
Submitted to the 3rd Aspect-Oriented Programming (AOP) Workshop at ECOOP’99

1

Extending UML with Aspects:
Aspect Support in the Design Phase

Junichi Suzuki
Department of Computer Science,

Graduate School of Science and Technology,
Keio University

Yokohama City, 223-8522, Japan
+81-45-563-3925

suzuki@yy.cs.keio.ac.jp

Yoshikazu Yamamoto
Department of Computer Science,

Graduate School of Science and Technology,
Keio University

Yokohama City, 223-8522, Japan
+81-45-563-3925

yama@cs.keio.ac.jp

Abstract
Aspect-Oriented Programming (AOP) has been considered
a promising abstraction principle to reduce the problem of
code tangling and make software structure clean and
configurable. This paper addresses the aspect support in the
design level while it has been focused mainly in the
implementation/coding phase. We propose an extension to
Unified Modeling Language (UML) to support aspects
properly without breaking the existing UML specification.
This allows developers to recognize and understand aspects
in the design phase explicitly. Also, we propose a XML-
based aspect description language, UXF/a. It provides the
interchangeability of aspect model information between
development tools such as CASE tools and aspect weavers.

1. Introduction
Aspect-Oriented Programming (AOP) [1, 2] is a promising
abstraction principle to reduce the problem of code tangling
and make software structure clean and configurable [1, 2].
It has been applied to various domains such as object
interaction, memory management, persistence, distribution,
fault tolerance, concurrency, etc. An aspect in the sense of
AOP is a means to specify policy or strategy for software
functional components, which is orthogonal to them.
Separating aspects from functional components avoids that
non-functional components cross-cut and therefore tangle
groups of functional components. This explicit separation
of concern allows to manage software complexity well and
improve its quality by increasing modularity beyond an
object in the sense of Object-Oriented Programming
(OOP).

This paper addresses the aspect support in the design level,
while it has been focused mainly in the
implementation/coding level. We propose an extension to

Unified Modeling Language (UML) to support aspects
properly without breaking its existing metamodel
specification. We also propose a XML-based aspect
description language called UXF/a (UML eXchange
Format, aspect extension). It provides the interchangeability
of aspect model information between various development
tools such as CASE tools and aspect weavers.

The remainder of this paper is organized as follows. Section
2 describes the benefits of capturing aspects in the design
level, and expressing them in the XML format. Section 3
describes our extension to the UML metamodel. Section 4
presents our aspect description language based on XML.
We conclude with a note on future work in Section 5 and 6.

2. Aspects in the Design Level
This section describes our motivation to support aspects in
the design level and describe them in XML. Then, we
outline the underlying technologies, UML, XML and UXF.

2.1 Benefits of Capturing Aspects in the
Design Phase
Aspects can be identified at the design and implementation
phases, though the inter-component tangling tends to occur
at the implementation/coding phase [3]. When aspects are
identified, or emergent, at the implementation phase,
developers often add or change aspects manually (see
Figure 1) and maintain them in the source code level. Few
methods have been proposed for expressing aspects in the
design level. Supporting aspects at the design phase
streamlines the process of aspect-oriented development
(Figure 1) by facilitating:

• Documentation and Learning

Supporting an aspect as a design construct allows
developers to recognize it in the upper level of

Submitted to the 3rd Aspect-Oriented Programming (AOP) Workshop at ECOOP’99

2

abstraction at the earlier stage of development process.
Aspect designers and people learning aspect-oriented
software can learn and document aspect models in more
intuitive way. For example, they can visualize aspect
models using a CASE tool that supports visual
modeling.

• Reuse of aspects

The ease of documentation and learning leverages the
reuse of aspect information, how an aspect is designed
and how it is intended to affect to classes. It’s easy to
imagine more sophisticated ways of using aspects, such
as aspect-aware CASE tools, hyperlinked documents
and pattern catalogues that collects well-known and
feasible aspects. These would increase the reusability of
aspect-based design.

• Roundtrip development

With the aspect support, the incremental and roundtrip
development of aspect-oriented software is possible, e.g.
aspect code-design model translation, model-aspect
code, woven code-model translation, aspect refactoring
(see also Figure 1).

2.2 Unified Modeling Language (UML)
UML [4] is the union of the previous leading object
modeling methodologies; Booch, OMT and OOSE. It is the
state of the art convergence of practices in the academic and
industrial community, and has been a standard modeling
language by the Object Management Group (OMG) [5].

UML defines 9 diagrams for modeling a given problem
domain in terms of various perspectives:

• Structural diagrams:

• Class diagram

• Object diagram

• Behavioral diagrams:

• Use Case diagram

• Sequence diagram

• Collaboration diagram

• Statechart diagram

• Activity diagram

• Implementation diagrams:

• Component diagram

• Deployment diagram

Using these diagrams with the fine level of abstraction,
complex systems can be modeled through a small set of
nearly independent diagrams. UML defines semantics and
notation for every construct in the diagrams.

2.3 Benefits of Describing and Interchanging
Aspect Information with XML
For software design phase, model interchange is a quite
important capability, because there are few application-

Figure 1: A typical process of aspect-oriented development

 Figure 2: Interchangeable Aspect Information

Programming Languages
Reverse engineering tools

Aspect Weavers

CASE tools

Printed materials

Hyperlinked online help

Aspect Information

Design metrics
Tools

Repositories

compiling

Woven code

Aspect design & implementation

Class design & implementation

Executable

weaving / aspect plug-in

Aspect Refactoring
aspect plug-out / adding
or changing aspects

adding or changing aspects

Submitted to the 3rd Aspect-Oriented Programming (AOP) Workshop at ECOOP’99

3

neutral exchange format between development tools. Such
an application-neutral format facilitates:

• Interchangeability and reuse of aspect description:

Software models are dynamically changed in the
analysis, design, implementation, revision and
maintenance phases. Software tools used in each phase
usually employ their own proprietary formats to describe
model information. For example, current aspect weavers
use their own language to describe aspects. An
application-neutral format allows aspect information to
be interchangeable between development tools
throughout the lifecycle of software development (see
Figure 1 and 2). Once encoded with the format, the
aspect information can be reusable for a wide range of
different development tools with different strengths.
This seamless tool interoperability increases our
productivity to design aspects.

• Intercommunications between aspect designers:

An application-neutral aspect description format serves
as a communication vehicle for aspect designers. They
can communicate their modeling insights,
understandings and intentions on an aspect design with
each other. For example, we may write down an aspect
model into an electronic mail to share it. This capability
simplifies the circulation of aspect models between
aspect designers.

2.4 UML eXchange Format (UXF)
The most important factor in interchanging an aspect design
model is that the semantics within the model should be
described explicitly and transferred precisely. To resolve
this issue, we developed UXF/a (UXF, aspect extension),
an interchange format for aspect design models, which is
based on XML (eXtensible Markup Language). UXF/a is
an extension to the UXF (UML eXchange Format), which is
the format to describe UML models [6, 7, 8], to capture
aspect information. UXF is carefully designed to be simple
and well-structured enough to encode, publish, access and
interchange UML models. XML is a sophisticated subset of
SGML (Standard Generalized Markup Language) and
provides the following advantages:

• Application neutrality (vender independence)

• User extensibility

• Ability to represent arbitrary and complex information

• Validation scheme of data structure

• Human readability

3. Extending the UML metamodel
This section describes our extension to the UML
metamodel for supporting aspects. We added new elements
for the aspect and woven class to the metamodel, and
reused an existing element for the aspect-class relationship.

3.1 Aspect
First of all, the aspect should be added to the UML
metamodel. It is no doubt the aspect is a construct derived
from the Classifier element, which describes
behavioral and structural features [4] (Figure 3). All the
Class, Interface and Component are kinds of
Classifier.

Aspect can have attributes, operations and relationships.
Attributes of an aspect is used by its set of weave definition.
Operations of an aspect is considered as its weave
declarations. Relationships of an aspect includes
generalization, association and dependency. If the aspect
weaver uses the kind of weaves, e.g. introduce and advice
weaves in AspectJ [9], it is specified as an constraint for the
corresponding weave (operation) declaration.

An aspect is shown as a class rectangle with stereotype
<<aspect>> as depicted in Figure 4. The operation list
compartment of the rectangle means the list of weave
declarations. Each weave is displayed as an operation with
the stereotype <<weave>>. A signature of weave
declaration shows a designator; which elements (e.g.
classes, methods and variables) are affected by the aspect.
Figure 4 does not show the stereotype <<weave>> and the
kind of weaves in the operation compartment, because the
CASE tool we are using does not display the stereotypes
and constraints for operations. Other CASE tool such as
Rational Rose can display a weave declaration like:

<<weave>>{introduce}

 Subject.attach():void

The attribute list of a rectangle symbol maps into the list of
attributes of the aspect.

3.2 Aspect-Class Relationship
The UML metamodel defines three primary relationships
derived from the Relationship metamodel element:
Association, Generalization and Dependency
(Figure 3). The relationship between an aspect and classes
that the aspect affects is a kind of dependency. The
dependency relationship states that the implementation or
functioning of one or more elements requires the presence
of one or more other elements [4]. The derived metamodel

Figure 3: Aspect as a metamodel element derived
from Classifier

Submitted to the 3rd Aspect-Oriented Programming (AOP) Workshop at ECOOP’99

4

elements of Dependency are Abstraction,
Binding, Permission and Usage (Figure 3). The
aspect-class relationship is classified as a kind of the
abstraction dependency. An abstraction dependency relates
two elements that is the same concept at different levels of
abstraction or from different viewpoints. The UML
metamodel defines three stereotypes for the abstraction
dependency: derivation, realization, refinement and trace.
The aspect-class relationship is best-suited to the
abstraction dependency with stereotype realization,
<<realize>>. A realization is a relationship between a
specification model element and a model element that
implement it. The implementation model element is
required to support the declaration of specification model
element.

UML defines the notation for an abstraction dependency
with the <<realize>> stereotype as a dashed generalization

arrow. Therefore, the aspect-class relationship is shown as
in Figure 4.

3.3 Woven Class
Using an aspect weaver, aspect and class code are merged
and then a woven class is generated (Figure 1). The woven
class structure depends on the aspect weaver and
programming language used (Figure 6). For example,
AspectJ replaces an original class with the generated woven
class. AOP/ST [10] generates a woven class derived from
the original class [11]. There would be other alternatives
such as using Mediator and Decorator design patterns [12].

We introduced the stereotype <<woven class>> into the
Class element in order to represent a woven class (Figure
6). It is recommended that the woven class specifies the
source class and aspect that are used to generate it, using a
tagged value.

4. Describing and Interchanging Aspect
Information with UXF/a
This section describes our XML-based format to express
aspect information, UXF/a, and then presents some
examples of aspect model interchange.

As described in Section 2.3, we use UXF/a to describe the
aspect model information. UXF/a is developed based on our
metamodel extension described in Section 3. We created a
DTD to represent aspect structural information, and then
merged it with existing UXF DTDs. All the DTDs are
available at [13]. Figure 7 shows a simple UXF/a
description. This description represents an aspect named
Singleton and a class named AppClass, shown in Figure 6.
It is generated from an aspect code of AspectJ using our
aspect-UXF/a converter. The reverse translation, from a
UXF/a description to AspectJ aspect code, has been also
developed. These translators are built by extending the
Doclet toolkit included in JDK (Java Development Kit).

Figure 4: Notation of the aspect and aspect-class
relationship

Figure 5: Some kinds of Relationship element in
the UML metamodel

Figure 6: Woven class structures

Submitted to the 3rd Aspect-Oriented Programming (AOP) Workshop at ECOOP’99

5

The conversion between UXF/a and Java code can be
available at aspect design/coding, class design/coding and
woven class verification phases (see also Figure 1). This
conversion capability helps both forward/reverse
engineering within the roundtrip aspect development.

Also, we have developed additional two translators from a
UXF/a description into popular CASE tools, Rational Rose
[14] and MagicDraw [15]. Figure 7 is a screenshot of
MagicDraw that displays a UML model generated from the
UXF/a description in Figure 7. This translation shows an
example of the tool interoperability and aspect model
interchangeability as described in Section 2.3.

5. Future Work
UXF/a has been tested and improved with AspectJ and Java
programming language. We have not evaluated the
interchangeability of aspect model information between
weavers. Further tests are planned to improve the
interchangeability using other weavers such as AOP/ST.

6. Conclusion
This paper addresses the aspect support in the design phase,
and proposes an extension to Unified Modeling Language
(UML). Then, we proposes an aspect description language,
UXF/a, based on XML. Our work facilitates the aspect

documentation and learning, and increases the aspect
reusability and interchangeability. We believe it shows a
next logical step in the evolution of AOP.

7. References
[1] G. Kiczales et.at. Aspect-Oriented Programming. In

Proceedings of the European Conference on Object-
Oriented Programming (ECOOP), LNCS 1241,
Springer-Verlag, 1997.

[2] C. V. Lopes. D: A Language Framework for
Distributed Programming. Ph.D. Dissertation, College
of Computer Science, Northeastern University,
November 1997.

[3] K. Czarnecki. Generative Programming: Principles and
Techniques of Software Engineering Based on
Automated Configuration and Fragment-Based
Component Models. Ph.D. Thesis, Technische
Universität Ilmenau, Germany, 1998.

[4] Object Management Group, Unified Modeling
Language Specification version 1.3 bata 1, 1999.
available at uml.shl.com.

[5] www.omg.org.

[6] J. Suzuki and Y. Yamamoto. Making UML Models
Interoperable with UXF. In Proceedings of UML’98,
LNCS 1618, Mulhouse, France, June 1999.

<UXF Version="2.0"

 xmlns:UXF="http://www.yy.cs.keio.ac.jp/
 ~suzuki/project/uxf/">

 <UXF:Aspect>

 <UXF:Name>Singleton</UXF:Name>

 <UXF:Operation>

 <UXF:Name>AppClass.AppClass</UXF:Name>

 <UXF:Stereotype>

 <UXF:Name>weave</UXF:Name>

 </UXF:Stereotype>

 <UXF:Constraint>

 <UXF:Body>advice, before</UXF:Body>

 <UXF:ConstrainedElement>

 AppClass.AppClass

 </UXF:ConstrainedElement>

 </UXF:Constraint>

 </UXF:Operation>

 </UXF:Aspect>

 <UXF:Abstraction>

 <UXF:Stereotype>

 <UXF:Name>realize</UXF:Name>

 </UXF:Stereotype>

 <UXF:Supplier>Singleton</UXF:Supplier>

 <UXF:Client>AppClass</UXF:Client>

 </UXF:Abstraction>

 <UXF:Class>

 <UXF:Name>AppClass</UXF:Name>

 </UXF:Class>

</UXF>

Figure 7: Sample UXF/a description

Figure 8: Sample screenshot that display an
aspect model information generated from the
UXF/a description in Figure 7 (the graphical
positions of icons are changed manually)

Submitted to the 3rd Aspect-Oriented Programming (AOP) Workshop at ECOOP’99

6

[7] J. Suzuki and Y. Yamamoto. Managing the Software
Design Documents with XML. In Proceedings of ACM
SIGDOC’98, Quebec City, Canada, September 1998.

[8] J. Suzuki and Y. Yamamoto. Toward the Interoperable
Software Models: Quartet of UML, XML, DOM and
CORBA. In Proceedings of IEEE ISESS’99, to appear.

[9] C. V. Lopes and Gregor Kiczales. Recent
Developments in AspectJ. In ECOOP'98 Workshop
Reader, Springer-Verlag LNCS 1543, 1998.

[10] AOP/ST. available at www.germany.net/teilnehmer/
101,199268/

[11] K. Böllert. Implementing an Aspect Weaver in
Smalltalk. In Proceedings of STJA ’98, 1998.

[12] E. Gamma, R. Helm, R. Johnson and J. Vlissides.
Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley, 1995.

[13] www.yy.cs.keio.ac.jp/~suzuki/project/uxf/

[14] www.rational.com/rose/

[15] http://www.nomagic.com/

