
SymbioticSphere: A Biologically-inspired Network Architecture for
Autonomic Grid Computing

Paskorn Champrasert, Tomoko Itao and Junichi Suzuki

{paskorn, tomoko, jxs}@cs.umb.edu
Department of Computer Science

University of Massachusetts Boston,
Boston, MA 02125-3393

Abstract—Grid computing systems are expected to be more

scalable, more survivable from partial systems failures and
more adaptive to dynamic network environments in order to
improve user experience, expand system’s operational longevity
and reduce maintenance cost. Based on the observation that
many biological systems have already overcome these require-
ments, the proposed network architecture, called Symbiotic-
Sphere, applies biological concepts and mechanisms to design
grid systems (application services and middleware platforms).
In SymbioticSphere, each application service and middleware
platform is designed as an artificial biological entity, analogous
to an individual bee in a bee colony. Application services and
middleware platforms implement biological concepts and
mechanisms such as decentralization, energy level, healthy level,
energy exchange between species, environment sensing, migra-
tion, replication and death. Like in biological systems, desirable
system characteristics such as scalability, survivability and
adaptability emerge from the collective actions and interactions
of application services and middleware platforms. This paper
presents the architectural design of SymbioticSphere, and de-
scribes how application services and middleware platforms act
and interact with each other. Preliminary simulation results
show that application services and middleware platforms collec-
tively adapt to dynamic changes in the network (e.g. user loca-
tion, network traffic and resource availability).

I. INTRODUCTION

Autonomic grid systems are expected to autonomously
scale to enormous demand placed upon them, survive from
partial systems failures and adapt to dynamic network envi-
ronments in order to improve user experience, expand sys-
tem’s operational longevity and reduce maintenance cost [1,
2, 3]. In order to realize such autonomic grid systems, the
authors of the paper observe that various biological systems
have already developed the mechanisms necessary to achieve
key requirements of autonomic grid systems such as auton-
omy, scalability, survivability and adaptability. The authors
of the paper believe if grid systems adopt certain biological
concepts and mechanisms, they may be able to meet these
requirements.

The SymbioticSphere architecture applies key biological
concepts and mechanisms to design grid systems (application
services and middleware platforms) 1 . In SymbioticSphere,

1 SymbioticSphere is an extension to the Bio-Networking Architecture [4, 5,
6, 7]. The Bio-Networking Architecture was adopted by Object Management
Group as a part of its standard specification for Super Distributed Objects [8].

each application service and platform is modeled as an artifi-
cial biological entity, analogous to an individual bee in a bee
colony. An application service is implemented as an autono-
mous and distributed software agent. Each agent implements
a functional service and follows simple behaviors similar to
biological entities, such as replication, death, migration,
pheromone emission and environment sensing. A middleware
platform runs on a network host and operates agents (i.e. ap-
plication services). Each middleware platform implements a
set of runtime services that agents use to perform their ser-
vices and behaviors, and follows biological behaviors such as
replication, death and environment sensing.

Similar to entities in the biological world, agents and plat-
forms in SymbioticSphere store and expend energy for living.
Each agent gains energy in exchange for performing its ser-
vice to other agents or human users, and expends energy to
use network and computing resources. Each platform gains
energy in exchange for providing resources to agents, and
continuously evaporates energy to the environment. Symbiot-
icSphere models agents and platforms as different biological
species, and follows several concepts in ecological food chain
to determine how much energy agents/platforms expend at a
time and how often they expend energy.

The abundance and scarcity of stored energy affect various
behaviors of an agent/platform. For example, an abundance
of stored energy is an indication of higher demand for the
agent/platform; thus the agent/platform may be designed to
favor replication in response to higher level of stored energy.
A scarcity of stored energy (an indication of lack of demand)
may eventually cause death of the agent/platform.

Similar to biological systems, SymbioticSphere exhibits
emergence of desirable system characteristics such as scal-
ability, survivability and adaptability. These characteristics
emerge from the collective behaviors and interactions of
agents and platforms, rather than they are not present in any
single agent/platform. Agents and platforms act autono-
mously, influenced by local environment conditions (e.g.
network traffic and resource availability) and local interac-
tions with other agents and platforms.

This paper overviews the architectural design of Symbiot-
icSphere, and presents how agents and platforms implement
biological concepts and mechanisms such as decentralization,
energy level, healthy level, energy exchange, environment
sensing, migration, replication and death. This paper also

describes how agents and platforms interact with each other
to collectively exhibit emergence of desirable system charac-
teristics (e.g. adaptability). Preliminary simulation results
show that agents and platforms autonomously adapt to dy-
namic changes in the network (e.g. user location, network
traffic and resource availability). In certain circumstances,
agents and platforms spontaneously cooperate in a symbiotic
manner to pursue their mutual benefits (i.e. to increase their
adaptability), although each of them is not designed to do so.

This paper is organized as follows. Section II summarizes
key design principles of SymbioticSphere. Section III over-
views the architecture of SymbioticSphere and describes bio-
logical mechanisms implemented in agents and platforms.
Section IV shows preliminary simulation results to evaluate
the impact of the proposed biologically-inspired mechanisms
on adaptability of grid systems. Sections V and VI conclude
with discussion on related work and future work.

II. DESIGN PRINCIPLES IN SYMBIOTICSPHERE

SymbioticSphere consists of two major system compo-
nents: agents (applications services) and middleware plat-
forms (Fig. 1). Agents run (or live) on platforms, which in
turn run on network hosts. Agents and platforms are designed
based on the three principles described below, in order to
collectively make grid systems scalable, survivable and adap-
tive.

(1) Decentralization: Agents and platforms in Symbiotic-
Sphere are decentralized. There are no central entities that
collect environment conditions in the network, and controls
or coordinate agents/platforms (i.e. no directory servers and
no resource managers). Agents/platforms act based on local
environment conditions and local interactions with other
agents/platforms. Decentralization can improve system’s
scalability and survivability by avoiding a single point of
performance bottleneck and failure [9, 10] and by avoiding
any central coordination in deploying agents/platforms [11].

(2) Autonomy: Agents and platforms in SymbioticSphere are
autonomous. They monitor their local network environments,
and based on the monitored environmental conditions, they
autonomously behave and interact with each other without

any intervention from/to other agents, platforms and human
users.

(3) Adaptability: Agents and platforms in SymbioticSphere
are adaptive to changing environment conditions (e.g. user
demands, user locations and resource availability). Adapta-
tion is achieved through designing agent/platform behavior
policies to consider local environment conditions. For in-
stance, agents may invoke migration behavior of moving to-
wards neighboring platforms that forward a large number of
service requests from users. This results in the adaptation of
agent locations; agents concentrate around the users who re-
quest their services. Also, platforms may invoke replication
and death behaviors when their energy levels become over
and below thresholds. This results in the adaptation of plat-
form population, and platforms adjust resource availability on
them against the demands for resources.

III. SYMBIOTICSPHERE

This section describes how agents and platforms implement
a series of biological concepts and mechanisms, and how they
interact with each other.

A. Agents

Each agent consists of three parts: attributes, body and be-
haviors (Fig. 2). Attributes carry descriptive information re-
garding the agent, such as agent ID 2 , age, energy level,
owner’s name, description of a service the agent provides,
and price (in energy units) of the service that the agent pro-
vides. Each agent has a remotely accessible interface that
allows human users and other agents to read its attribute val-
ues [5].

Operating System

Virtual Machine (Java)

NetSphere Platform

Agents

Platform Components

……

W
ire

d
In

te
rf

ac
e

W
ire

le
ss

 In
te

rf
ac

e

Links Links

Host

Operating System

Virtual Machine (Java)

NetSphere Platform

Agents

Platform Components

……

W
ire

d
In

te
rf

ac
e

W
ire

le
ss

 In
te

rf
ac

e

Links Links

Host

Fig. 1 SymbioticSphere Components

Body implements a service that the agent provides and con-
tains materials relevant to the service. For instance, an agent
may implement a genetic algorithm for a large-scale optimi-
zation problem, while another agent may implement a physi-
cal and mathematical model for scientific simulations. An
agent that implements a genetic algorithm for an optimization
problem may contain artificial genes, instructions for muta-
tion and crossover, and fitness functions.

Behaviors implement non-service related actions that are
inherent to all agents. They control autonomous actions of
each agent, as described in Section II. Agents can have an
arbitrary number of behaviors. Some example agent behav-
iors are explained below.

• Migration: Agents may migrate from one platform to an-
other.

• Communication. Agents may communicate with other
agents for the purposes of, for instance, requesting a ser-
vice or exchanging energy.

2 Agents and platforms maintain globally unique IDs. See [5] for more details
on the design of globally unique IDs.

• Energy exchange and storage: Agents may receive and
store energy in exchange for providing services to other
agents. Agents also expend energy. For instance, agents
may pay energy units for services that they receive from
other agents. In addition, when an agent uses resources on a
platform (e.g. CPU and memory), it may pay energy units
to the platform.

• Replication: Agents may make a copy of themselves as a

result of abundance of energy.

• Death: Agents may die as a result of lack of energy. If en-
ergy expenditure of an agent is not balanced with the en-
ergy units it receives from providing services to other
agents, it will not be able to pay for the resources it needs,
i.e., it dies from lack of energy. When an agent is dead, an
underlying platform removes the agent from the network
environment and releases all the resources allocated to the
agent.

• Relationship maintenance: Agents may establish and main-
tain a limited number of relationships with other agents. A
relationship contains information regarding the partner
agent, for instance, the attributes of the partner agent. Rela-
tionships are autonomously maintained by the participant
agents. Such relationships may have a variety of uses, in-
cluding performing discovery to search for agents.

• Discovery: Agents may seek for other agents of certain
attributes by forwarding queries to agents that they have re-
lationships to.

• Pheromone emission: Agents may emit and leave a phero-
mone (or a trace) behind on a platform when they migrate
to another platform. This is to indicate their presence to

other agents. A pheromone contains the emitter’s ID and a
reference to the platform that the emitter migrated to.
Pheromones are emitted with certain strength and may de-
cay over time. Pheromones may have a variety of uses, in-
cluding improving the performance of discovery.

• Environment sensing. Agents may sense their local envi-
ronment. For instance, an agent may sense which agents
are in local and neighboring platforms and what services
they provide. An agent may also sense pheromones (e.g.
which agents left pheromones on local and neighboring
platforms) and resources (e.g. CPU cycles and memory
space available on local and neighboring platforms).

Agent

…

Attributes

Body

ID

Reference

Service Name

Service Price

Service

Service Material

Communication

Energy Exchange
 and Storage

Relationship
Maintenance

Discovery

Pheromone Emission

Environment Sensing

Migration

Behaviors

Energy Level

Replication

User request

Fig. 2 Agent Design in SymbioticSphere

B. Platforms

Platforms are execution environments (or middleware) for
agents. Each platform runs on a network host and operates
agents3. It abstracts low-level operating and networking de-
tails (e.g. network I/O and concurrency control for executing
agents), and aids developing and deploying agents in the net-
work [5].

Each platform consists of three parts; attributes, behaviors
and runtime services (Fig. 3). Attributes carry descriptive
information regarding the platform, such as platform ID2, age,
energy level and healthy level. Each platform has a remotely
accessible interface that allows human users, agents and other
platforms to read its attribute values [5].

Healthy level is defined as a function of the age of and re-
source availability on a network host that the platform runs
on. The age indicates how long a local host remains alive in
the network. It represents how much stable the local host is.
Resource availability indicates how much resources (e.g.
CPU cycles, memory space, disk space and network band-
width) are available for a platform and agents on the host.

Healthy level affects various behaviors of a platform and
agent. For example, higher healthy level indicates higher sta-
bility of and/or higher resource availability on a network host
that the platform resides on. Thus the platform may be de-
signed to replicate itself on a healthier neighboring host than
the current local host. This results in the adaptation of plat-
form locations. Platforms concentrate around stable and re-
source-rich network hosts. Also, lower healthy level indicates
that the platform runs on a network host that is unstable
and/or poor in resources. If agents are designed to migrate
towards healthier (i.e. more stable and resource-rich) network
hosts, the platform will eventually die due to energy starva-
tion because agents do not come and pay energy. This results
in the adaptation of platform population. Platforms and
agents avoid running on the network hosts that are unstable
and/or poor in resources.

3 Currently, SymbioticSphere assumes that there is only one platform running
on a network host.

Behaviors are the actions that are inherent to all platforms.

They control autonomous actions of each platform (see Sec-
tion II). Platforms can have an arbitrary number of behaviors.
Some example platform behaviors are explained below.

• Energy exchange and storage: Platforms may receive and
store energy in exchange for providing resources to agents.
Platforms may also periodically evaporate energy to the
network environment. Evaporated energy is no longer
available for any agents and platforms.

• Healthy level management: Platforms may monitor and
maintain healthy level of the network hosts that they reside
on. Platforms may also inquire of neighboring platforms
for the healthy level of their underlying network hosts.

• Communication. Platforms may communicate with other
platforms for the purposes of, for instance, inquiring the
current healthy level.

• Replication. Platforms may make a copy of themselves as a
result of abundance of energy (i.e. an indication of higher
demand for the platforms). A replicated (child) platform
may be placed on a healthier host than the host where its
parent platform resides on3.

• Death. Platforms may die due to lack of energy. A dying
platform uninstalls itself from the network and releases all
resources the platform uses. Despite the death of a platform,
an underlying network host remains active so that other
platforms can run in the future.

• Environment sensing: Platforms may sense their local envi-
ronment. For instance, a platform may sense how many and
which agents are running on local and neighboring plat-
forms. A platform may also sense resources (e.g. CPU cy-
cles, memory space, disk space and network bandwidth)
available on local and neighboring platforms.

Runtime services are middleware services that agents and
platforms use to invoke their behaviors. For example, each
platform provides the lifecycle management service, which

implements agent replication and death behaviors. Agents use
the runtime service to perform replication or death behaviors
[5]. In order to maximize the degree of decentralization and
autonomy of agents/platforms, they only use the local run-
time services on the platform they reside. They are not al-
lowed to invoke any runtime services running on remote plat-
forms. Please also note that platforms do not provide global
environment information, such as a list of agents/platforms
running on the entire network or the locations of
agents/platforms. Agents and platforms know their local envi-
ronment information, such as a list of agents running on local
and neighboring platforms, or resources available on local
and neighboring platforms.

Platform
Run time
service

Death

Energy Exchange
and Storage

Healthy Level
Management

Replication

Behavior

…

Attributes

ID

Healthy Level

Communication

Environment
 Sensing

Age

Energy Level

Fig. 3 Platform design in SymbioticSphere

C. Behavior Policies of Agents and Platforms

Each agent and platform has policies for its behaviors. A
behavior policy defines when to and how to invoke a particu-
lar behavior. Each behavior policy consists of one or more
functions, or factors (Fi), which evaluate environment condi-
tions (e.g. resource availability on a local platform) or
agent/platform status (e.g. energy level and healthy level).
Each factor is given a certain weight (Wi) relative to its im-
portance. Behaviors are invoked if the weighted sum of factor
values (Σ Fi*Wi) exceeds a threshold. For example, the fac-
tors in the agent migration behavior may include:

• Distance to users, which encourages agents to move to-
wards users requesting the services provided by the agent.

• Mutual repulsion, which encourages agents to repel with
each other.

• Healthy level, which encourages agents to migrate to a
network host whose healthy level is higher.

 Each agent/platform incurs energy loss (i.e. behavior cost)
to invoke behaviors except death behavior. When the energy
level of an agent/platform goes over the cost of a behavior,
the agent/platform decides whether it performs the behavior
by calculating a weighted sum of factor values.

D. Energy Exchange between Agents and Platforms

As described earlier, agents and platforms are modeled as
biological entities. In the biological world, living entities try
to maximize their energy gain, while minimizing their energy
expenditure, in order to live longer and produce more off-
spring. Similarly, in SymbioticSphere, agents and platforms
strive to gain more energy to live longer and produce more
offspring. For example, agents may move towards users (i.e.
energy sources) so that they can gain more energy from the
users. Platforms may replicate themselves on healthier net-
work hosts so that the replicated (child) platforms can attract
agents and gain energy from them.

SymbioticSphere models agents and platforms as different
types of biological entities (i.e. different species), and follows
several concepts in ecological food chain. Fig. 4 shows a sim-

simplified energy flow in the ecological system. The sun
gives light energy, and producers (e.g. plants and microor-
ganisms) convert the light energy to chemical energy. The
chemical energy flows through multiple types of entities
(species), called consumers. It will be eventually transferred
to decomposers (e.g. bacteria and fungi). For example, shrubs
(producers) convert the sun light energy to chemical energy,
hares (primary consumers) consume shrubs, and foxes (sec-
ondary consumers) consume hares.

When energy is transferred from one species to another, it

is known that about 10% of the energy maintained by one
species goes to another species [12]. The remaining 90% is
used for metabolism, growth and actions/behaviors (e.g. mov-
ing).

Fig. 5 shows the energy exchange in SymbioticSphere. Sym-
bioticSphere models users as the sun, agents as producers,
and platforms as (primary) consumers. Similar to the sun,
users have unlimited amount of energy. They pay energy
units for services provided by agents. Agents gain energy
from users4, and pay energy to consume resources provided
by platforms. They pay 10% of the current energy level to
platforms. Platforms gain energy from agents, and pay
(evaporate) 10 % of the current energy level to the environ-
ment.

Agents dynamically change the rate of transferring energy
to platforms, depending on the rate of incoming service re-
quests from users. When agents process more service re-
quests from users, they consume more resources. Therefore,

4 Each agent specifies, in its body, the price (in energy units) of service that it
provides.

agents transfer energy units (i.e. 10% of the current energy
level) to platforms more often. On contrary, they reduce their
energy transfer rate in response to lower energy intake from
users.

In order to dynamically change energy transfer rate, each
agent keeps an interval time between an incoming service
request and a previous request. It records the average, short-
est and maximum intervals of previous N service requests (Ts,
Ta and Tm, respectively). Fig. 6 shows how often each agent
transfers energy to platforms. First, an agent waits for Ts and
pay energy to an underlying platform. Then, the agent checks
if a new service request(s) has arrived during the previous Ts
interval. If arrived, the agent updates Ts, Ta and Tm values,
waits for Ta, and then pays energy to a platform. Otherwise,
it waits for Ta and pays energy to a platform. Similarly, each
agent repeats energy transfers in Ts, Ta and Tm intervals.

Sun

Producers
Primary

Consumers
N-th

Consumers

Decomposers

Ecosystem

Fig. 4 Energy Flow in Ecosystem Wait for the
shortest interval (Ts)

and pay energy

Update
Ta, Ts, and Tm

User request
has arrived? Yes Yes

No

No

Yes

No

Wait for the
average interval (Ta)

and pay energy

Wait for the
max interval (Tm)

and pay energy

User request
has arrived?

User request
has arrived?

Fig. 6 Energy Transfer Scheme in Agents and Platforms

Platform

Host

SymbioticSphere

Environment

Energy

Energy

Energy

Resource Energy
Agent

Service

Platform

Host Host

User request

Energy

Fig. 5 SymbioticSphere

Ta is a simple moving average calculated from the inter-

vals of previous N service requests. The shortest and longest
intervals play a role of weighted values to make energy trans-
fer rate follow dynamic changes in service request rate. Ts
and Tm values are periodically reset (every M service re-
quests).

Platforms dynamically change the rate to evaporate energy,
depending on the rate of incoming energy transfers from
agents. The more often they receive energy transfer from
agents, the more often they evaporate energy (10% of the
current energy level). Each platform changes its energy
evaporation rate in the same way as each agent changes its
energy expenditure rate. (i.e., each platform follows the
mechanism described in Fig. 6.)

IV. PRERIMINARY SIMULATION RESULTS

This section evaluates the biologically-inspired mecha-
nisms in SymbioticSphere through simulation. This paper
shows preliminary simulation results to examine how they
impact on adaptability of grid systems. Simulations were car-
ried out with the SymbioticSphere simulator, which contains

13,500 lines of Java code. It can run arbitrary number of
agents, platforms, users and network hosts on simulated net-
works. This simulator is freely available at
http://dssg.cs.umb.edu/symbiosis/ for researchers who in-
vestigate autonomic grid systems (Fig. 7).

In this paper, adaptability is defined as service adaptation

and resource adaptation. Service adaptation is the activities
to adaptively improve the quality and availability of services
provided by agents. The quality of services is measured as
response time of agents for service requests from users. Ser-
vice availability is measured as the number of agents. Re-
source adaptation is the activities to adaptively improve
availability and efficiency for utilizing resources provided by
platforms. Resource availability is measured as the number of
platforms that makes resources available for agents. Resource
efficiency is measured as (the total number of user requests
processed by agents) / (the total amount resources consumed
by agents and platforms).

A. Results of Energy Exchange Simulations

In order to evaluate whether the energy exchange scheme
described in Section III.D works well, an agent is deployed
on a platform to accept service requests from a user. The
agent receives service requests and energy units from a user,
and pays some of the energy units to an underlying platform.

Fig. 8 shows how service request rate changes during 24
hours in simulation time. Fig. 9 shows how much energy the
agent expends. The agent gains 10 energy units from a user in
exchange for providing its service. In this simulation, two
types of agents are implemented for evaluation purpose. The
first type of agent implements the energy exchange scheme
described in Section III.D. It uses “average,” “shortest,” and
“longest” intervals in its energy expenditure cycle (see Sec-
tion III.D). The second type of agent uses the only “average”
interval in its energy expenditure cycle.

0

5

10

15

20

25

30

0 2 4 6 8 10 12 14 16 18 20 22 24

Fig. 9 shows that the proposed energy exchange scheme al-
lows agents to change their energy expenditure rate against
dynamic change in energy intake. Agent energy expenditure
follows energy intake (or service request rate) well. In the
energy exchange scheme only using “average” interval, agent
energy expenditure does not follow energy intake (or service
request rate) well.

B. Configurations of Adaptability Simulations

A series of the following simulations evaluate how agents
and platforms achieve service adaptation and resource adap-
tation in a collective and symbiotic manner.

A simulated network is a 4x4 grid topology network with
16 network hosts (Fig. 10). At the beginning of each simula-
tion, a platform is initialized on network host 12, and an
agent is deployed on the platform. A user is placed on net-
work host 7. Transmission latency is 0.1 second between two
network hosts (one simulation cycle corresponds to 1 second
in simulation time). Resource availability on each
host/platform is quantified in resource units. The more re-
source units a host has, the more resources are available on
the host. Each agent and platform consumes 9 and 30 energy
units, respectively.

Fig 7 Screenshot of the SymbioticSphere Simulator

th
e

b
es

c

time (hour)

 n
um

er
 o

f s
er

vi
ce

 re
qu

t /
 se

Fig. 8 Change in service request

0

50

100

150

200

250

300

0 2 4 6 8 10 12 14 16 18 20 22 24

with average, shortest, and longest interval
only with average interval

en
er

gy
 ex

pe
nd

itu
re

 ra
te

(e
ne

rg
y

un
its

 p
er

 se
c)

time (hour)
Fig. 9 Energy Expenditure Rate

A user keeps propagating service requests according to a

configured rate. Fig. 11 shows how service request rate
changes for 24 hours (from 0:00 to 24:00).

Agents implement replication, migration and death behav-

iors. Migration behavior policy considers three factors de-
scribed below

• Service requests, (# of service requests on a remote plat-
form)/(# of service requests on a local platform), which
encourages agents to move towards a user.

• Agent population, (# of agents on a local platform)/(# of
agents on a remote platform), which encourages agents to
move toward a less-crowded platform.

• Migration interval, the interval from a previous migration,
which discourages too many agents to migrate too often.

Weight values for these factors are one. If the current en-
ergy level of an agent exceeds 2000, the agent calculates a
weighted sum of factor values (see Section III.C). Then, it
invokes the migration behavior if the weighted sum exceeds a
threshold (2.0). If there are multiple neighboring platforms,
the agent calculates a weighted sum of factor values for each
of the neighboring platforms, and migrates to a platform that
generates the highest weighted sum. The behavior cost of
migration is 100 energy units.

Replication behavior is invoked when agent energy level
exceeds 3000. The behavior cost of replication is 100 energy
units. A replicated (child) agent is placed on the platform
that its parent agent resides on, and it receives the half
amount of the parent’s energy level.

Death behavior is invoked when agent energy level be-
comes zero.

Each agent processes a service request in 0.2 second, and
gains 10 energy units from a user in exchange for each re-
quest processed. The initial energy units of each agent is
1000.

Platforms implement replication and death behaviors. Rep-
lication behavior policy considers the following factor.

0 4 8

1 5 9

2 6 10

3
7

User’s location

Initial location of
agent and platform

11

12

13

14

15

Fig. 10 Simulated Network
• Healthy level, (# of service requests on a remote plat-

form)/(# of service requests on a local platform), which
encourages platforms to perform replication.

Weight values for this factor is one. If the current energy
level of a platform exceeds 3000, the platform calculates a
weighted sum of factor value (see Section III.C). It invokes
the replication behavior if the sum exceeds a threshold. If
there are multiple network hosts where a parent platform can
replicate itself on, the platform calculates a weighted sum for
each of the neighboring network hosts, and choose the net-
work host that generates the highest healthy level. A repli-
cated (child) platform receives the half amount of the parent’s
energy level. The behavior cost of replication is 100 energy
units.

Death behavior is invoked when platform energy level be-
comes zero.

Pseudo code of running users, agents and platforms in
simulations is shown in Figure 12.

0
1
2
3
4
5
6

0 2 4 6 8 10 12 14 16 18 20 22 24

time (hour)

th
e

nu
m

be
r o

f s
er

vi
ce

 re
qu

es
ts

 /
se

c

Fig. 11 Change in Service Request

initialize platforms, agents and users
While (not simulation last cycle)

For each user do
 send service requests to one of the nearest agents

according to a configured service request rate.
End For
For each platform do

make a decision on replication and death behaviors.
update healthy level.
expend (evaporate) energy.

End For
For each agent do

If (a service request(s) received) do
 process the request(s) and gain energy.

 End If
make a decision on replication, migration and death behaviors
update average response time and distance to users
expend energy to a local platform.

End For
End While

Fig. 12 Pseudo Code of Simulation Algorithm

C. Results of Adaptability Simulations

0

5

10

15

0 2 4 6 8 10 12 14 16 18 20 22 24

Scenario 1 Scenario 2 Scenario 3

time (hour)

th
e

nu
m

be
r o

f p
la

tfo
rm

s

Fig. 14 The Number of Platforms

Three simulation scenarios are implemented to evaluate the
adaptability of agents and platforms. Scenario 1 initializes a
platform as non-biological entity (on network host 12); thus it
does not replicate and die. There is only one platform running
throughout a simulation. Scenario 2 initializes a non-
biological platform on each network host (i.e. 16 platforms
on 16 network hosts). The 16 platforms do not replicate and
die. In Scenario 3, a biological platform is initialized on net-
work host 12. The platform can replicate and die based on the
behavior policy described in a previous section. In either sce-
nario, agents are implemented as biological entities; they can
migrate, replicate and die. A key simulation objective is to
investigate agents and platforms in Scenario 3 against two
extreme cases (i.e. Scenarios 1 and 2).

Fig. 13 shows how service availability (i.e. the number of
agents) changes against dynamic service request rate (Fig. 8).
In Scenarios 1, 2 and 3, agents adapt their population to
changes in service request rate. When service request rate
becomes high, agents gain more energy and replicate them-
selves. In contrast, when service request rate becomes low,
some agents die due to energy starvation since they cannot
balance energy gain and expenditure. Biological mechanisms
contribute for agents to improve service availability as a
group.

Fig 14 shows how resource availability (i.e. the number of

platforms) changes against dynamic service request rate (Fig.
8). Since platforms are not designed as biological entities in
Scenarios 1 and 2, the number of platforms do not change
(i.e. one and 16 platforms in Scenarios 1 and 2, respectively).
In Scenario 3, in which platforms are designed as biological
entities, the number of platforms dynamically changes against
service request rate. When service request rate becomes high,
agents gain more energy and transfer more energy to plat-
forms. Then, in response to abundance of stored energy, plat-
forms replicate themselves. In contrast, when service request
rate becomes low, some platforms die due to energy starva-
tion since they cannot gain enough energy from agents to
keep their population. Fig. 14 shows that biological mecha-
nisms contribute for a group of platforms to adaptively im-
prove resource availability as a group.

Fig. 15 shows the average distance between agents and user
in network hop counts. In Scenario 1, the distance remains
constant (5 hop counts) because a platform cannot make its
children platforms that agents may migrate to. In Scenario 2,
in which a platform is statically initialized on every network
host, the distance between agents and user rapidly decreases
because agents can migrate to platforms that are closer to a
user. The distance becomes zero in 1.5 hours (i.e. agents
reach user’s location in 1.5 hours). In Scenario 3, the distance
gradually decreases and becomes zero in 8 hours. Unlike
Scenario 2, Scenario 3 begins with a single (biological) plat-
form. At the beginning of a simulation, the platform needs to
wait for agents to grow their population and transfer it
enough energy so that it can replicate itself on a neighboring
network host. If the child platform is placed on a network
host that is closer to a user, agents move to the platform,
thereby decreasing the distance to a user by one hop count.
This process takes more time than how agents move toward a
user in Scenario 2.

0
2

4

6
8

10

12

0 2 4 6 8 10 12 14 16 18 20 22 24

Scenario 1 Scenario 2 Scenario 3

time (hour)

th
e

nu
m

be
r o

f a
ge

nt
s

Fig. 13 The Number of Agents

Another important observation from Fig. 15 is that plat-
forms gradually move toward a user, although platform repli-
cation policy does not consider user location. This is an ex-
ample of symbiotic emergence. If replicated platforms are
placed on hosts that agents want to migrate to (i.e. hosts
closer to a user), the platforms will survive. Otherwise, they
will die because agents do not migrate onto them and transfer
energy to them. In a sense, agents indirectly instruct plat-
forms where to replicate themselves. This results in a mutual
benefit for both agents and platforms. Agents can work closer
to a user and gain more energy, and platforms gain more en-
ergy.

0

2

4

6

0 2 4 6 8 10 12 14 16 18 20 22 24

Scenario 1
Scenario 2
Scenario 3

time (hour)

A
ve

ra
ge

 d
is

ta
nc

e
be

tw
ee

n
ag

en
ts

 a
nd

 u
se

r

Fig. 15 Average Distance between Agents and User

Fig. 16 shows the quality of services (i.e. the average re-
sponse time for agents to process service requests from a
user). In the first three hours, response time becomes very
high in either scenario, because agents have to store energy
for a while to start replication. After the first three hours,
agents increase their population to process more service re-
quests (Fig 11); thereby decreasing response time dramati-
cally. In Scenario 1, response time is greater than in Scenar-
ios 2 and 3 because agents do not migrate toward a user.
Please note that response time include transmission latency
between two network hosts (i.e. the closer agents work to a
user, the shorter their response time becomes). In scenario 2,
which is the best case scenario for the response time meas-
urement, agents migrate toward a user, and response time
drops to 0.5 second in three hours. In scenario 3, agents have
to wait for platforms to accumulate enough energy to start
replication. Response time drops to 0.5 second in four hours.
Fig. 16 shows biological mechanisms contribute for agents
and platforms to collectively adapt agent response time.

0

1

2

3

4

5

0 2 4 6 8 10 12 14 16 18 20 22 24

Scenario 1
Scenario 2
Scenario 3

R
es

ou
rc

e
ef

fic
ie

nc
y

(#
 p

ro
ce

ss
ed

 se
rv

ic
e/

 re
so

ur
ce

 u
til

iz
at

io
n)

time (hour)

Fig. 17 Resource Efficiency

Fig. 17 shows resource efficiency, which indicates how many
service requests can be processed per resource unit. It is
measured as (the total number of user requests processed by
agents) / (the total amount resources consumed by agents and
platforms). Scenario 1 is the best case scenario in this case
because only one platform is used to process all service re-
quests. Scenario 2 is the worst case scenario, because all ser-
vice requests are processed by 16 platforms including idle
ones that do not operate agents. The result is constantly very
low. In Scenario 3, both agents and platforms adapt their
population to dynamic service request rate. Resource effi-
ciency in Scenario 3 is often close to the best case result in
Scenario 1. Biological mechanisms contribute for agents and
platforms to keep resource efficiency high.

0
50

100
150
200
250
300
350
400

0 2 4 6 8 10 12 14 16 18 20 22 24

Scenario 1
Scenario 2
Scenario 3

0

2

4

0 2 4 6 8 10 12 14 16 18 20 22 24

A
ve

ra
ge

 re
sp

on
se

 ti
m

e
(s

ec
)

time (hour)

Fig. 16 Average Response Time

V. RELATED WORK

This work is an extended work to the Bio-Networking Ar-
chitecture, as described in Section I. In the Bio-Networking
Architecture, agents are designed as biological entities, and
they achieve service adaptation in a decentralized and collec-
tive manner [4, 5, 6, 7]. However, platforms are static and
non-biological entities. Since they do not change their popu-
lation and locations dynamically, they cannot achieve re-
source adaptation. In SymbioticSphere, agents and platforms
achieve both service adaptation and resource adaptation in a
decentralized, collective and symbiotic manner.

Resource Broker [13] proposes a resource adaptation
mechanism for grid systems. In this mechanism, a centralized
system component monitors heterogeneous environments
where different network hosts have different levels of stabil-
ity and different resource availability. Given monitored envi-
ronment conditions, the mechanism adapts resource alloca-
tions for grid applications. Unlike Resource Broker, Symbiot-
icSphere service adaptation as well as resource adaptation
with decentralized agents and platforms.

[14] and [15] propose generic adaptation frameworks for
grid systems. They can be used to achieve both service adap-
tation and resource adaptation. In these frameworks, central-
ized system components store the current environment condi-
tions, and decide which adaptation strategy to execute against
the monitored conditions. In contrast, SymbioticSphere does
not assume any centralized system components. Each of
agents and platforms collects and stores environment condi-
tions, and autonomously decide which behavior to invoke.

The concept of energy in SymbioticSphere is similar to
money in economy. MarketNet [16] applies the concept of
money to achieve market-based access control for network
applications. However, it does not mention the details on how
much and how often application components make payments
with each other. SymbioticSphere currently focuses on ser-
vice adaptability and resource adaptability. It also provides
application developers the details on energy exchange be-
tween system components (i.e. agents and platforms) so that
they can consistently develop adaptive network systems.

VI. CONCLUDING REMARKS

This paper overviews the architectural design of Symbiot-
icSphere, and presents how it implements biological concepts
and mechanisms to make grid systems (i.e. services and plat-
forms) scalable, survivable and adaptive. This paper also de-
scribes how agents and platforms interact with each other to
collectively exhibit emergence of desirable system character-
istics (e.g. adaptability). Preliminary simulation results show
that agents and platforms collectively adapt to dynamic
changes in the network (e.g. user location, network traffic and
resource availability) in a decentralized and autonomous
manner.

An extended set of simulations is planned to investigate
how the proposed biologically-inspired mechanisms impact
on scalability, survivability and adaptability of grid systems.
For example, future simulations will operate agents and plat-
forms on larger heterogeneous networks where different net-
work hosts have different resource availability, intermittent
unstable networks where network hosts and network links
between them can be occasionally down, and mobile net-
works where users dynamically move.

REFERENCES

[1] P. Dini, W. Gentzsch, M. Potts, A. Clemm, M. Yousif
and A. Polze, “Internet, Grid, Self-adaptability and Be-
yond: Are We Ready?,” In Proc. of the IEEE Interna-
tional Workshop on Self-Adaptable and Autonomic
Computing Systems, August 2004.

[2] R. Sterritt and D. Bustard, “Towards an Autonomic
Computing Environment,” In Proc. of 14th IEEE Inter-
national Workshop on Database and Expert Systems Ap-
plications, September 2003.

[3] Large Scale Networking Coordinating Group of the In-
teragency Working Group for Information Technology
Research and Development (IWG/IT R&D), Report of
Workshop on New Visions for Large-scale Networks:
Research and Applications, March 2001.

[4] T. Suda, T. Itao and M. Matsuo, “The Bio-Networking
Architecture: The Biologically Inspired Approach to the
Design of Scalable, Adaptive, and Survivable/Available
Network Applications,” In K. Park (ed.) The Internet as
a Large-Scale Complex System, Oxford University Press,
June 2005.

[5] J. Suzuki and T. Suda, “A Middleware Platform for a
Biologically-inspired Network Architecture Supporting
Autonomous and Adaptive Applications” In IEEE Jour-
nal on Selected Areas in Communications (JSAC), vol.
23, no. 2, February 2005.

[6] J. Suzuki, “Biologically-inspired Adaptation of Auto-
nomic Network Applications,” In International Journal
of Parallel, Emerging and Distributed Computing, vol.
20, no. 2, June 2005.

[7] T. Nakano and T. Suda, "Adaptive and Evolvable Net-
work Services," In Proc. of the Genetic and Evolutionary
Computation Conference,2004.

[8] S. Sameshima, J. Suzuki, S. Steglich and T. Suda, Plat-
form Independent Model (PIM) and Platform Specific
Model (PSM) for Super Distributed Objects, Object
Management Group, Final Recommended Specification,
95 pages, November 2004.

[9] N. Minar, K. H. Kramer and P. Maes, “Cooperating Mo-
bile Agents for Dynamic Network Routing,” In A. L. G.
Hayzelden and J. Bigham (eds.) Software Agents for Fu-
ture Communications Systems, Springer, 1999.

[10] R. Albert, H. Jeong and A. Barabasi, “Error and Attack
Tolerance of Complex Networks,” Nature 406, 2000.

[11] G Cabri, L. Leonardi and F Zambonelli, “Mobile-Agent
Coordination Models for Internet Applications,” IEEE
Computer, February 2000.

[12] R. M. Alexander, “ Energy for Animal Life,” Oxford
university Press, May 1999.

[13] A. Othman, P. Dew, K. Djemame, I, Gourlay, “ Adaptive
Grid Resource Brokering”, In IEEE International Con-
ference on Cluster Computing (CLUSTER’03), 172, Dec
2003

[14] S. Cheng, D. Garlan, B. Schmerl, P. Steenkiste, and N.
Hu, “Software Architecture-based Adaptation for Grid
Computing,” In the 11th IEEE Conference on High Per-
formance Distributed Computing (HPDC’02), July 2002.

[15] K Shirose, S Matsuoka, H Nakada, and H Ogawa,
“Autonomous Configuration of Grid Monitoring Sys-
tems,” In the 2004 Symposium on Application and the
Internet (SAINT2004), Japan, January 2004.

[16] M. P. Wellman, “ A Market-Oriented Programming En-
vironment and Its Application to Distributed Multicom-
modity Flow Problems,” Journal of Artificial Intelligence
Research, Vol. 1, pp. 1-22,1993

