
nodes by evolving a set of solution candidates (or individuals)
via various operators (e.g., crossover and selection operators)
through generations. Each individual represents a particular
TDMA schedule for nodes with respect to time. SMSP-
EMOA addresses an important issue in neuronal signaling:
interference. When different signals attempt to travel through
a neuron simultaneously, they interfere (or collide) with each
other. This leads to the loss or corruption of information
encoded with the signals. SMSP-EMOA is designed to avoid
signal interference to ensure that signals reach the destination
while multiplexing/parallelizing signal transmissions.

SMSP-EMOA is designed as an indicator-based EMOA,
which leverages a quality indicator in its selection opera-
tors [4]. A quality indicator measures the goodness of each
individual. For example, the hypervolume indicator [5], or the
S metric, and its variants have been used in various EMOAs.
Recent research findings (e.g., [6]) show that indicator-based
EMOAs outperform traditional EMOAs. SMS-EMOA (S Met-
ric Selection EMOA) is one of the most successfully and
widely used indicator-based EMOAs [7]. It uses the hypervol-
ume indicator in its environmental selection operator, which
chooses a set of individuals used in the next generation from
the union of the current population and its offspring.

SMSP-EMOA extends SMS-EMOA with a quality indica-
tor, called prospect indicator. The prospect indicator measures
the potential (or prospect) of each individual to reproduce
offspring that dominate itself and spread out in the objective
space. SMSP-EMOA uses the prospect indicator in its parent



selection operator, which chooses parent individuals from the
population to reproduce offspring, as well as the hypervolume
indicator in its environmental selection operator. The prospect
indicator allows the parent selection operator to (1) maintain
sufficient selection pressure to improve convergence velocity
toward the Pareto-optimal front, and (2) diversify individuals
to spread out individuals in the objective space.

Simulation results show that SMSP-EMOA efficiently ob-
tains quality TDMA schedules with acceptable computational
costs and allows nanomachines to perform neuronal signal
transmissions while avoiding signal interference. It outper-
forms several well-known existing EMOAs.
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Fig. 1. Neuronal TDMA positioned at the MAC layer in the Traditional
Layered Architecture for Computer Communications. This paper focuses on
the physical and MAC layers for neuronal signaling.

II. BACKGROUND

This section provides some background on neuronal sig-
naling and neuron-based intrabody nanonetworks.

A. Neuronal Signaling

Neurons are a fundamental component of the nervous
system, which includes the brain and the spinal cord. They are
electrically excitable cells that process and transmit informa-
tion via electrical and chemical signaling. A neuron consists of
cell body (or soma), dendrites and axon (Fig. 2). A soma varies
from 4 to 100 micrometers in diameter. Dendrites are thin
structures that arise from the soma. The length of a dendrite
is up to a few hundred micrometers. Dendrites receive the
majority of inputs to a neuron. An axon is a cellular extension
that arises from the soma. It travels through the body in bundles
called nerves. Its length can be over one meter in the human
nerve that arises from the spinal cord to a toe.

Neurons are connected with each other to form a network.
They communicate via synapses, each of which is a junction
between two neurons. A synapse contains molecular machinery
that allows a (presynaptic) neuron to transmit a chemical
signal to another (postsynaptic) neuron. Signals are transmitted
from the axon of a presynaptic neuron to a dendrite of a
postesynaptic neuron. An axon transmits an output signal to
a postsynaptic neuron, and a dendrite receives an input signal
from a presynaptic neuron.

Presynaptic and postsynaptic neurons maintain voltage gra-
dients across their membranes by means of voltage-gated ion
channels, which are embedded in the presynaptic membrane
to unbalance intracellular and extracellular concentration of
ions (e.g., Ca2+). Changes in the cross-membrane ion concen-
tration (i.e., voltage) can alter the function of ion channels.

If the concentration changes by a large enough amount (e.g.,
approx. 80 mV in a giant squid), ion channels start pumping
extracellular ions inward. Upon the increase in intracellular
ion concentration, the presynaptic neuron releases a chemical
called a neurotransmitter (e.g., acetylcholine), which travels
through the synapse from the presynaptic postsynaptic neu-
ron. The neurotransmitter electrically excites the postsynaptic
neuron, which in turn generates an electrical pulse called an
action potential. This signal travels rapidly along the neuron’s
axon and fires synaptic connections (i.e., opens ion channels)
when it arrives at the axon’s terminals. This way, an action
potential triggers cascading neuron-to-neuron communication.

Fig. 3 shows how Ca2+ concentration changes in a neu-
ron. When the concentration peaks, the neuron releases a
neurotransmitter(s) and goes into a refractory period (Tr in
Fig. 3), which is the time required for the neuron to replenish
its internal Ca2+ store. During Tr, it cannot process any
incoming signals. The refractory period is approximately two
milliseconds in a giant squid.

B. Neuron-based Intrabody Nanonetworks

This paper assumes neuronal signaling in a network of
neurons that are artificially grown and formed into particular
topology patterns. This assumption is made upon numerous
research efforts to grow neurons on substrates and form
topologically-specific neuronal networks (e.g., [8]).

Fig. 4 illustrates a schematic neuron-based intrabody
nanonetwork. It contains an artificially-grown neuronal net-
work and several nanomachines such as sensors and a sink.
Sensors utilize neuronal signaling to deliver sensor data to
a sink. As a potential application, sensors may periodically
monitor certain physiological status and report physiological
data or biomedical anomalies to the sink. The sink may
work as a transducer that converts incoming electrochemical
signals to electrostatic or electromagnetic signals. Electrostatic
signals may carry sensor data to an on-body (i.e., epidermal)
device(s) through a body-coupled communication scheme [9].
Electromagnetic signals may carry sensor data to an around-
body device(s) such as a smartphone and tablet computer.

Other potential applications are neurointerfaces that utilize
in-situ sensing and actuation for prostheses; for example,
neuroprosthetic bladder control (Fig. 5). In a normal bladder,
a sensory nerve senses that the bladder is full of urine and
transmits a sensory signal (i.e., the bladder’s sense of fullness)
to the brain. Whenever appropriate, the brain sends a control
signal through the spinal cord to contract the bladder, relax
the sphincter and trigger urination. However, nervous system
disorders (e.g., spinal cord injuries and subsequent paralysis)
can disrupt those signals to/from the brain and eliminate the
fullness sensation and muscle control. Patients with these
disorders are forced to empty their bladders with catheters.

In-situ sensing and actuation can help correct incontinence.
In Fig. 5, a particular portion of a spinal nerve, called dorsal
root ganglion, is teased out and interfaced to sensor nodes. The
sensors intercept neuronal signals from the nerve and forwards
them to the sink node. The sink may determine whether the
bladder is full, and if it is full, transmits electrostatic or
electromagnetic signals to an on/around-body node(s), which
in turn notifies the bladder’s fullness to the patient. A neu-
rostimulator(s) connected to the nerve issues high-frequency
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stimulation to prevent the bladder from emptying itself. When-
ever ready to urinate, the patient uses his/her on/around-body
node to issue an electrostatic or electromagnetic signal to a
subepidermal node, which transduces it to a neuronal electro-
chemical signal and transmits it to in-situ a neurostimulator(s).
Each neurostimulator delivers low-frequency stimulation or
stop stimulation so that the bladder to empty. This intervention
can be a less invasive alternative to the current state of the art
in neuroprosthetic bladder control (e.g., [10]).

This paper assumes that nanomachines (e.g., sensors) in-
teract with neuronal networks in a non-invasive manner. This
means that it is not required to insert particular materials (e.g.,
carbon nanotubes) into neurons so that nanomachines can trig-
ger and receive signals. For example, nanomachines may use
chemical agents (e.g., acetylcholine and mecamylamine [11])
or light [12].
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III. NEURONAL TDMA

Neuronal TDMA performs a single-bit TDMA communica-
tion that periodically assigns a time slot to each sensor. Sensors
fire neurons, one after the other, each using its own time slot.
This allows multiple sensors to transmit signals to the sink
through the shared neuronal network. Each sensor transmits
a single-bit within a single time slot. This single-bit-per-slot
design is based on two assumptions: (1) a signal (i.e., action
potential) is interpreted with two levels of amplitudes, which
represent 0 and 1, and (2) after a signal transmission, a neuron
goes into a refractory period (Tr in Fig. 3).

As described in Section I, an important goal of Neuronal
TDMA is to avoid signal interference, which occurs when
multiple signals fire the same neuron at the same time and
leads to corruption of transmitted sensor data at the sink.

Signals can easily interfere with each other if sensors fire their
neighboring neurons randomly. Neuronal TDMA is intended
to eliminate signal interference by scheduling which sensors
fire which neurons with respect to time. The proposed EMOA
seeks the optimal TDMA schedules for a set of sensors in a
given neuronal network.

Fig. 6 shows an example neuronal network that has five
neurons (n1 to n5) and four nodes (three sensors, s1, s2 and
s3, and a sink). Fig. 7 illustrates an example TDMA schedule
for those sensors to fire neurons. The scheduling cycle period
lasts five time slots (Ts = 5). The sensor s1 fires the neuron
n4 to initiate signaling in the first time slot T1. The signal
travels through n5 in the next time slot T2 to reach the sink.
s2 transmits a signal on n3 in T2. During T2, two signals travel
in the neuronal network in parallel. The duration of each time
slot (Tu in Fig. 7) is designed as the sum of three time periods:
(1) synaptic delay, which is the time for neurotransmitters to
travel through a synapse from a presynaptic neuron or a sensor
and generate an action potential in a postsynaptic neuron,
(2) intracellular transmission delay, which is the time for an
action potential to travel within a neuron (i.e., from its dendrite
terminal to its axon terminal) and (3) a refractory period.

Neuronal TDMA considers three optimization objectives:
(1) signaling yield, (2) signaling fairness among sensors and
(3) signaling delay. Signaling yield (fY ) is computed as
follows. It is to be maximized.

fY =

M∑
i=1

|Esi | (1)

This objective indicates the total number of signals that the
sink receives from all M sensors during Ts.

Signaling fairness (fF ), is computed as follows. It is to be
maximized.

fF =

M∑
l=1

M∑
m=1

|Esl |∑
k=1

1

|tk(sl)d − tk(sm)
d |

, l 6= m (2)

t
k(sl)
d denotes the departure time of the k-th signal that

sl transmits to the sink. This objective encourages sensors to
equally access the shared neuronal network for signaling in
order to avoid a situation where a limited number of sensors
dominate the network. Higher fairness means that sensors
access the neuronal network more equally.

Signaling delay (fD), is computed as follows. It is to be
minimized.

fD = maxsi∈S t
|Esi |((si)
a (3)
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t
|Esi |((si)
a denotes the arrival time at which the sink receives

the last (the |Esi |-th) signal that si transmits. fD indicates
how soon the sink receives all signals from all M sensors. fD
determines the scheduling cycle period Ts (Ts = fD).

Neuronal TDMA considers three constraints in its opti-
mization process. The first constraint enforces that at most
one signal can pass through each neuron in a single time slot.
The second constraint enforces each sensor transmit at least
one signal to the sinks (|Esi | ≥ 1 ∀i = 1, 2, ...,M ). The third
constraint (CD) is the upper limit for fD: fD ≤ CD. The delay
constraint violation (gD) is computed as follows where I = 1
if fD > CD and I = 0 otherwise.

gD = I × (fD − CD) (4)

IV. THE PROPOSED EMOA: SMSP-EMOA

A. Individual Representation

Each individual represents a particular TDMA schedule for
M sensors. Fig. 8 shows the structure of an example individual
that represents a TDMA schedule described in Fig. 7. In this
example, the first sensor, s1, fires the first neuron n1 for
signaling. The signal travels through two neurons, n2 and n3,
in the second and third time slots t2 and t3, respectively.

B. Algorithmic Structure

Algorithm 1 shows SMSP-EMOA’s algorithmic structure.

Algorithm 1 The Algorithmic Structure of SMSP-EMOA
1: t = 0
2: P0 = initializePopulation(µ)
3: while t < Tmax do
4: p1 = prospectBasedParentSelection(Pt)
5: p2 = prospectBasedParentSelection(Pt)
6: if random() ≤ Pc then
7: o = crossover(p1 , p2 )
8: end if
9: if random() ≤ Pm then

10: o = mutation(o)
11: end if
12: Pt = Pt ∪ o
13: Pt+1 = hypervolumeBasedEnvSelection(Pt)
14: t = t+ 1

15: end while

In the first iteration (t = 0), µ individuals are randomly
generated as the initial population P0 (Line 2). In each iteration
(t), a pair of individuals, called parents (p1 and p2), are
chosen from the current population Pt with the proposed
parent selection operator, which uses the prospect indicator
(prospectBasedParentSelection(), Lines 4 and 5).

With the crossover rate Pc, two parents reproduce one off-
spring with the SBX (self-adaptive simulated binary crossover)
operator [13] (Lines 6 and 7). Polynomial mutation [14] is
performed on the offspring with the mutation rate of Pm (Lines
9 to 10). The offspring is combined with the population Pt to
form a pool of candidate individuals used in the next iteration
(t = t+ 1).

Environmental selection follows reproduction. One
individual is eliminated from Pt to produce Pt+1

(hypervolumeBasedEnvSelection(), Line 13).
Environmental selection performs a (µ + 1) steady state
evolution.

C. Parent Selection with the Prospect Indicator

Algorithm 2 shows how the proposed parent selection oper-
ator (prospectBasedParentSelection() in Algorithm 1)
works with the prospect indicator. It is designed as a variant of
binary tournament selection. It randomly draws two individuals
from the current population P , compares them based on the
dominance relationship between them and chooses a superior
one as a parent (Lines 5 to 8). Note that p1 is said to dominate
p2 (denoted by p1 � p2) if the both of the following conditions
are satisfied: (fi denotes the i-th objectives.)
• fi(~x) ≤ fi(~y) ∀ i = 1, · · · , n
• fi(~x) < fi(~y) ∃ i = 1, · · · , n
If two individuals (p1 and p2 ) do not dominate each other

and are placed in the same rank, the proposed selection opera-
tor chooses one of them as a parent with the prospect indicator.
Lines 10 and 11 compute the prospect indicator values of p1
and p2 (IP (p1) and IP (p2)), and Line 12 compares the two
values. The proposed operator chooses the one with a higher
IP value (Lines 12 to 16).

The prospect indicator value of an individual i (IP (i)) is
computed as follows:

IP (i) = V (Rrank(i))− V (Rrank(i) \ {i}) (5)

rank(i) denotes the value of a rank that i is placed at.
Rrank(i) denotes a set of individuals that are placed at the rank
of rank(i). R1 contains the individuals of the best (or highest)
rank (i.e., the non-dominated individuals in P). R2 contains
the individuals of the second highest rank (i.e., individuals that
are non-dominated in Pt \R1). V (R) denotes the volume of a
hypercube that dominates the individuals in R in the objective
space. It is calculated with the Lebesgue measure as follows.

V (R) = Λ

(⋃
x∈R
{x′|xu � x′ � x}

)
(6)



xu denotes the Utopian point, and Λ denotes the Lebesgue
measure.

The prospect indicator valuates the potential (or prospect)
of an individual to reproduce offspring that dominate itself.
Fig. 9 shows an example measurement of the prospect indicator
in a two dimensional objective space. This example considers
three non-dominated individuals: a, b and c (Rrank(a) =
Rrank(b) = Rrank(c) = {a, b, c}). The Utopian point is
(0, 0). IP (b) is a shaded area in Fig. 9 (i.e., V (Rrank(b)) −
V (Rrank(b) \ {b})).

Algorithm 2 prospectBasedParentSelection()
Require: P|P 6= ∅
1: p1 = randomSelection(P)
2: p2 = randomSelection(P)
3: if p1 = p2 then
4: return p1
5: else if p1 � p2 then
6: return p1
7: else if p2 � p1 then
8: return p2
9: else

10: IP (p1) = prospectIndicator(p1, Rrank(p1))
11: IP (p2) = prospectIndicator(p2, Rrank(p2))
12: if IP (p1) > IP (p2) then
13: return p1
14: else
15: return p2
16: end if
17: end if

Algorithm 3 shows how to compute IP (p). P denotes a set
of individuals that are placed at the same rank as an individual
p. For each objective (o), the distance between p and s is
measured to compute IP (p), where s denotes an individual
that yields the closest yet superior objective value.

Algorithm 3 prospectIndicator()
Require: p,P|P 6= ∅
1: v = 1
2: for each o ∈ O do
3: s = ∅
4: for each n ∈ P do
5: if fo(n) < fo(p) then
6: if s = ∅ then
7: s = n
8: else if fo(s) < fo(n) then
9: s = n

10: end if
11: end if
12: end for
13: v = v × |fo(p)− fo(s)|
14: end for
15: return v

f1

f2

a

b

c

Fig. 9. An Example Measurement of Prospect Indicator

D. Environmental Selection with the Hypervolume Indicator

Algorithm 4 shows how environmental selection
(hypervolumeBasedEnvSelection() in Algorithm 1)

works with the hypervolume indicator. In environmental
selection, µ individuals are selected from µ+1 individuals as
the population used in the next iteration.

dominanceRanking() performs dominance ranking on
the current population P (Line 1).R1 andRv contain the best-
ranked and worst-ranked individuals, respectively. In Lines 2
and 3, an individual p is discarded from Rv . p is an individ-
ual that yields the minimum value of exclusive hypervolume
contribution IH . IH of an individual i ∈ Rv is computed as
follows:

IH(i) = H(Rv)−H(Rv \ {i}) (7)
H(Rv) denotes the volume of a hypercube that the worst-

ranked individuals dominate. It is calculated with the Lebesgue
measure as follows.

H(Rv) = Λ

( ⋃
x∈Rv

{x′|x � x′ � xr}

)
(8)

xr denotes a reference point in the objective space. Fig. 10
shows an example measurement of IH in a two dimensional
objective space. This example considers three individuals in
Rv: a, b and c. xr = (r1, r2). IH(b) is a shaded area in
Fig. 10 (i.e., H(Rv)−H(Rv \ {b})).

Algorithm 4 hypervolumeBasedEnvSelection()
Require: P|P 6= ∅
1: {R1,R2,...,Rv} = domianceRanking(P)
2: p =argmins∈Rv [IH(s)]
3: P = P \ p
4: return P
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c

Fig. 10. An Example Measurement of Exclusive Hypervolume Contribution

V. SIMULATION EVALUATION

This section evaluates SMSP-EMOA through simulations.
A simulated neuronal network is obtained with a two-step
procedure. The first step utilizes NeuGen [15] to generate
a network of N neurons. The second step forms a tree
structure with those neurons based on a randomized L-ary tree
construction algorithm. This algorithm generates a rooted tree
in which each neuron has no more than N (L, (L+1)2) child
neurons. N denotes a normal distribution. L and L + 1 are
the mean and the standard deviation of the number of child
neurons for each neuron. This paper uses a randomized 2-ary
(i.e., binary) tree that contains 40 neurons and 10 sensors.

SMSP-EMOA is configured with a set of parameters shown
in Table I. Q denotes the total number of time slots in an
individual (Q = 15 in Fig. 8). Every simulation result is the
average of the results from 20 independent simulations. SMSP-
EMOA is compared with two existing EMOAs: NSGA-II [14]
and SMS-EMOA [7]. They are configured with Table I. All
other configurations follow those described in [14] and [7].

Fig. 11 shows how SMSP-EMOA, SMS-EMOA and
NSGA-II individuals increase the union of the hypervolumes



that they dominate in the objective space as the number of
generations grows. The hypervolume metric quantifies the op-
timality and diversity of individuals [5]. A higher hypervolume
means that individuals are closer to the Pareto-optimal front
and more diverse in the objective space. As Fig. 11 shows, all
three EMOAs rapidly increase their hypervolume measures in
the first 10 generations. NSGA-II converges around the 45th
generation. SMSP-EMOA and SMS-EMOA converge around
the 60th generation. Fig. 11 demonstrates that SMSP-EMOA
efficiently evolve individuals and improve their quality and
diversity within 100 generation.

Table II shows the average of each objective value at the
last generation. A value in parentheses indicates a standard
deviation of objective values. Fig. 11 and Table II demonstrate
that SMSP-EMOA performs TDMA scheduling optimization
efficiently and effectively for neuronal signaling.

TABLE I. PARAMETER CONFIGURATIONS

Parameter Value
Max. # of generations in each simulation 100
Population size 100
Crossover rate 0.9
Mutation rate 1/Q
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TABLE II. OBJECTIVE FUNCTION VALUES

Yield (fY ) Fairness (fF ) Delay (fD)
SMSP-EMOA 22.12 (3.98) 0.14 (0.4) 21.09 (3.11)
SMS-EMOA 20.17 (4.12) 0.12 (0.4) 23.17 (3.11)
NSGA-II 16.11 (3.22) 0.08 (0.10) 29.78 (6.91)

VI. RELATED WORK

Balasubramaniam et al. first examined TDMA-based neu-
ronal signaling [11]. This paper extends it with an indicator-
based EMOA that considers conflicting optimization objectives
such as signaling yield and delay.

SMSP-EMOA extends SMS-EMOA’s parent selection op-
erator with the prospect indicator. While SMS-EMOA uses
the hypervolume indicator for its environmental selection, it
uses no indicators for its parent selection. Instead, it randomly
draws two parent individuals from the population [7]. SMSP-
EMOA performs a binary tournament with the prospect indi-
cator for parent selection.

SPAM is similar to SMSP-EMOA in that it uses mul-
tiple indicators as SMSP-EMOA does [16]. It can use two
or more indicators in its environmental selection operator.
Unlike SPAM, SMSP-EMOA uses different indicators (the
prospect and hypervolume indicators) in different (parent and
environmental) selection operators.

SMSP-EMOA is studied in [17] with well-known test
problems such as ZDT and DTLZ problem families. This paper
examines it in a more realistic problem, neuronal signaling
optimization in intrabody nanonetworks, with problem-specific
objectives, constraints and individual representation. Simula-
tion results show that SMSP-EMOA can effectively solve the
problem beyond test problems.

VII. CONCLUSION

This paper formulates an optimization problem for neu-
ronal signaling and solves the problem with an EMOA, called
SMSP-EMOA. Simulation results show that SMSP-EMOA
efficiently obtains quality TDMA schedules with acceptable
computational costs and allows nanomachines to perform neu-
ronal signal transmissions while avoiding signal interference.
It outperforms several well-known existing EMOAs.
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