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Abstract—This paper focuses on push-pull hybrid communica-
tion in a cloud-integrated sensor networking architecture, called
Sensor-Cloud Integration Platform as a Service (SC-iPaaS). SC-
iPaaS consists of three layers: sensor, edge and cloud layers.
The sensor layer consists of wireless body sensor networks, each
of which operates several sensors for a homebound patient for
a remote physiological and activity monitoring. The edge layer
consists of sink nodes that collect sensor data from sensor nodes
in the sensor layer. The cloud layer hosts cloud applications
that obtain sensor data through sink nodes in the edge layer.
This paper formulates an optimization problem for SC-iPaaS to
seek the optimal data transmission rates for individual sensor
and edge nodes and solves the problem with respect to multiple
objectives (e.g., data yield, bandwidth consumption and energy
consumption) subject to given constraints. This paper sets up a
simulation environment that performs remote multi-patient mon-
itoring with five on-body sensors including ECG, pulse oximeter
and accelerometer per a patient. Simulation results demonstrate
that the proposed optimizer successfully seeks Pareto-optimal
data transmission rates for sensor/sink nodes against data request
patterns placed by cloud applications. The results also confirm
that the proposed optimizer outperforms an existing well-known
optimization algorithm.

I. INTRODUCTION

This paper proposes a cloud-integrated architecture for
wireless sensor networks and evaluates a communication opti-
mizer for the architecture. The proposed architecture, called
Sensor-Cloud Integration Platform as a Service (SC-iPaaS)
is a three-tier communication architecture that seamlessly
integrates the sensor, edge and cloud layers. The sensor layer
consists of sensor nodes embedded in the physical environ-
ment. The edge layer consists of sink nodes that collect sensor
data from sensor nodes in the physical environment. The
cloud layer consists of cloud computing environments that host
virtual sensors, which are virtualized counterparts (or software
counterparts) of physical sensors in the sensor layer. Virtual
sensors collect sensor data from sink nodes in the edge layer
and store those data for future use. Clouds also host cloud
applications that obtain sensor data from virtual sensors and

aid users to monitor physical phenomena, events and processes
in the physical environment.

SC-iPaaS performs push-pull hybrid communication be-
tween its layers. Individual sensor nodes periodically transmit
(or push) sensor data to sink nodes, which in turn forward (or
push) incoming sensor data periodically to virtual sensors in
clouds. When a virtual sensor does not have sensor data that a
cloud application requires, it obtains (or pulls) that data from
a sink node or a sensor node. This push-pull communication
scheme is intended to make as much sensor data as possible
readily available for cloud applications by taking advantage of
push communication while allowing virtual sensors to pull any
missing data anytime in an on-demand manner.

An example application of SC-iPaaS is remote physio-
logical and activity monitoring in pervasive healthcare for
homebound patients [1]–[3]. This application assumes per-
patient wireless networks of on-body and/or in-body sensors
for, for example, heart rate, blood pressure, oxygen saturation,
body temperature, respiratory rate, blood coagulation, galvanic
skin response and fall detection. Those sensors are wirelessly
connected via single-hop or multi-hop paths to a dedicated per-
patient device or a patient’s computer (e.g., cell phone, tablet
machine or laptop computer) that serves as a sink node. Real-
time physiological and activity sensor data are periodically
pushed to virtual sensors in clouds so that clinicians, hospital
nurses and visiting nurses can share the data for clinical
observation and intervention. When an anomaly is found in
physiological/activity sensor data, clinical staff may pull extra
data in a higher temporal resolution to better understand
a patient’s medical condition. Given a sufficient amount of
data, they may order/perform clinical interventions, dispatch
ambulances or notify family members of patients.

This paper focuses on a communication optimization prob-
lem in SC-iPaaS and solves it with an evolutionary opti-
mization algorithm. The problem is to seek the optimal data
transmission rate for each sensor node and sink node with
respect to multiple optimization objectives such as sensor data
yield (sensor data availability) for cloud applications, band-
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Fig. 1. A Push-Pull Hybrid Communication Architecture for Cloud-integrated Sensor Networks

width consumption between the cloud layer and the edge layer
and energy consumption of sensor nodes in the sensor layer.
This paper sets up a simulation environment that performs
remote multi-patient monitoring with five on-body sensors
including ECG, pulse oximeter and accelerometer per a patient.
Simulation results demonstrate that the proposed optimization
algorithm successfully seeks Pareto-optimal communication
configurations (i.e., data transmission rates for sensor/sink
nodes) against data request patterns placed by cloud appli-
cations. The results also confirm that the proposed algorithm
outperforms an existing well-known optimization algorithm.

II. AN OVERVIEW OF SC-IPAAS

Figure 1 shows an architectural overview of SC-iPaaS. SC-
iPaaS consists of the following three tiers.

Sensor Layer: operates one or more wireless networks of
stationary sensor nodes embedded in the physical environment.
Each network is assumed to be heterogeneous; it has different
types of sensor devices such as air temperature sensors, humid-
ity sensors and barometric pressure sensors. Sensor nodes are
battery-operated or solar-powered; they have limited energy
supplies. In each sensor network, nodes form a particular
topology (e.g., tree, star or mesh topology). In Figure 1,
sensor networks use a tree topology. Nodes periodically read
sensors and transmit (or push) sensor data to a special node,
called sink node, on a hop-by-hop manner through a given
network topology. Different sensor nodes have different data
transmission rates.

Edge Layer: is a collection of sink nodes, each of which
participates in a certain sensor network and receives sensor
data periodically from individual nodes in the network. Each
sink node stores incoming sensor data in its memory space
and then transmits (or pushes) them periodically to the cloud
layer. It maintains the mappings between physical sensors
and virtual sensors. In other words, it knows the origins and
destinations of sensor data. Different sink nodes have different

data transmission rates. A sink node’s data transmission rate
can be different from the ones of sensor nodes in the same
network. Note that each sensor network operates one or more
sink nodes. In Figure 1, one sink node is operated in each
sensor network. Depending on application domains, sink nodes
may have limited energy supplies through batteries and solar
panels or they may have infinite energy supplies.

In addition to pushing sensor data to a virtual sensor, each
sink node receives a “pull” request from a virtual sensor when
the virtual sensor does not have data that a cloud application(s)
requires (Figure 1). If the sink node has the requested data in
its memory, it returns that data. Otherwise, it issues a pull
request to a sensor node that is responsible for the requested
data. Upon receiving the pull request, the sensor node reads a
sensor and returns sensor data.

Cloud Layer: operates on one or more clouds to host
end-user applications and management services for the applica-
tions. Applications are operated on virtual machines in clouds.
Users are assumed to place continuous sensor data queries on
virtual sensors via cloud applications in order to monitor the
physical environment. If a virtual sensor already has data that
an application queries, it returns that data. If a query does not
match, the virtual sensor issues a pull request and sends it to
a sink node. Each query is assumed to have a relative time
window within which an application requires particular sensor
data. While push communication carries out one-way upstream
travel of sensor data, pull communication incurs a round trip
for requesting sensor data and receiving that data (Figure 1).

Cloud-based management services offer common function-
alities to implement and operate applications (Figure 1). This
paper focuses on the following two services.

• Sensor manager: virtualizes physical heterogeneous
sensors in a unified way by abstracting away their low-
level operational details. Cloud applications always
access physical sensors through virtual sensors; for
example, collecting sensor data with a pull request and



sending control signals (e.g., turning on/off sensors
and setting data transmission rates).

• Communication manager: is responsible for push-pull
hybrid communication between different layers. It is
assumed to operate on top of certain publish/subscribe
communication middleware such as TinyDDS [4].
A key component in this manger is communication
optimizer, which this paper focuses on to seek the
optimal data transmission rates for sensor and sink
nodes with respect to multiple optimization objectives.

III. COMMUNICATION OPTIMIZATION PROBLEM IN
SC-IPAAS

This section describes an optimization problem to seek
the optimal data transmission rates for sensor and sink nodes
in SC-iPaaS. The following notations are used to state the
optimization problem.

• S = {s1, s2, ..., si, ..., sM} is the set of M sensor
nodes in sensor networks. νsi denotes the data trans-
mission rate for the i-th sensor node (si) to push
sensor data to its corresponding sink node. The rate
is measured as the number of sensor data transmitted
per a unit time. di indicates the size of single sensor
data that si generates and transmits to a sink node. hi
denotes the shortest logical distance (i.e., hop count)
from si to its corresponding sink node.

• νei denotes the data transmission rate for a sink
node to push sensor data receiving from the i-th
sensor node (si). νei and νsi are not necessarily equal
(νei ≤ νsi ).

• W indicates a relative time window that SC-iPaaS
considers to monitor sensor data requests from cloud
applications and compute its communication perfor-
mance with respect to optimization objectives.

• Ri = {ri1, ri2, ..., rij , ..., ri|Ri|} is the set of all
sensor data requests that cloud applications issue to
the virtual counterpart of si (s′i) during the time period
of W in the past. rij denotes the j-th sensor data
request from a cloud application to the i-th virtual
sensor s′i during the time period of W in the past.
Each request is characterized by its time stamp (tij)
and time window (wij). It requests all sensor data
available in the time interval [tij−wij , tij ]. If s′i has at
least one data in [tij−wij , tij ], it returns those data to
a cloud application. Otherwise, it issues a pull request
to a sink node.

• Rei ∈ Ri is the set of sensor data requests for which
the virtual sensor s′i has no data. This means that |Rei |
indicates the number of pull requests that s′i issues to
a sink node. In other words, Ri \ Rei indicates the
requests that s′i can fulfill.

• Rsi ∈ Rei ∈ Ri is the set of sensor data requests for
which the sink node for si do not have data. This
means that |Rsi | indicates the number of pull requests
that the sink node issues to si. In other words, Rei \Rsi
indicates the requests that the sink node can fulfill.

This paper considers three optimization objectives: band-
width consumption between the edge and cloud layers (fB),

energy consumption of physical sensors (fE) and data yield
for cloud applications (fD). The first two objectives are to be
minimized while the third is to be maximized.

The bandwidth consumption objective (fB) is defined as
the total amount of data transmitted per a unit time between the
edge and cloud layers. This objective impacts the payment for
bandwidth consumption based on a cloud operator’s pay-per-
use billing scheme. It also impacts the lifetime of sink nodes
if they are battery-operated or solar-powered. fB is computed
as follows.

fB =

M∑
i=1

(νei × di) +
1

W

M∑
i=1

∑
rij∈Re

i

(φij × di + dr) (1)

The first and second terms of the equation indicate the
bandwidth consumption by one-way push communication from
the edge layer to the cloud layer and two-way pull commu-
nication between the cloud and edge layers, respectively. φij
denotes the number of sensor data that the request rij can
collect in the time interval [tij − wij , tij]. dr indicates the
size of a single pull request from the cloud layer to the edge
layer. It is constant for all sensor nodes.

The energy consumption objective (fE) is defined as the
total amount of energy that sensor nodes consume for data
transmissions during the time period of W . This objective
impacts the lifetime of sensor nodes and sensor networks. It
is computed as follows.

fE =

M∑
i=1

(hi×et×di×νsi×W )+

M∑
i=1

∑
rij∈Psi

(
hi×et×(di+d′r)

)
(2)

The first and second terms indicate the energy consumption
by one-way push communication from the sensor layer to the
edge layer and two-way pull communication between the edge
layer and the sensor layer, respectively. et denotes the amount
of energy that a unit amount of data consumes to travel from
a sensor node to its neighboring node. d′r denotes the size of
a single pull request from the edge layer to the sensor layer.
et and dr are constant for all sensor nodes.

The data yield objective (fY ) is defined as the total amount
of data that cloud applications gather for their users. This
objective impacts the informedness and situation awareness
for application users. It is computed as follows.

fY =

M∑
i=1

∑
rij∈Ri

φij (3)

In SC-iPaaS, optimization objectives conflict with each
other. For example, the data yield objective conflicts with the
other two objectives. Maximizing data yield means increas-
ing data transmission rates for sensor and sink nodes. This
increases bandwidth consumption and energy consumption.
Similarly, the energy consumption objective conflicts with the
data yield objective. Minimizing energy consumption means
reducing data transmission rates for sensor nodes. This can



reduce data yield. Given these conflicting objectives, this paper
seeks the optimal trade-off (i.e., Pareto-optimal) configurations
for data transmission rates in SC-iPaaS.

SC-iPaaS considers two constraints in its optimization
process. The first constraint (CE) is the upper limit for energy
consumption (fE):

fE < CE (4)

The constraint violation in energy consumption (gE) is
computed as follows where I = 1 if fE > CE ; otherwise
I = 0.

gE = I × (fE − CE) (5)

The second constraint (CY ) is the lower limit for data yield
(fY ):

fY > CY (6)

The constraint violation in data yield (gY ) is computed as
follows where I = 1 if fE < CE ; otherwise I = 0.

gY = I × (CY − fY ) (7)

IV. COMMUNICATION OPTIMIZER IN SC-IPAAS

SC-iPaaS leverages a novel evolutionary multiobjective
optimization algorithm (EMOA) for its communication op-
timizer. The proposed EMOA is intended to search Pareto-
optimal solutions that are equally distributed in the objective
space because there exits no single optimal solution under
conflicting objectives but rather a set of alternative solutions
of equivalent quality. Therefore, it can produce both extreme
data transmission configurations (e.g., the one exhibiting high
data yield and high energy consumption) and balanced con-
figurations (e.g., the one exhibiting intermediate data yield
and energy consumption) at the same time. Given a set of
heuristically-approximated Pareto-optimal solutions, an SC-
iPaaS operator can examine the trade-offs among them and
make a well-informed decision to choose one of them, as the
data transmission configuration, according to his/her prefer-
ences and priorities. For example, an SC-iPaaS operator can
examine how he/she can data yield for energy consumption
and determine a particular data transmission configuration that
achieves a desirable/comfortable balance of data yield and
energy consumption.

A. Individual Representation

The proposed EMOA iteratively evolves the population of
solution candidates, called individuals, with several operators
(e.g., crossover, mutation and selection operators) toward the
Pareto-optimal solutions in the objective space. In SC-iPaaS,
each individual (solution candidate) represents a particular data
transmission configuration, which is a set of data transmission
rates for all sensor and sink nodes (Figure 2).

Fig. 2. Individual Representation

B. R2 Indicator

The proposed EMOA utilizes a quality indicator, called the
R2 indicator [5], in order to assess the quality (or optimality)
of an individual. The R2 indicator was originally proposed
to assess the relative quality of two sets of individuals [5].
Assuming the standard weighted Tchebycheff function with
a particular reference point z∗, the indicator can be used to
assess the quality of a individual set (A) against z∗ [6], [7]:

R2(A,V, z∗) =
∑
v∈V

(
p(v)×min

a∈A
{ max
1≤j≤m

vj |z∗j − aj |}
)

(8)

V denotes a set of weight vectors. Each weight vector
v = (v1, ..., v|V|) ∈ V is placed in the m-dimensional objective
space. p denotes a probability distribution on V . Weight
vectors are often chosen uniformly distributed in the objective
space [6]–[9]. In this case, the R2 indicator is described as:

R2(A,V, z∗) =
1

|V|
∑
v∈V

min
a∈A
{ max
1≤j≤m

vj |z∗j − aj |} (9)

A utopian point is usually used as the reference
point z∗ [6]–[9]. A utopian point is a point that is never
dominated by any feasible solutions in the objective space.
For example, it is (0, 0) in a two-dimensional objective space
where each objective value is greater than or equal to 0.

A lower R2 value indicates that an individual setA is closer
to the reference point. R2({x},V, z∗) = 0 when an individual
x ∈ S is positioned on the reference point. The R2 indicator
possesses a desirable property of weak monotonicity. When an
individual x ∈ S dominates another individual y ∈ S in the
objective space, R2({x},V, z∗) ≤ R2({y},V, z∗).

C. Optimization Process

Algorithm 1 shows the evolutionary optimization process
in SC-iPaaS. First, uniformly distributed weight vectors V are
generated (Equation 9). This vector generation is executed
offline only once.

In the first generation (g = 0), µ individuals are ran-
domly generated as the initial population P0 (Line 2). In
each generation (g), a pair of individuals, called parents (p1
and p2), are chosen from the current population Pg with a
binary tournament operator (Lines 7 and 8). This operator
randomly draws two individuals from Pg , compares them with
the constrained binary R2 indicator, and selects a superior one
as a parent. The constrained binary R2 indicator accepts two
individuals (x and y) and determines which one is superior:

• if both x and y are feasible, which means both never
violate all of optimization constraints,



Algorithm 1 Optimization Process in SC-iPaaS
1: g = 0
2: Generate uniformly distributed weight vectors V
3: Pg = initializePopulation(µ)
4: while g < gmax do
5: Og = ∅
6: while |Og| < µ do do
7: p1 =binaryTounament(Pg)
8: p2 =binaryTounament(Pg)
9: if random() ≤ Pc then

10: {o1 , o2} = crossover(p1 , p2 )
11: if random() ≤ Pm then
12: o1 = mutation(o1 )
13: end if
14: if random() ≤ Pm then
15: o2 = mutation(o2 )
16: end if
17: Og = {o1 , o2} ∪ Og
18: end if
19: end while
20: Rg = Pg ∪ Og
21: Calculate the fitness of each individual xi ∈ Rg as:

F (xi) =
∑
yi∈Rg\{xi}−e

−IcR2(yi,xi)/κ

22: while |Rg| > µ do
23: x∗ = argminxi∈Rg

F (xi)
24: Rg = Rg \ {x∗}
25: Update the fitness of each individual xi ∈ Rg as:

F (xi) = F (xi) + e−I
c
R2(x

∗,xi)/κ

26: end while
27: g = g + 1
28: end while

IcR2
(x, y) = R2({x},V, z∗)−R2({x ∪ y},V, z∗)

(10)
R2 values are computed in a three-dimensional ob-
jective space because this paper considers three opti-
mization objectives (m = 3 in Equation 9).

• if x is feasible and y is not,

IcR2
(x, y) = 0 (11)

IcR2
(y, x) = R2({x},V, z∗) (12)

• if both x and y are infeasible, which means both
violate at least one optimization constraints,

IcR2
(x, y) = Rc2({x},V, z∗)−Rc2({x ∪ y},V, z∗)

(13)
Rc2 is a R2 value that is computed in the constraint
space based on Equation 9. The constraint space is a
space whose axes (or dimension) represents optimiza-
tion constraints. This paper uses a two-dimensional
constraint space because two constraints are consid-
ered (Section III).

The constrained binary R2 indicator determines that x is
superior against y if IcR2

(x, y) < IcR2
(y, x). If IcR2

(x, y) =
IcR2

(y, x), the binary tournament operator chooses either one
at random as a parent.

With the crossover rate Pc, two parents reproduce two off-
spring with the SBX (self-adaptive simulated binary crossover)
operator [10] (Line 10). Polynomial mutation [11] is performed
on each offspring with the mutation rate Pm (Lines 11 to 16).
Parent selection, crossover and mutation operators are repeat-
edly executed on Pg until µ offspring are reproduced (i.e.,
until |Og| = µ). The offspring (Og) are combined with the
population Pg to form Rg (|Rg| = 2µ), which is a pool of
candidates for the next-generation individuals (Line 20).

Environmental selection follows offspring reproduction
(Lines 21 to 26). In Line 21, the fitness of each individual in
Rg is calculated by applying the individual’s IcR2 value to an
exponential amplification function. Then, the worst individual
(i.e., the one with the lowest fitness) is removed from Rg
(Lines 23 and 24). In Line 25, fitness is recalculated for each
of the remaining individuals in Rg . This individual removal
process is repeated until |Rg| = µ. The µ individuals form the
population used in the next generation (Pg+1).

V. SIMULATION EVALUATION

This section evaluates the proposed optimizer in SC-iPaaS
through simulations.

A. Simulation Configurations

A simulation environment is set up to perform remote phys-
iological and activity monitoring for 10 patients. Each patient
carries a sink node and wears five different sensors. One sink
node and five sensor nodes form a multi-hop wireless body
sensor network (Figure 1). Cloud applications are simulated to
issue 10,000 sensor data requests during a day. Those requests
are uniformly distributed over 50 virtual sensors.

The proposed optimizer is configured with a set of param-
eters shown in Table I.

TABLE I. SIMULATION CONFIGURATIONS

Parameter Value
Total # of sensors (M ) 50
Total # of data requests 10,000
Simulation time (W ) 1 day
# of weight vectors (|V|) 100
Reference point (z∗) (0, 0, 0)
Population size (µ) 100
Max # of generations (gmax) 250
Crossover rate (Pc) 0.9
Mutation rate (Pm) 0.01
Amplification coefficient (κ) 0.005

TABLE II. CONFIGURATIONS FOR SENSORS AND SENSOR DATA
REQUESTS

Sensor type Quantity Data size Request time window
(di) (Bytes) (wij) (Seconds)

ECG 10 128 N (60, 102)
Pulse Oximeter 10 15 N (200, 502)
Accelerometer 10 100 N (40, 102)

Body temperature 10 10 N (600, 1002)
Blood pressure 10 10 N (300, 802)

Table II shows five types of sensors used in simulations.
10 sensors are used for each type. The size of each ECG data
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Fig. 3. Average Objective Values over Generations

is 128 bytes. The time window for each ECG data request is
randomly generated following a normal distribution with the
mean of 60 seconds and the standard deviation of 10 seconds.

B. Simulation Results

Figure 3(a) shows how individuals evolve as the number of
generations grows when no constraints are specified: CY = 0
and CE = ∞. It uses the hypervolume metric [12], which
measures the union of volumes that individuals dominates in
the objective space. Thus, the hypervolume metric quantifies
the optimality and diversity of individuals. A higher hypervol-
ume indicates that individuals are closer to the Pareto-optimal
front and more diverse in the objective space. As shown
in Figure 3(a), SC-iPaaS rapidly increases its hypervolume
measure in the first 30 generations and converges around the
250th generation. Figure 3(a) also compares SC-iPaaS with
NSGA-II, which is a well-known evolutionary multiobjective
optimization algorithm [11]. It illustrates that SC-iPaaS yields
significantly higher hypervolume than NSGA-II does.

Figure 3(b) shows how hypervolume measure changes
when constraints are specified for data yield and energy con-
sumption: CY = 800, 000 and CE = 60, 000. Both SC-iPaaS
and NSGA-II quickly increases hypervolume measures in the
first 40 generations; however, they are lower compared to the
hypervolume measures in Figure 3(a) due to given constraints.
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Fig. 4. Average Objective Values over Generations

While most individuals in the population are infeasible in the
first 40 generations, several feasible individuals emerge around
the 40th generation. Since then, infeasible individuals are grad-
ually replaced by feasible ones. Around the 60th generation,
all individuals are feasible in the population. In comparison
with NSGA-II, SC-iPaaS yields a higher hypervolume value
at the last generation.

Figures 3(a) and (b) demonstrate that SC-iPaaS outper-
forms NSGA-II in both cases with and without optimization
constraints.
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Figure 4 shows how the average objective values of individ-
uals change over generations when no constraints are specified:
CY = 0 and CE = ∞. As the number of generations grow,
the average bandwidth consumption and energy consumption
decreases while data yield increases. Figures 3 and 4 verify that
SC-iPaaS allows individuals to efficiently evolve and improve
their quality and diversity.

Figure 5 shows two-dimensional objective spaces that plot
individuals obtained at the last generation. (No constraints are
specified.) Figure 5(a) illustrates that bandwidth consumption
and energy consumption objectives correlate. As bandwidth

consumption grows, energy consumption increases. Figure 5(b)
illustrates that the data yield and bandwidth consumption
objectives conflict with each other. As bandwidth consumption
grows, data yield increases. According to Figure 5(c), the data
yield and energy consumption objectives conflict with each
other. As data yield increases, energy consumption increases.
SC-iPaaS successfully reveals the relationships among opti-
mization objectives and clearly exhibits the trade-offs among
individuals in the population. Moreover, Figure 5 demonstrates
that the individuals of SC-iPaaS outperform those of NSGA-II.

Figure 6 shows two-dimensional objective spaces that plot
individuals obtained at the last generation when constraints are
specified. At the last generation, all individuals are feasible
and their objective values are below constraint values. In
comparison with Figure 5, Figure 6 demonstrates that SC-
iPaaS successfully performs its constraint handling mechanism
described in Section IV-C and effectively seek Pareto-optimal
data transmission configurations subject to given constraints.

VI. RELATED WORK

Various architectures and research tools have been pro-
posed for cloud-integrated sensor networks [4], [13]–[20].
Hassan et al. [13], Aberer et al. [15], Shneidman et al. [16],
[17] and Boonma et al. [4], [18] assume three-tier architec-
tures similar to SC-iPaaS and investigate publish/subscribe
communication between the edge layer to the cloud layer.
Their focus is placed on push communication. In contrast, SC-
iPaaS investigates push-pull hybrid communication between
the sensor layer and the cloud layer through the edge layer.
Fortino et al. study a three-tier architecture to integrate body
area networks with clouds [19], [20]. Yuriyama et al. propose
a two-tier architecture that consists of the sensor and cloud
layers [14]. The architectures proposed by Fortino et al. and
Yuriyama et al. are similar to SC-iPaaS in that they leverage the
notion of virtual sensors. However, they do not consider push-
pull (nor publish/subscribe) communication. All the above-
mentioned work do not consider communication optimization
as SC-iPaaS does.

Push-pull hybrid communication has been studied well in
sensor networks [21]–[26]. However, few attempts have been
made to investigate it between the edge and cloud layers
in the context of cloud-integrated sensor networks. Unlike
existing relevant work, this paper formulates an optimization
problem with cloud-specific optimization objectives as well
as the ones in sensor networks and examine sensor-to-cloud
communication optimization.

Xu et al. propose a three-tier architecture called CEB
(Cloud, Edge and Beneath), which is similar to SC-iPaaS,
and optimize data transmission rates between layers [27]. CEB
runs two optimization algorithms collaboratively: OPT-1 and
OPT-2, which optimize data transmission rates between the
cloud and edge layers and between the edge and sensor layers,
respectively. Optimization is carried out on a sensor node by
sensor node basis with respect to a single objective: energy
consumption of sensor nodes. In contrast, SC-iPaaS runs a
single optimization algorithm for the entire group of sensor
nodes and sink nodes simultaneously with respect to multiple
conflicting objectives. SC-iPaaS assumes sensor data requests
with time windows to heterogeneous sensor networks while



50000

55000

60000

65000

C
E
=60,000

f E

35000

40000

45000

800 1300 1800 2300 2800 3300

Series2

Series1

f
B

R2-IBEA

NSGAII

SC-iPaaS

(a) Bandwidth Consumption and Energy Consumption

1.1E-06

1.2E-06

1.2E-06

1.3E-06

1.3E-06

C
Y
= 800,000

1
/f

Y

9.0E-07

9.5E-07

1.0E-06

1.1E-06

1.1E-06

800 1300 1800 2300 2800 3300

Series2

Series1

1
/

f
B

SC-iPaaS

NSGAII

(b) Data Yield and Bandwidth Consumption

1.1E-06

1.2E-06

1.2E-06

1.3E-06

1.3E-06

C
Y
= 800,000

=
6
0
,0
0
0

1
/f

Y

9.0E-07

9.5E-07

1.0E-06

1.1E-06

1.1E-06

35000 40000 45000 50000 55000 60000 65000

Series2

Series1

SC-iPaaS

NSGAII

C
E
=
6
0
,0
0
0

1
/

f
E

(c) Data Yield and Energy Consumption

Fig. 6. Two-dimensional Objective Spaces with Constraints Enabled

CEB assumes requests without time windows to homogeneous
networks.

VII. CONCLUSION

This paper proposes a cloud-integrated body sensor net-
working architecture, called SC-iPaaS, which hosts virtual-
ized sensors in clouds and operates physical sensors through
their virtual counterparts. SC-iPaaS performs push-pull hybrid
communication between three layers: cloud, edge and sensor
layers. This paper formulates an optimization problem for SC-
iPaaS to seek the optimal data transmission configurations and

approaches the problem with an evolutionary multiobjective
optimization algorithm (EMOA). SC-iPaaS successfully opti-
mizes data transmission configurations with respect to multiple
objectives (data yield, bandwidth consumption and energy
consumption) subject to given constraints. It also reveals the
relationships among objectives and clearly exhibits the trade-
offs among different data transmission configurations. It is
verified that the proposed optimizer in SC-iPaaS outperforms
a well-known existing EMOA.
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