
1

Middleware Support for
Disaster Response Infrastructure

Jun Suzuki and Tatsuya Suda
jsuzuki@ics.uci.edu

www.ics.uci.edu/~jsuzuki/
netresearch.ics.uci.edu/bionet/

Dept. of Information and Computer Science
University of California, Irvine

Our Assumptions
on the Disaster Infrastructure

• Ad-hoc net spontaneously established in a disaster
area to evacuate victims and aid emergency response
crews.

• Various devises participate in the disaster ad-hoc nets.
– Victims carry their own devices.
– Emergency response crews carry and/or wear devises.
– Emergency vehicles (e.g. fire truck, ambulance) carry

devices.
– Sensors are densely scattered (e.g. scattered from

helicopters).

2

Our Assumptions on the
System Characteristics

• Large scale with a number of
– people/organizations
– devices
– software objects

• Objects represent devises, execute devise-specific functions (e.g.
temperature sensing), or carry information (e.g. map, a building’s floor plan
and air contamination).

• Heterogeneous
– processing, memory and networking capabilities of devises
– functionalities of software objects

• Dynamic
– changing network connectivity, density, and traffic

• Connectivity and density change due to movement of users/devises and
additional deployment of devises and software objects.

• Traffic changes depending on the rescue operation stages
– e.g. The traffic among temperature sensors increases while fire occurs.

– intermittent availability of devises and software objects

Research Goals
• To design an application architecture which

– meets key requirements of applications running on
disaster response networks (i.e. large-scale,
heterogeneous and dynamic networks).

– diminishes the maintenance/administration burden
of disaster response network applications.

3

A New Application Architecture
• Key requirements in disaster response network

applications
– scalability in terms of # of objects/devises/users,
– adaptability to dynamic changes in network

conditions
– availability/survivability from failures
– simplicity to develop and maintain.

• The Bio-Networking Architecture
– applies biological concepts and mechanisms to

network application design
• Biological systems already have above required

characteristics

Cyber-Entity (CE)

• Biological individual = Cyber-entity (CE) (objects)
– Abstraction of system components (e.g., victim, rescuer, service, etc.)
– provides service (e.g. temperature sensing, providing information such

as building’s floor plan).
– autonomous with simple behaviors

• migration, replication, reproduction, death, energy exchange,
relationship establishment, discovery

• Application
– constructed from a collection of interacting cyber-entities

Devise

Bionet platform

Cyber-entities running
on a bionet platform

Attributes
Body

Behaviors

a cyber-entity

users

4

Biological Concepts Applied
• Emergence

– Useful group behavior (e.g. adaptability and survivability) emerges from
autonomous local interaction of individuals with simple behaviors.

• Lifecycle
– energy gain/consumption/exchange

• CE gains energy in exchange for providing its service.
• It expends energy for using resources (e.g. CPU and memory) and performing

behaviors (e.g. migration and replication)

• Adaptation and evolution
– CEs evolve by generating behavioral diversity and executing natural

selection.
– replication (with mutation), reproduction (with mutation and/or crossover)

of CEs

• Decentralized system organization
– to increase scalability and robustness
– e.g., decentralized discovery

• Each CE keeps relationships with others. Discovery is performed based on CE’s
unique ID and attributes through relationships in a peer-to-peer manner.

Application Scenario 1: Wildfire
• Disposable sensors are scattered over an affected area

– e.g. temperature, wind force, oxygen, smoke sensing
– Some of them are broken if they fall into a fire.
– The CEs within sensors do their sensing tasks and maintain relationships

with each other.
• Each fire fighter has devises (e.g. info pad, sensors).

– The CEs within the devises may
• direct the fire fighter to a place to extinguish a flame, even when visibility is

not good, by interacting with scattered sensor CEs.
– The CEs may suggest a safer (i.e. lower temperature, less air contaminant) route

to the place from multiple options.
• display the current positions of the fire fighter and other fighters by interacting

with other fighters’ CEs and the CEs that provide map information.
• display the current area affected by fire(s) by interacting with sensor CEs.
• sense what is happening nearby (e.g. approaching blaze) by interacting with

neighboring sensor CEs, and alert the crew that.

5

Application Scenario 2: Building Collapse
• The CEs within victims’ devises may

– find rescuers through passing advertisement (e.g. “I’m here” beacon) or
asking its relationship partners (they will ask their partners in turn).

– provide an evacuation path to the victim by interacting with sensor CEs.
– obtain the first aid treatment information for injured victims by discovering

and inquiring the CEs that provides the information.
• The CEs within rescuers’ devises may

– locate victims, represented by CEs, through passing advertisement or
asking its relationship partners (they will ask their partners in turn).

– display a street map or building floor plans depending on the rescuer’s
current position.

– examine what is happing near the rescuer (e.g. gas leaking and
approaching blaze) by discovering and inquiring nearby sensor CEs.

• A CE that provides any information may
– adjust its population through replication, reproduction and natural

selection (energy exchange) depending on the demand;
– adjust its location through migration (e.g. toward users) and resource

sensing (e.g. more CEs on the devises that provide more resources).

Current Status and Future Work
• Current status

– Design and implementation of a platform software
• OMG standardization (Super Distributed Objects group)

– Distributed (i.e. peer-to-peer) discovery
– Adaptation and evolution
– Service interface description language
– Mathematical stability analysis

• Future work
– Deployment and empirical study
– Reconfigurable middleware

