
Cielo: An Evolutionary Game Theoretic Framework
for Virtual Machine Placement in Clouds

Yi Ren∗, Junichi Suzuki∗, Athanasios Vasilakos†, Shingo Omura‡ and Katsuya Oba‡
∗ University of Massachusetts, Boston

Boston, MA 02125-3393, USA
Email: {yiren001,jxs}@cs.umb.edu
† University of Western Macedonia

GR 50100, Kozani, Greece
Email: vasilako@ath.forthnet.gr
‡OGIS International, Inc.

San Mateo, CA 94402, USA
Email: {omura,oba}@ogis-international.com

Abstract—This paper studies an evolutionary game theoretic
framework for adaptive and stable application deployment in
clouds. The framework, called Cielo, aids cloud operators to
adapt the resource allocation to applications and their locations
to the operational conditions in a cloud (e.g., workload and
resource availability) with respect to multiple conflicting objec-
tives (e.g., response time and power consumption). Moreover,
Cielo theoretically guarantees that each application performs an
evolutionarily stable deployment strategy, which is an equilibrium
solution under given operational conditions. Simulation results
verify this theoretical analysis; applications seek equilibria to
perform adaptive and evolutionarily stable deployment strategies.
Cielo outperforms well-known existing heuristics.

Keywords—Cloud computing, virtual machine placement, evo-
lutionary game theory

I. INTRODUCTION

One of key features in cloud computing is elastic scaling.
In order to ensure this feature, cloud operators are required
to dynamically (re-)deploy applications by adjusting their
locations and resource allocation. This paper investigates two
important properties of application deployment in clouds:

• Adaptability: Adjusting the locations of and resource
allocation for applications according to operational
conditions (e.g., workload and resource availability)
with respect to given performance objectives.

• Stability: Minimizing oscillations (non-deterministic
inconsistencies) in making adaptation decisions.

Cielo is an evolutionary game theoretic framework for
adaptive and stable application deployment in clouds. This
paper describes its design and evaluates its adaptability and
stability. In Cielo, each application maintains a set (or a
population) of deployment strategies, each of which indicates
the location of and resource allocation for that application.
Cielo theoretically guarantees that, through a series of evo-
lutionary games between deployment strategies, the popula-
tion state (i.e., the distribution of strategies) converges to an
evolutionarily stable equilibrium, which it always converges
to regardless of the initial state. (A dominant strategy in the
evolutionarily stable population state is called an evolutionarily
stable strategy.) In this state, no other strategies except an

evolutionarily stable strategy can dominate the population.
Given this theoretical property, Cielo aids each application to
operate at equilibria by using an evolutionarily stable strategy
for application deployment in a deterministic (i.e., stable)
manner. Simulation results verify this theoretical analysis;
applications seek equilibria to perform evolutionarily stable
deployment strategies and adapt their locations and resource
allocations to given operational conditions. Cielo outperforms
existing heuristics, FFA (first-fit algorithm) and BFA (best-fit
algorithm), which have been widely used for adaptive cloud
application deployment [1]–[4].

II. PROBLEM STATEMENT

This section formulates an application deployment problem
where M hosts are available to operate N applications. Each
application is designed with a set of server software, following
a three-tier application architecture. Three different types of
servers operate at different tiers (Fig. 1). Using a certain
hypervisor, each server is assumed to run on a virtual machine
(VM) atop a host. A host can operate multiple VMs. Collocated
VMs share resources available on their local host.

Each message is sequentially processed from a Web server
to a database server through an application server. A reply
message is generated by the database server and forwarded in
the reverse order (Fig. 1). This paper assumes that different
applications utilize different sets of servers. (Servers are not
shared by different applications.)

The goal of this problem is to find evolutionarily stable
strategies that deploy N applications (i.e., N × 3 VMs) on M
hosts so that the applications adapt their locations and resource
allocation to given workload and resource availability with
respect to five performance objectives described below. (All
objectives are to be minimized.)

CPU allocation: A certain CPU time share (in percentage)
is allocated to each VM. (The CPU share of 100% means that
a CPU is fully allocated to a VM.) It represents the upper limit
for the VM’s CPU utilization. This objective is computed as the
sum of CPU shares allocated to three VMs of an application.

Bandwidth allocation: A certain amount of bandwidth (in
kbps) is allocated to each VM. It is the upper limit for the

VM’s bandwidth consumption. This objective is computed as
the sum of bandwidth allocated to three VMs of an application.

Response time: This objective is computed as the time
required for a message to travel from a web server to a
database server and from the database server back to the web
server: T p + Tw + T c where T p denotes the total time for
an application to process an incoming message from a user at
three servers, Tw denotes the waiting time for a message to be
processed at servers, and T c denotes the total communication
delay to transmit a message among servers. Response time
is estimated based on an M/M/1 queuing model, in which
message arrivals follow a Poisson process and a server’s
message processing time is exponentially distributed.

T p is computed as follows where T p
t denotes the time

required for the t-th tier server to process a message.

T p =

3∑
t=1

T p
t (1)

Tw is computed as follows.

Tw =
1

λ

3∑
t=1

ρ2t
1− ρt

where ρt = λt
T p
t

ct
(2)

λ denotes the message arrival rate for an application (i.e.,
the number of messages the application receives from users in
the unit time). ρt is the CPU utilization of the t-th tier server.
Note that λ = 1

3

∑3
t=1 λt. (Currently, λ = λ1 = λ2 = λ3.) ct

denotes the CPU time share allocated to the t-th tier server.

T c is computed as follows:

T c =

2∑
t=1

T c
t→t′ ≈

3∑
t′=2

B · λt′

bt
, t′ = t+ 1 (3)

B denotes the size of a message (in bits). bt denotes the
bandwidth allocated to the t-th tier server (bits/second).

Power Consumption: This objective indicates the total
power consumption (in Watts) by three hosts in an application.

P =

3∑
t=1

{Pidle + (Pmax − Pidle) · ct} (4)

Pidle and Pmax denote the power consumption of a host
when its CPU utilization is zero and 100%, respectively.

Workload distribution: This objective indicates how evenly
CPU utilization is distributed over hosts:√√√√ 1

L

L∑
i=1

(wi − w̄)2, 1 < L < 3, 0 < wi < 1 (5)

L denotes the number of hosts that run three servers of an
application. L = 1 when all three servers are collocated on a
host. L = 3 when they are deployed on three different hosts.
wi is the total CPU share allocated to the i-th host of those L
hosts. w̄ = (

∑L
i=1 wi)/3.

Cielo considers a CPU capacity constraint: wi ≤ 1 for all
M hosts. The violation of this constraint is computed as:

cv =

M∑
i=1

(Ii · (wi − 1)) (6)

Ii = 1 if wi > 1. Otherwise, Ii = 0.

Fig. 1: Three Tiers of Web, Application and Database Servers

III. BACKGROUND: EVOLUTIONARY GAME THEORY

In a conventional game, the objective of a player is to
choose a strategy that maximizes its payoff. In contrast,
evolutionary games are played repeatedly by players randomly
drawn from a population This section overviews key elements
in evolutionary games: evolutionarily stable strategies (ESS)
and replicator dynamics.

A. Evolutionarily Stable Strategies (ESS)

Suppose all players in the initial population are pro-
grammed to play a certain (incumbent) strategy k. Then, let
a small population share of players, x ∈ (0, 1), mutate and
play a different (mutant) strategy `. When a player is drawn
for a game, the probabilities that its opponent plays k and `
are 1 − x and x, respectively. Thus, the expected payoffs for
the player to play k and ` are denoted as U(k, x`+ (1− x)k)
and U(`, x`+ (1− x)k), respectively.

Definition 1: A strategy k is said to be evolutionarily stable
if, for every strategy ` 6= k, a certain x̄ ∈ (0, 1) exists, such
that the inequality

U(k, x`+ (1− x)k) > U(`, x`+ (1− x)k) (7)

holds for all x ∈ (0, x̄).
If the payoff function is linear, Equation 7 derives:
(1− x)U(k, k) + xU(k, `) > (1− x)U(`, k) + xU(`, `) (8)

If x is close to zero, Equation 8 derives either
U(k, k) > U(`, k) or U(k, k) = U(`, k) and U(k, `) > U(`, `) (9)

This indicates that a player associated with the strategy k
gains a higher payoff than the ones associated with the other
strategies. Therefore, no players can benefit by changing their
strategies from k to the others. This means that an ESS is
a solution on a Nash equilibrium. An ESS is a strategy that
cannot be invaded by any alternative (mutant) strategies that
have lower population shares.

B. Replicator Dynamics

The replicator dynamics describes how population shares
associated with different strategies evolve over time [5]. Let
λk(t) ≥ 0 be the number of players who play the strategy
k ∈ K, where K is the set of available strategies. The
total population of players is given by λ(t) =

∑ |K|
k=1λk(t).

Let xk(t) = λk(t)/λ(t) be the population share of players
who play k at time t. The population state is defined by
X(t) = [x1(t), · · · , xk(t), · · · , xK(t)]. Given X , the expected
payoff of playing k is denoted by U(k,X). The population’s
average payoff, which is same as the payoff of a player drawn
randomly from the population, is denoted by U(X,X) =∑ |K|

k=1xk · U(k,X). In the replicator dynamics, the dynamics
of the population share xk is described as follows. ẋk is the
time derivative of xk.

ẋk = xk · [U(k,X)− U(X,X)] (10)

This equation states that players increase (or decrease) their
population shares when their payoffs are higher (or lower) than
the population’s average payoff.

Theorem 1: If a strategy k is strictly dominated, then
xk(t)t→∞ → 0.

A strategy is said to be strictly dominant if its payoff is
strictly higher than any opponents. As its population share
grows, it dominates the population over time. Conversely,
a strategy is said to be strictly dominated if its payoff is
lower than that of a strictly dominant strategy. Thus, strictly
dominated strategies disappear in the population over time.

There is a close connection between Nash equilibria and
the steady states in the replicator dynamics, in which the popu-
lation shares do not change over time. Since no players change
their strategies on Nash equilibria, every Nash equilibrium
is a steady state in the replicator dynamics. As described in
Section III-A, an ESS is a solution on a Nash equilibrium.
Thus, an ESS is a solution at a steady state in the replicator
dynamics. In other words, an ESS is the strictly dominant
strategy in the population on a steady state.

Cielo maintains a population of deployment strategies for
each application. In each population, strategies are randomly
drawn to play games repeatedly until the population state
reaches a steady state. Then, Cielo identifies a strictly dominant
strategy in the population and deploys VMs based on the
strategy as an ESS.

Fig. 2: Example Deployment Strategies

IV. CIELO

Cielo maintains N populations, {P1,P2, ...,PN}, for N
applications and performs games among strategies in each
population. A strategy s is defined to indicate the locations
of and resource allocation for three VMs in an application:

s(ai) =
⋃

t∈1,2,3

(hi,t, ci,t, bi,t), 1 < i < N (11)

ai denotes the i-th application. hi,t is the ID of a host
that operates ai’s t-th tier VM. ci,t and bi,t are the CPU and
bandwidth allocation for ai’s t-th tier VM. Fig. 2 shows two
example strategies for two applications (a1 and a2) (N = 2
and M = 3). a1’s strategy (s(a1)) places the first-tier VM on
host 1 (h1,1 = 1) and allocates the CPU share of 30% and 80
kbps bandwidth for the VM (c1,1 = 30 and b1,1 = 80). The
second-tier VM is placed on host 1 (h1,2 = 1) and allocates the
CPU share of 30% and 85 kbps bandwidth for the VM (c1,2 =
30 and b1,2 = 85). The third-tier VM is placed on host 2
(h1,3 = 2) and allocates the CPU share of 45% and 120 kbps
bandwidth for the VM (c1,3 = 45 and b1,3 = 120).Given s(a1),
a1’s objective values for CPU allocation, bandwidth allocation
and workload distribution are 105 (30 + 30 + 45), 285 kbps
and 7.5 (

√
1
2 ((60− 52.5)2 + (45− 52.5)2)).

Algorithm 1 Evolutionary Process in Cielo
1: g = 0
2: Randomly generate the initial N populations for N applications:
P = {P1,P2, ...,PN}

3: while g < Gmax do
4: for each population Pi randomly selected from P do
5: P ′i ← ∅
6: for j = 1 to |Pi|/2 do
7: s1 ← randomlySelect(Pi)
8: s2 ← randomlySelect(Pi)
9: winner ← performGame(s1, s2)

10: replica ← replicate(winner)
11: if random() ≤ Pm then
12: replica ← mutate(winner)
13: end if
14: Pi \ {s1, s2}
15: P ′i ∪ {winner, replica}
16: end for
17: Pi ← P ′i
18: di ← argmaxs∈Pixs
19: while di is infeasible do
20: Pi \ {di}
21: di ← argmaxs∈Pixs
22: end while
23: Deploy VMs for the current application based on di.
24: end for
25: g = g + 1
26: end while

Algorithm 2 Game between Strategies (performGame())
Input: s1 and s2: Strategies to play a game
Output: Winner of the game

1: if s1 and s2 are feasible then
2: if s1 � s2 then
3: return s1
4: end if
5: if s2 � s1 then
6: return s2
7: end if
8: return randomlySelect({s1, s2})
9: end if

10: if s1 is feasible and s2 is infeasible then
11: return s1
12: end if
13: if s2 is feasible and s1 is infeasible then
14: return s2
15: end if
16: if s1 and s2 are infeasible then
17: return argmins∈{s1,s2}c

v
s

18: end if

Algorithm 1 shows how Cielo seeks an evolutionarily stable
strategy for each application through evolutionary games. In
the 0-th generation, strategies are randomly generated for each
population (Line 2). In each generation (g), a series of games
are carried out on every population (Lines 4 to 24). A single
game randomly chooses a pair of strategies (s1 and s2) and
distinguishes them to the winner and the loser with respect to
performance objectives described in Section II (Lines 7 to 9).
The loser disappears in the population. The winner is replicated
to increase its population share and mutated with a certain
mutation rate Pm (Lines 10 to 15). Mutation randomly chooses
one of three VMs in the winner and alters its hi,t, ci,t and bi,t

values at random (Line 12).

Once all strategies play games in the population, Cielo
identifies a feasible strategy whose population share (xs) is the
highest and determines it as a dominant strategy (di) (Lines 18
to 22). A strategy is said to be feasible if it never violates
the CPU capacity constraint (cv = 0, Eq. 6). It is said to
be infeasible if cv > 0. Cielo deploys three VMs for an
application in question based on the dominant strategy.

Algorithm 2 shows how to select the winner in a game (c.f.
performGame() in Algorithm 1). This selection process
depends on the dominance relationship between given two
strategies and their feasibility. A strategy s1 is said to dominate
another strategy s2 (denoted by i � j) if both of the following
conditions are satisfied [6]:
• s1’s objective values are superior than, or equal to,

s2’s in all objectives.
• s1’s objective values are superior than s2’s in at least

one objectives.
If given two strategies are feasible and they are non-

dominated with each other, the winner is randomly chosen
(Line 8). If both of them are infeasible, the one with lower
constraint violation is chosen as the winner (Line 17).

V. STABILITY ANALYSIS

This section analyzes Cielo’s stability (i.e., reachability to
at least one of Nash equilibria) by proving the state of each
population converges to an evolutionarily stable equillibrium.
The proof consists of three steps: (1) designing differential
equations that describe the dynamics of the population state,
(2) proving an strategy selection process has equilibria, and (3)
proving the the equilibria are asymptotically (or evolutionarily)
stable. The proof uses the following terms and variables.

• S denotes the set of available strategies. S∗ denotes a
set of strategies that appear in the population.

• X(t) = {x1(t), x2(t), · · · , x|S∗|(t)} denotes a popula-
tion state at time t where xs(t) is the population share
of a strategy s ∈ S.

∑
s∈S∗(xs) = 1.

• Fs denotes the fitness of a strategy s. It is a relative
value that is determined in a game against an opponent
based on the dominance relationship between them
(Algorithm 2). The winner of a game earns a higher
fitness than the loser.

• psk = xk · φ(Fs − Fk) denotes the probability that
a strategy s is replicated by winning a game against
another strategy k. φ(Fs − Fk) is the probability that
the fitness of s is higher than that of k.

The dynamics of the population share of s is described as:

ẋs =
∑

k∈S∗,k 6=s

{xspsk − xkpks}

= xs
∑

k∈S∗,k 6=s

xk{φ(Fs − Fk)− φ(Fk − Fs)} (12)

Note that if s is strictly dominated, xs(t)t→∞ → 0.

Theorem 2: The state of a population converges to an
equilibrium.

Proof: It is true that different strategies have different
fitness values. In other words, only one strategy has the

highest fitness among others. Given Theorem 1, assuming that
F1 > F2 > · · · > F|S∗|, the population state converges to an
equilibrium: X(t)t→∞ = {x1(t), x2(t), · · · , x|S∗|(t)}t→∞
= {1, 0, · · · , 0}.

Theorem 3: The equilibrium found in Theorem 2 is
asymptotically stable.

Proof: At the equilibrium X = {1, 0, · · · , 0}, a set of
differential equations can be downsized by substituting x1 =
1− x2 − · · · − x|S∗|

żs = zs[cs1(1− zs) +

|s∗|∑
i=2,i 6=s

zi · csi], s, k = 2, ..., |S∗| (13)

where csk ≡ φ(Fs − Fk) − φ(Fk − Fs)) and Z(t) =
{z2(t), z3(t), · · · , z|S∗|(t)} denotes the corresponding down-
sized population state. Given Theorem 1, Zt→∞ = Zeq =
{0, 0, · · · , 0} of (|S∗| − 1)-dimension.

If all Eigenvalues of Jaccobian matrix of Z(t) has negative
real parts, Zeq is asymptotically stable. The Jaccobian matrix
J’s elements are

Jsk =
[
∂żs
∂zk

]
|Z=Zeq

=

[
∂zs[cs1(1− zs) +

∑|S∗|
i=2,i 6=s

zi · csi]
∂zk

]
|Z=Zeq

(14)

for s, k = 2, ..., |S∗|

Therefore, J is given as follows, where c21, c31, · · · , c|S∗|1
are J’s Eigenvalues.

J =


c21 0 · · · 0
0 c31 · · · 0
...

...
. . .

...
0 0 · · · c|S∗|1

 (15)

cs1 = −φ(F1 − Fs) < 0 for all s; therefore, Zeq =
{0, 0, · · · , 0} is asymptotically stable.

VI. SIMULATION EVALUATION

This paper uses a simulated cloud data center that consists
of 100 hosts in a 10 × 10 grid topology. The grid topology
is chosen based on recent findings on efficient topology
configurations in a cloud [7], [8]. This paper also assumes
five different types of applications. Table I shows the message
arrival rate (the number of incoming messages per second) and
message processing time (in second) for each application type.
This configuration follows Zipf’s law. This paper simulates 40
application instances for each type (200 instances in total). In
Cielo, the number of strategies is 100 in each population. Mu-
tation rate (Pm in Algorithm 1) is set to 0.01. The maximum
number of generations is 400. Every simulation result is the
average with 20 independent simulation runs.

TABLE I: Message Arrival Rate and Processing Time
Application type 1 2 3 4 5

Message arrival rate 110 70 40 20 10
Web server 0.02 0.02 0.04 0.04 0.08
App server 0.03 0.08 0.04 0.13 0.11
DB server 0.05 0.05 0.12 0.08 0.11

Figs. 3 to 12 illustrate how Cielo evolves deployment
strategies through generations for applications and improve

(a) CPU allocation (b) Response time (c) Bandwidth allocation (d) Workload distribution

Fig. 3: With the CPU Allocation Objective Considered

(a) CPU allocation (b) Response time (c) Bandwidth allocation (d) Workload distribution

Fig. 4: With the Bandwidth Allocation Objective Considered

(a) CPU allocation (b) Response time (c) Bandwidth allocation (d) Workload distribution

Fig. 5: With the Response Time Objective Considered

(a) CPU allocation (b) Response time (c) Bandwidth allocation (d) Workload distribution

Fig. 6: With the Power Consumption Objective Considered

their performance (i.e., objective values). Figs. 3 to 7 show
Cielo’s performance when one of five objectives is considered.
For example, Cielo considers the CPU allocation objective in
Fig. 3. Figs. 11 and 12 focus on power consumption results.

In Fig. 3, CPU allocation decreases through generations
because it is considered as the objective. Its average reaches
18% in the last generation, which is the best performance
among Figs. 3a, 4a, 5a, 6a and 7a. The other objective values
do not improve because they are not considered.

In Fig. 4, bandwidth allocation improves over time because
it is considered as the objective. Its minimum value reaches
180 kbps in the last generation. This is the best performance
among Figs. 3c, 4c, 5c, 6c and 7c. The improvement in
bandwidth allocation contributes to the increase of response
time because these two objectives conflict with each other.

In Fig. 5, response time improves over time because it
is considered as the objective. Its minimum reaches 15.8
seconds in the last generation, which is the best result among
Figs. 3b, 4b 5b, 6b and 7b. As response time decreases,
bandwidth allocation increases because they are conflicting.

In Fig. 6, workload distribution increases because the
power consumption objective is enabled. They conflict with
each other. For reducing power consumption, Cielo attempts to
collocate as many VMs as possible on some hosts and turn off
the other hosts that operate no VMs. This is against improving
the degree of workload distribution. Fig. 13 confirms this.
It shows how many hosts Cielo turns off over time. When
the power consumption objective is considered, the number of
turned-off hosts increases up to 29. It decreases as low as 10
when the workload distribution objective is considered.

In Fig. 7, workload distribution improves because it is
considered as the objective. Figs. 3 to 7 demonstrate that Cielo
successfully evolves deployment strategies so that applications
improve their performance with respect to a given objective.

In Figs. 8 and 9, two objectives are considered simulta-
neously. All five objectives are considered simultaneously in
Fig. 10. As these figures show, Cielo successfully balance ob-
jective values by following on the trade-offs among objectives.

Figs. 11 and 12 illustrate how power consumption changes
with different objectives considered. In all the objective set-
tings except the workload distribution objective, power con-
sumption decreases through generations. (As discussed above,
power consumption and workload distribution conflict.) When
the power consumption objective is considered, power con-
sumption reaches 242 watts in the last generation (Fig. 11a).
This is the best performance in Figs. 11 and 12.

Table II compares Cielo with well-known existing heuris-
tics, FFA (first-fit algorithm) and BFA (best-fit algorithm),
which have been widely used for VM placement in clouds [1]–
[4]. FFA yields the lowest power consumption because it is
designed to deploy VMs on the minimum number of hosts;
however, it sacrifices performance in the other objectives. BFA
is the best in workload distribution and the worst in power
consumption because it is designed to deploy VMs on the
hosts that maintain higher resource availability. With all five
objectives considered, Cielo maintains balanced performance
in between FFA and BFA while yielding the best performance
in response time and bandwidth allocation.

Fig. 13: The number of turned-off hosts

TABLE II: Performance of Cielo, FFA and BFA
Min Avg Max

Total power consumption
(Watts)

Cielo 7,566 8,033 8,800
FFA 5,742 5,766 5,769
BFA 11,355 11,366 11,408

CPU allocation
(%/host)

Cielo 68 71.6 76.6
FFA 98 98 98
BFA 40.8 40.8 40.8

Bandwidth allocation
(Kbps/host)

Cielo 721 736 745
FFA 821 821 821
BFA 816 816 816

Response time
(seconds)

Cielo 15.5 15.8 16.3
FFA 21.77 21.77 21.77
BFA 19.3 19.3 19.3

Workload distribution
Cielo 38.2 43 50
FFA 74.6 74.8 74.9
BFA 15 15.8 16

of turned-off hosts
Cielo 26 29 31
FFA 58 58 58
BFA 0 0 0

VII. RELATED WORK

Numerous research efforts have been made to study heuris-
tic algorithms for application placement problems in clouds;
e.g., [1]–[4], [9]–[12] to name just a few. Most of those
existing work assume single-tier application architecture and
considers a single performance objective. For example, in [9]–
[12], only energy saving is considered as the objective. In
contrast, Cielo assumes a multi-tier application architecture
and considers multiple objectives. It is intended to reveal the
trade-off relationships among conflicting objectives.

Game theoretic algorithms have been used for a few aspects
of cloud computing; e.g., application placement [13]–[15], task
allocation [16] and data replication [17]. In [13]–[15], greedy
algorithms seek equilibria in application placement problems
with respect to multiple performance objectives. This means
they do not attain the stability to reach equilibria as Cielo does.

This paper reports a set of extensions to the authors’
prior work [18]. For the problem formulation, this paper
considers two extra objectives (bandwidth allocation and power
consumption) and an extra parameter in each deployment
strategy (bandwidth allocation), all of which are not studied
in [18]. This paper also considers an optimization constraint
in CPU allocation and investigates a constraint-handling algo-
rithm (Algorithm 2) while no constraints are assumed in [18].

(a) CPU allocation (b) Response time (c) Bandwidth allocation (d) Workload distribution

Fig. 7: With the Workload Distribution Objective Considered

(a) CPU allocation (b) Response time (c) Bandwidth allocation (d) Workload distribution

Fig. 8: With the Power Consumption and Workload Distribution Objectives Considered

(a) CPU allocation (b) Response time (c) Bandwidth allocation (d) Workload distribution

Fig. 9: With the Response Time and Bandwidth Allocation Objectives Considered

(a) CPU allocation (b) Response time (c) Bandwidth allocation (d) Workload distribution

Fig. 10: With All Five Objectives Considered

(a) Power Consumption (b) CPU Allocation Considered (c) Response Time Considered (d) Workload Considered

Fig. 11: Power Consumption with an Objective Considered

(a) Bandwidth Allocation Consid-
ered

(b) Power Consumption and
Workload Considered

(c) Response Time and Bandwidth
Allocation Considered

(d) All Five Objectives Considered
Simultaneously

Fig. 12: Power Consumption with Multiple Objectives Considered Simultaneously

Moreover, this paper carries out larger-scale simulations with
more realistic configurations than [18], which uses only five
hosts and simple topologies among them.

VIII. CONCLUSIONS

This paper proposes and evaluates Cielo, an evolution-
ary game theoretic framework for adaptive and stable VM
deployment in clouds. It theoretically guarantees that every
application seeks an evolutionarily stable deployment strategy,
which is an equilibrium solution under given workload and
resource availability in a cloud. Simulation results verify that
Cielo performs VM deployment in an adaptive and stable
manner. Cielo outperforms well-known existing heuristics that
have been widely used for VM placement in clouds.

REFERENCES

[1] X. Lia, Z. Qiana, S. Lua, and J. Wu, “Energy efficient virtual machine
placement algorithm with balanced and improved resource utilization in
a data center,” Mathematical and Computer Modelling, 58(5-6), 2013.

[2] F. Ma, F. Liu, and Z. Liu, “Multi-objective optimization for initial virtual
machine placement in cloud data center,” J. Infor. and Computational
Science, vol. 9, no. 16, 2012.

[3] H. Goudarzi and M. Pedram, “Energy-efficient virtual machine replica-
tion and placement in a cloud computing system,” in Proc. IEEE Int’l
Conference on Cloud Computing, 2013.

[4] H. Casanova, M. Stillwell, and F. Vivien, “Virtual machine resource
allocation for service hosting on heterogeneous distributed platforms,”
in Proc. IEEE Int’l Parallel & Distributed Processing Symposium, 2012.

[5] P. Taylor and L. Jonker, “Evolutionary stable strategies and game
dynamics,” Elsevier Mathematical Biosciences, vol. 40(1), 1978.

[6] N. Srinivas and K. Deb, “Multiobjective function optimization using
nondominated sorting genetic algorithms,” Evol. Computat., 2(3),1995.

[7] C. Guo, H. Wu, K. Tan, L. Shiy, Y. Zhang, and S. Lu, “Dcell: A scalable
and fault-tolerant network structure for data centers,” in Proc. of ACM
SIGCOM, 2008.

[8] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and
S. Lu, “Bcube: A high performance, server-centric network architecture
for modular data centers,” in Proc. of ACM SIGCOM, 2009.

[9] von Laszewski, L. Wang, A. J. Younge, and X. He, “Power-aware
scheduling of virtual machines in DVFS-enabled clusters,” in IEEE
International Conference on Clusters, September 2009.

[10] D. Kliazovich, P. Bouvry, and S. U. Khan, “DENS: data center energy-
efficient network-aware scheduling,” Cluster Computing, 16(1), 2013.

[11] S. Chen, K. R. Joshi, M. A. Hiltunen, R. D. Schlichting, and W. H.
Sanders, “Blackbox prediction of the impact of DVFS on end-to-end
performance of multitier systems,” ACM SIGMETRICS Performance
Evaluation Review, vol. 37, no. 4, 2010.

[12] Q. Wang, Y. Kanemasa, J. Li, C. A. Lai, M. Matsubara, and C. Pu,
“Impact of DVFS on n-tier application performance,” in Proc. ACM
Conference on Timely Results in Operating Systems, 2010.

[13] S. U. Khan and C. Ardil, “Energy efficient resource allocation in
distributed computing systems,” in Proc. of Int’l Conference on Dis-
tributed, High-Performance and Grid Computing, 2009.

[14] G. Wei, A. V. Vasilakos, Y. Zheng, and N. Xiong, “A game-theoretic
method of fair resource allocation for cloud computing services,” J.
Supercomputing, vol. 54, no. 2, 2009.

[15] N. Doulamis, A. Doulamis, A. Litke, A. Panagakis, T. Varvarigou,
and E. Varvarigos, “Adjusted fair scheduling and non-linear workload
prediction for qos guarantees in grid computing,” Elsevier Computer
Comm., vol. 30(3), 2007.

[16] R. Subrata, A. Y. Zomaya, and B. Landfeldt, “Game theoretic approach
for load balancing in computational grids,” IEEE Trans. Parallel and
Distributed Systems, vol. 19, no. 1, 2008.

[17] S. Khan and I. Ahmad, “A pure Nash equilibrium based game theoret-
ical method for data replication across multiple servers,” IEEE Trans
Knowledge and Data Engineering, vol. 21, no. 4, 2009.

[18] C. Lee, J. Suzuki, A. V. Vasilakos, Y. Yamano, and K. Oba, “An
evolutionary game theoretic approach to adaptive and stable applica-
tion deployment in clouds,” in Proc. IEEE Workshop on Bio-Inspired
Algorithms for Distributed Systems, 2010.

