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Abstract—Grid computing systems are expected to be more 

scalable, more survivable from partial systems failures and 
more adaptive to dynamic network environments in order to 
improve user experience, expand system’s operational longevity 
and reduce maintenance cost. Based on the observation that 
many biological systems have already overcome these require-
ments, the proposed network architecture, called Symbiotic-
Sphere, applies biological concepts and mechanisms to design 
grid systems (application services and middleware platforms). 
In SymbioticSphere, each application service and middleware 
platform is designed as an artificial biological entity, analogous 
to an individual bee in a bee colony. Application services and 
middleware platforms implement biological concepts and 
mechanisms such as decentralization, energy level, healthy level, 
energy exchange between species, environment sensing, migra-
tion, replication and death. Like in biological systems, desirable 
system characteristics such as scalability, survivability and 
adaptability emerge from the collective actions and interactions 
of application services and middleware platforms. This paper 
presents the architectural design of SymbioticSphere, and de-
scribes how application services and middleware platforms act 
and interact with each other. Preliminary simulation results 
show that application services and middleware platforms collec-
tively adapt to dynamic changes in the network (e.g. user loca-
tion, network traffic and resource availability). 

I. INTRODUCTION 

Autonomic grid systems are expected to autonomously 
scale to enormous demand placed upon them, survive from 
partial systems failures and adapt to dynamic network envi-
ronments in order to improve user experience, expand sys-
tem’s operational longevity and reduce maintenance cost [1, 
2, 3]. In order to realize such autonomic grid systems, the 
authors of the paper observe that various biological systems 
have already developed the mechanisms necessary to achieve 
key requirements of autonomic grid systems such as auton-
omy, scalability, survivability and adaptability. The authors 
of the paper believe if grid systems adopt certain biological 
concepts and mechanisms, they may be able to meet these 
requirements. 

The SymbioticSphere architecture applies key biological 
concepts and mechanisms to design grid systems (application 
services and middleware platforms) 1 . In SymbioticSphere, 

                                                 
1 SymbioticSphere is an extension to the Bio-Networking Architecture [4, 5, 
6, 7]. The Bio-Networking Architecture was adopted by Object Management 
Group as a part of its standard specification for Super Distributed Objects [8]. 

each application service and platform is modeled as an artifi-
cial biological entity, analogous to an individual bee in a bee 
colony. An application service is implemented as an autono-
mous and distributed software agent. Each agent implements 
a functional service and follows simple behaviors similar to 
biological entities, such as replication, death, migration, 
pheromone emission and environment sensing. A middleware 
platform runs on a network host and operates agents (i.e. ap-
plication services). Each middleware platform implements a 
set of runtime services that agents use to perform their ser-
vices and behaviors, and follows biological behaviors such as 
replication, death and environment sensing. 

Similar to entities in the biological world, agents and plat-
forms in SymbioticSphere store and expend energy for living. 
Each agent gains energy in exchange for performing its ser-
vice to other agents or human users, and expends energy to 
use network and computing resources. Each platform gains 
energy in exchange for providing resources to agents, and 
continuously evaporates energy to the environment. Symbiot-
icSphere models agents and platforms as different biological 
species, and follows several concepts in ecological food chain 
to determine how much energy agents/platforms expend at a 
time and how often they expend energy.  

The abundance and scarcity of stored energy affect various 
behaviors of an agent/platform. For example, an abundance 
of stored energy is an indication of higher demand for the 
agent/platform; thus the agent/platform may be designed to 
favor replication in response to higher level of stored energy. 
A scarcity of stored energy (an indication of lack of demand) 
may eventually cause death of the agent/platform. 

Similar to biological systems, SymbioticSphere exhibits 
emergence of desirable system characteristics such as scal-
ability, survivability and adaptability. These characteristics 
emerge from the collective behaviors and interactions of 
agents and platforms, rather than they are not present in any 
single agent/platform. Agents and platforms act autono-
mously, influenced by local environment conditions (e.g. 
network traffic and resource availability) and local interac-
tions with other agents and platforms. 

This paper overviews the architectural design of Symbiot-
icSphere, and presents how agents and platforms implement 
biological concepts and mechanisms such as decentralization, 
energy level, healthy level, energy exchange, environment 
sensing, migration, replication and death. This paper also 



describes how agents and platforms interact with each other 
to collectively exhibit emergence of desirable system charac-
teristics (e.g. adaptability). Preliminary simulation results 
show that agents and platforms autonomously adapt to dy-
namic changes in the network (e.g. user location, network 
traffic and resource availability). In certain circumstances, 
agents and platforms spontaneously cooperate in a symbiotic 
manner to pursue their mutual benefits (i.e. to increase their 
adaptability), although each of them is not designed to do so. 

This paper is organized as follows. Section II summarizes 
key design principles of SymbioticSphere. Section III over-
views the architecture of SymbioticSphere and describes bio-
logical mechanisms implemented in agents and platforms. 
Section IV shows preliminary simulation results to evaluate 
the impact of the proposed biologically-inspired mechanisms 
on adaptability of grid systems. Sections V and VI conclude 
with discussion on related work and future work. 

II. DESIGN PRINCIPLES IN SYMBIOTICSPHERE  

SymbioticSphere consists of two major system compo-
nents: agents (applications services) and middleware plat-
forms (Fig. 1). Agents run (or live) on platforms, which in 
turn run on network hosts. Agents and platforms are designed 
based on the three principles described below, in order to 
collectively make grid systems scalable, survivable and adap-
tive. 

 

 

 

 

 

 

 

 

(1) Decentralization: Agents and platforms in Symbiotic-
Sphere are decentralized. There are no central entities that 
collect environment conditions in the network, and controls 
or coordinate agents/platforms (i.e. no directory servers and 
no resource managers). Agents/platforms act based on local 
environment conditions and local interactions with other 
agents/platforms. Decentralization can improve system’s 
scalability and survivability by avoiding a single point of 
performance bottleneck and failure [9, 10] and by avoiding 
any central coordination in deploying agents/platforms [11]. 

(2) Autonomy: Agents and platforms in SymbioticSphere are 
autonomous. They monitor their local network environments, 
and based on the monitored environmental conditions, they 
autonomously behave and interact with each other without 

any intervention from/to other agents, platforms and human 
users. 

(3) Adaptability: Agents and platforms in SymbioticSphere 
are adaptive to changing environment conditions (e.g. user 
demands, user locations and resource availability). Adapta-
tion is achieved through designing agent/platform behavior 
policies to consider local environment conditions. For in-
stance, agents may invoke migration behavior of moving to-
wards neighboring platforms that forward a large number of 
service requests from users. This results in the adaptation of 
agent locations; agents concentrate around the users who re-
quest their services. Also, platforms may invoke replication 
and death behaviors when their energy levels become over 
and below thresholds. This results in the adaptation of plat-
form population, and platforms adjust resource availability on 
them against the demands for resources. 

III. SYMBIOTICSPHERE 

This section describes how agents and platforms implement 
a series of biological concepts and mechanisms, and how they 
interact with each other.  

A. Agents 

Each agent consists of three parts: attributes, body and be-
haviors (Fig. 2). Attributes carry descriptive information re-
garding the agent, such as agent ID 2 , age, energy level, 
owner’s name, description of a service the agent provides, 
and price (in energy units) of the service that the agent pro-
vides. Each agent has a remotely accessible interface that 
allows human users and other agents to read its attribute val-
ues [5]. 
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Fig. 1 SymbioticSphere Components 

Body implements a service that the agent provides and con-
tains materials relevant to the service. For instance, an agent 
may implement a genetic algorithm for a large-scale optimi-
zation problem, while another agent may implement a physi-
cal and mathematical model for scientific simulations. An 
agent that implements a genetic algorithm for an optimization 
problem may contain artificial genes, instructions for muta-
tion and crossover, and fitness functions. 

Behaviors implement non-service related actions that are 
inherent to all agents. They control autonomous actions of 
each agent, as described in Section II. Agents can have an 
arbitrary number of behaviors. Some example agent behav-
iors are explained below. 

• Migration: Agents may migrate from one platform to an-
other. 

• Communication. Agents may communicate with other 
agents for the purposes of, for instance, requesting a ser-
vice or exchanging energy. 

                                                 
2 Agents and platforms maintain globally unique IDs. See [5] for more details 
on the design of globally unique IDs.  



• Energy exchange and storage: Agents may receive and 
store energy in exchange for providing services to other 
agents. Agents also expend energy. For instance, agents 
may pay energy units for services that they receive from 
other agents. In addition, when an agent uses resources on a 
platform (e.g. CPU and memory), it may pay energy units 
to the platform. 

 
• Replication: Agents may make a copy of themselves as a 

result of abundance of energy.  

• Death: Agents may die as a result of lack of energy. If en-
ergy expenditure of an agent is not balanced with the en-
ergy units it receives from providing services to other 
agents, it will not be able to pay for the resources it needs, 
i.e., it dies from lack of energy. When an agent is dead, an 
underlying platform removes the agent from the network 
environment and releases all the resources allocated to the 
agent.  

• Relationship maintenance: Agents may establish and main-
tain a limited number of relationships with other agents. A 
relationship contains information regarding the partner 
agent, for instance, the attributes of the partner agent. Rela-
tionships are autonomously maintained by the participant 
agents. Such relationships may have a variety of uses, in-
cluding performing discovery to search for agents. 

• Discovery: Agents may seek for other agents of certain 
attributes by forwarding queries to agents that they have re-
lationships to.  

• Pheromone emission: Agents may emit and leave a phero-
mone (or a trace) behind on a platform when they migrate 
to another platform. This is to indicate their presence to 

other agents. A pheromone contains the emitter’s ID and a 
reference to the platform that the emitter migrated to. 
Pheromones are emitted with certain strength and may de-
cay over time.  Pheromones may have a variety of uses, in-
cluding improving the performance of discovery. 

• Environment sensing. Agents may sense their local envi-
ronment. For instance, an agent may sense which agents 
are in local and neighboring platforms and what services 
they provide. An agent may also sense pheromones (e.g. 
which agents left pheromones on local and neighboring 
platforms) and resources (e.g. CPU cycles and memory 
space available on local and neighboring platforms). 
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Fig. 2 Agent Design in SymbioticSphere 

B. Platforms   

Platforms are execution environments (or middleware) for 
agents. Each platform runs on a network host and operates 
agents3. It abstracts low-level operating and networking de-
tails (e.g. network I/O and concurrency control for executing 
agents), and aids developing and deploying agents in the net-
work [5]. 

Each platform consists of three parts; attributes, behaviors 
and runtime services (Fig. 3). Attributes carry descriptive 
information regarding the platform, such as platform ID2, age, 
energy level and healthy level. Each platform has a remotely 
accessible interface that allows human users, agents and other 
platforms to read its attribute values [5]. 

Healthy level is defined as a function of the age of and re-
source availability on a network host that the platform runs 
on. The age indicates how long a local host remains alive in 
the network. It represents how much stable the local host is. 
Resource availability indicates how much resources (e.g. 
CPU cycles, memory space, disk space and network band-
width) are available for a platform and agents on the host. 

Healthy level affects various behaviors of a platform and 
agent. For example, higher healthy level indicates higher sta-
bility of and/or higher resource availability on a network host 
that the platform resides on. Thus the platform may be de-
signed to replicate itself on a healthier neighboring host than 
the current local host. This results in the adaptation of plat-
form locations. Platforms concentrate around stable and re-
source-rich network hosts. Also, lower healthy level indicates 
that the platform runs on a network host that is unstable 
and/or poor in resources. If agents are designed to migrate 
towards healthier (i.e. more stable and resource-rich) network 
hosts, the platform will eventually die due to energy starva-
tion because agents do not come and pay energy. This results 
in the adaptation of platform population. Platforms and 
agents avoid running on the network hosts that are unstable 
and/or poor in resources. 

 

                                                 
3 Currently, SymbioticSphere assumes that there is only one platform running 
on a network host.  



 
Behaviors are the actions that are inherent to all platforms. 

They control autonomous actions of each platform (see Sec-
tion II). Platforms can have an arbitrary number of behaviors. 
Some example platform behaviors are explained below. 

• Energy exchange and storage: Platforms may receive and 
store energy in exchange for providing resources to agents. 
Platforms may also periodically evaporate energy to the 
network environment. Evaporated energy is no longer 
available for any agents and platforms. 

• Healthy level management: Platforms may monitor and 
maintain healthy level of the network hosts that they reside 
on. Platforms may also inquire of neighboring platforms 
for the healthy level of their underlying network hosts.  

• Communication. Platforms may communicate with other 
platforms for the purposes of, for instance, inquiring the 
current healthy level. 

• Replication. Platforms may make a copy of themselves as a 
result of abundance of energy (i.e. an indication of higher 
demand for the platforms). A replicated (child) platform 
may be placed on a healthier host than the host where its 
parent platform resides on3.  

• Death. Platforms may die due to lack of energy. A dying 
platform uninstalls itself from the network and releases all 
resources the platform uses. Despite the death of a platform, 
an underlying network host remains active so that other 
platforms can run in the future. 

• Environment sensing: Platforms may sense their local envi-
ronment. For instance, a platform may sense how many and 
which agents are running on local and neighboring plat-
forms. A platform may also sense resources (e.g. CPU cy-
cles, memory space, disk space and network bandwidth) 
available on local and neighboring platforms. 

Runtime services are middleware services that agents and 
platforms use to invoke their behaviors. For example, each 
platform provides the lifecycle management service, which 

implements agent replication and death behaviors. Agents use 
the runtime service to perform replication or death behaviors 
[5]. In order to maximize the degree of decentralization and 
autonomy of agents/platforms, they only use the local run-
time services on the platform they reside. They are not al-
lowed to invoke any runtime services running on remote plat-
forms. Please also note that platforms do not provide global 
environment information, such as a list of agents/platforms 
running on the entire network or the locations of 
agents/platforms. Agents and platforms know their local envi-
ronment information, such as a list of agents running on local 
and neighboring platforms, or resources available on local 
and neighboring platforms.  
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Fig. 3 Platform design in SymbioticSphere 

C. Behavior Policies of Agents and Platforms 

Each agent and platform has policies for its behaviors. A 
behavior policy defines when to and how to invoke a particu-
lar behavior. Each behavior policy consists of one or more 
functions, or factors (Fi), which evaluate environment condi-
tions (e.g. resource availability on a local platform) or 
agent/platform status (e.g. energy level and healthy level). 
Each factor is given a certain weight (Wi) relative to its im-
portance. Behaviors are invoked if the weighted sum of factor 
values (Σ Fi*Wi) exceeds a threshold. For example, the fac-
tors in the agent migration behavior may include: 

• Distance to users, which encourages agents to move to-
wards users requesting the services provided by the agent. 

• Mutual repulsion, which encourages agents to repel with 
each other. 

• Healthy level, which encourages agents to migrate to a 
network host whose healthy level is higher. 

 Each agent/platform incurs energy loss (i.e. behavior cost) 
to invoke behaviors except death behavior. When the energy 
level of an agent/platform goes over the cost of a behavior, 
the agent/platform decides whether it performs the behavior 
by calculating a weighted sum of factor values. 

D. Energy Exchange between Agents and Platforms 

As described earlier, agents and platforms are modeled as 
biological entities. In the biological world, living entities try 
to maximize their energy gain, while minimizing their energy 
expenditure, in order to live longer and produce more off-
spring. Similarly, in SymbioticSphere, agents and platforms 
strive to gain more energy to live longer and produce more 
offspring. For example, agents may move towards users (i.e. 
energy sources) so that they can gain more energy from the 
users. Platforms may replicate themselves on healthier net-
work hosts so that the replicated (child) platforms can attract 
agents and gain energy from them. 

SymbioticSphere models agents and platforms as different 
types of biological entities (i.e. different species), and follows 
several concepts in ecological food chain. Fig. 4 shows a sim-



simplified energy flow in the ecological system. The sun 
gives light energy, and producers (e.g. plants and microor-
ganisms) convert the light energy to chemical energy. The 
chemical energy flows through multiple types of entities 
(species), called consumers. It will be eventually transferred 
to decomposers (e.g. bacteria and fungi). For example, shrubs 
(producers) convert the sun light energy to chemical energy, 
hares (primary consumers) consume shrubs, and foxes (sec-
ondary consumers) consume hares.  

 
When energy is transferred from one species to another, it 

is known that about 10% of the energy maintained by one 
species goes to another species [12]. The remaining 90% is 
used for metabolism, growth and actions/behaviors (e.g. mov-
ing).  

Fig. 5 shows the energy exchange in SymbioticSphere. Sym-
bioticSphere models users as the sun, agents as producers, 
and platforms as (primary) consumers. Similar to the sun, 
users have unlimited amount of energy. They pay energy 
units for services provided by agents. Agents gain energy 
from users4, and pay energy to consume resources provided 
by platforms. They pay 10% of the current energy level to 
platforms. Platforms gain energy from agents, and pay 
(evaporate) 10 % of the current energy level to the environ-
ment.  

Agents dynamically change the rate of transferring energy 
to platforms, depending on the rate of incoming service re-
quests from users. When agents process more service re-
quests from users, they consume more resources. Therefore, 

                                                 
4 Each agent specifies, in its body, the price (in energy units) of service that it 
provides.  

agents transfer energy units (i.e. 10% of the current energy 
level) to platforms more often. On contrary, they reduce their 
energy transfer rate in response to lower energy intake from 
users. 

In order to dynamically change energy transfer rate, each 
agent keeps an interval time between an incoming service 
request and a previous request. It records the average, short-
est and maximum intervals of previous N service requests (Ts, 
Ta and Tm, respectively). Fig. 6 shows how often each agent 
transfers energy to platforms. First, an agent waits for Ts and 
pay energy to an underlying platform. Then, the agent checks 
if a new service request(s) has arrived during the previous Ts 
interval. If arrived, the agent updates Ts, Ta and Tm values, 
waits for Ta, and then pays energy to a platform. Otherwise, 
it waits for Ta and pays energy to a platform. Similarly, each 
agent repeats energy transfers in Ts, Ta and Tm intervals. 
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Fig. 6 Energy Transfer Scheme in Agents and Platforms 
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Fig. 5 SymbioticSphere 

 
Ta is a simple moving average calculated from the inter-

vals of previous N service requests. The shortest and longest 
intervals play a role of weighted values to make energy trans-
fer rate follow dynamic changes in service request rate. Ts 
and Tm values are periodically reset (every M service re-
quests). 

Platforms dynamically change the rate to evaporate energy, 
depending on the rate of incoming energy transfers from 
agents. The more often they receive energy transfer from 
agents, the more often they evaporate energy (10% of the 
current energy level). Each platform changes its energy 
evaporation rate in the same way as each agent changes its 
energy expenditure rate. (i.e., each platform follows the 
mechanism described in Fig. 6.)  

IV. PRERIMINARY SIMULATION RESULTS 

This section evaluates the biologically-inspired mecha-
nisms in SymbioticSphere through simulation. This paper 
shows preliminary simulation results to examine how they 
impact on adaptability of grid systems. Simulations were car-
ried out with the SymbioticSphere simulator, which contains 



13,500 lines of Java code. It can run arbitrary number of 
agents, platforms, users and network hosts on simulated net-
works. This simulator is freely available at 
http://dssg.cs.umb.edu/symbiosis/ for researchers who in-
vestigate autonomic grid systems (Fig. 7). 

 
In this paper, adaptability is defined as service adaptation 

and resource adaptation. Service adaptation is the activities 
to adaptively improve the quality and availability of services 
provided by agents. The quality of services is measured as 
response time of agents for service requests from users. Ser-
vice availability is measured as the number of agents. Re-
source adaptation is the activities to adaptively improve 
availability and efficiency for utilizing resources provided by 
platforms. Resource availability is measured as the number of 
platforms that makes resources available for agents. Resource 
efficiency is measured as (the total number of user requests 
processed by agents) / (the total amount resources consumed 
by agents and platforms).  

A. Results of Energy Exchange Simulations 

In order to evaluate whether the energy exchange scheme 
described in Section III.D works well, an agent is deployed 
on a platform to accept service requests from a user. The 
agent receives service requests and energy units from a user, 
and pays some of the energy units to an underlying platform.  

Fig. 8 shows how service request rate changes during 24 
hours in simulation time. Fig. 9 shows how much energy the 
agent expends. The agent gains 10 energy units from a user in 
exchange for providing its service. In this simulation, two 
types of agents are implemented for evaluation purpose. The 
first type of agent implements the energy exchange scheme 
described in Section III.D. It uses “average,” “shortest,” and 
“longest” intervals in its energy expenditure cycle (see Sec-
tion III.D). The second type of agent uses the only “average” 
interval in its energy expenditure cycle.  
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Fig. 9 shows that the proposed energy exchange scheme al-
lows agents to change their energy expenditure rate against 
dynamic change in energy intake. Agent energy expenditure 
follows energy intake (or service request rate) well. In the 
energy exchange scheme only using “average” interval, agent 
energy expenditure does not follow energy intake (or service 
request rate) well. 

B. Configurations of Adaptability Simulations 

A series of the following simulations evaluate how agents 
and platforms achieve service adaptation and resource adap-
tation in a collective and symbiotic manner.  

A simulated network is a 4x4 grid topology network with 
16 network hosts (Fig. 10). At the beginning of each simula-
tion, a platform is initialized on network host 12, and an 
agent is deployed on the platform. A user is placed on net-
work host 7. Transmission latency is 0.1 second between two 
network hosts (one simulation cycle corresponds to 1 second 
in simulation time). Resource availability on each 
host/platform is quantified in resource units. The more re-
source units a host has, the more resources are available on 
the host. Each agent and platform consumes 9 and 30 energy 
units, respectively.  

 

 

Fig 7 Screenshot of the SymbioticSphere Simulator 
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Fig. 8 Change in service request 
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Fig. 9 Energy Expenditure Rate 



 
A user keeps propagating service requests according to a 

configured rate. Fig. 11 shows how service request rate 
changes for 24 hours (from 0:00 to 24:00).  

 
Agents implement replication, migration and death behav-

iors. Migration behavior policy considers three factors de-
scribed below 

• Service requests, (# of service requests on a remote plat-
form)/(# of service requests on a local platform), which 
encourages agents to move towards a user. 

• Agent population, (# of agents on a local platform)/(# of 
agents on a remote platform), which encourages agents to 
move toward a less-crowded platform.  

• Migration interval, the interval from a previous migration, 
which discourages too many agents to migrate too often.  

Weight values for these factors are one. If the current en-
ergy level of an agent exceeds 2000, the agent calculates a 
weighted sum of factor values (see Section III.C). Then, it 
invokes the migration behavior if the weighted sum exceeds a 
threshold (2.0). If there are multiple neighboring platforms, 
the agent calculates a weighted sum of factor values for each 
of the neighboring platforms, and migrates to a platform that 
generates the highest weighted sum. The behavior cost of 
migration is 100 energy units.   

Replication behavior is invoked when agent energy level 
exceeds 3000. The behavior cost of replication is 100 energy 
units.  A replicated (child) agent is placed on the platform 
that its parent agent resides on, and it receives the half 
amount of the parent’s energy level.  

Death behavior is invoked when agent energy level be-
comes zero.  

Each agent processes a service request in 0.2 second, and 
gains 10 energy units from a user in exchange for each re-
quest processed. The initial energy units of each agent is 
1000. 

Platforms implement replication and death behaviors. Rep-
lication behavior policy considers the following factor.  
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Fig. 10 Simulated Network 
• Healthy level, (# of service requests on a remote plat-

form)/(# of service requests on a local platform), which 
encourages platforms to perform replication. 

Weight values for this factor is one. If the current energy 
level of a platform exceeds 3000, the platform calculates a 
weighted sum of factor value (see Section III.C). It invokes 
the replication behavior if the sum exceeds a threshold. If 
there are multiple network hosts where a parent platform can 
replicate itself on, the platform calculates a weighted sum for 
each of the neighboring network hosts, and choose the net-
work host that generates the highest healthy level. A repli-
cated (child) platform receives the half amount of the parent’s 
energy level. The behavior cost of replication is 100 energy 
units.  

Death behavior is invoked when platform energy level be-
comes zero.  

Pseudo code of running users, agents and platforms in 
simulations is shown in Figure 12.  
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Fig. 11 Change in Service Request 

 
initialize platforms, agents and users 
While (not simulation last cycle) 

For each user do 
 send service requests to one of the nearest agents 

according to a configured service request rate. 
End For 
For each platform do 

make a decision on replication and death behaviors. 
update healthy level. 
expend (evaporate) energy. 

End For 
For each agent do 

If (a service request(s) received) do 
             process the request(s) and gain energy. 

 End If 
make a decision on replication, migration and death behaviors 
update average response time and distance to users 
expend energy to a local platform.  

End For 
End While 

 
Fig. 12 Pseudo Code of Simulation Algorithm 

 



C. Results of Adaptability Simulations 
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Fig. 14 The Number of Platforms  

Three simulation scenarios are implemented to evaluate the 
adaptability of agents and platforms. Scenario 1 initializes a 
platform as non-biological entity (on network host 12); thus it 
does not replicate and die. There is only one platform running 
throughout a simulation. Scenario 2 initializes a non-
biological platform on each network host (i.e. 16 platforms 
on 16 network hosts). The 16 platforms do not replicate and 
die. In Scenario 3, a biological platform is initialized on net-
work host 12. The platform can replicate and die based on the 
behavior policy described in a previous section. In either sce-
nario, agents are implemented as biological entities; they can 
migrate, replicate and die. A key simulation objective is to 
investigate agents and platforms in Scenario 3 against two 
extreme cases (i.e. Scenarios 1 and 2). 

Fig. 13 shows how service availability (i.e. the number of 
agents) changes against dynamic service request rate (Fig. 8). 
In Scenarios 1, 2 and 3, agents adapt their population to 
changes in service request rate. When service request rate 
becomes high, agents gain more energy and replicate them-
selves. In contrast, when service request rate becomes low, 
some agents die due to energy starvation since they cannot 
balance energy gain and expenditure. Biological mechanisms 
contribute for agents to improve service availability as a 
group. 

 
Fig 14 shows how resource availability (i.e. the number of 

platforms) changes against dynamic service request rate (Fig. 
8). Since platforms are not designed as biological entities in 
Scenarios 1 and 2, the number of platforms do not change 
(i.e. one and 16 platforms in Scenarios 1 and 2, respectively). 
In Scenario 3, in which platforms are designed as biological 
entities, the number of platforms dynamically changes against 
service request rate. When service request rate becomes high, 
agents gain more energy and transfer more energy to plat-
forms. Then, in response to abundance of stored energy, plat-
forms replicate themselves. In contrast, when service request 
rate becomes low, some platforms die due to energy starva-
tion since they cannot gain enough energy from agents to 
keep their population. Fig. 14 shows that biological mecha-
nisms contribute for a group of platforms to adaptively im-
prove resource availability as a group.  

 
Fig. 15 shows the average distance between agents and user 
in network hop counts. In Scenario 1, the distance remains 
constant (5 hop counts) because a platform cannot make its 
children platforms that agents may migrate to. In Scenario 2, 
in which a platform is statically initialized on every network 
host, the distance between agents and user rapidly decreases 
because agents can migrate to platforms that are closer to a 
user. The distance becomes zero in 1.5 hours (i.e. agents 
reach user’s location in 1.5 hours). In Scenario 3, the distance 
gradually decreases and becomes zero in 8 hours. Unlike 
Scenario 2, Scenario 3 begins with a single (biological) plat-
form. At the beginning of a simulation, the platform needs to 
wait for agents to grow their population and transfer it 
enough energy so that it can replicate itself on a neighboring 
network host. If the child platform is placed on a network 
host that is closer to a user, agents move to the platform, 
thereby decreasing the distance to a user by one hop count. 
This process takes more time than how agents move toward a 
user in Scenario 2.  
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Fig. 13 The Number of Agents 

Another important observation from Fig. 15 is that plat-
forms gradually move toward a user, although platform repli-
cation policy does not consider user location. This is an ex-
ample of symbiotic emergence. If replicated platforms are 
placed on hosts that agents want to migrate to (i.e. hosts 
closer to a user), the platforms will survive. Otherwise, they 
will die because agents do not migrate onto them and transfer 
energy to them. In a sense, agents indirectly instruct plat-
forms where to replicate themselves. This results in a mutual 
benefit for both agents and platforms. Agents can work closer 
to a user and gain more energy, and platforms gain more en-
ergy. 
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Fig. 15 Average Distance between Agents and User 



Fig. 16 shows the quality of services (i.e. the average re-
sponse time for agents to process service requests from a 
user). In the first three hours, response time becomes very 
high in either scenario, because agents have to store energy 
for a while to start replication. After the first three hours, 
agents increase their population to process more service re-
quests (Fig 11); thereby decreasing response time dramati-
cally. In Scenario 1, response time is greater than in Scenar-
ios 2 and 3 because agents do not migrate toward a user. 
Please note that response time include transmission latency 
between two network hosts (i.e. the closer agents work to a 
user, the shorter their response time becomes). In scenario 2, 
which is the best case scenario for the response time meas-
urement, agents migrate toward a user, and response time 
drops to 0.5 second in three hours. In scenario 3, agents have 
to wait for platforms to accumulate enough energy to start 
replication. Response time drops to 0.5 second in four hours. 
Fig. 16 shows biological mechanisms contribute for agents 
and platforms to collectively adapt agent response time.  
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Fig. 17 Resource Efficiency 

 
Fig. 17 shows resource efficiency, which indicates how many 
service requests can be processed per resource unit. It is 
measured as (the total number of user requests processed by 
agents) / (the total amount resources consumed by agents and 
platforms). Scenario 1 is the best case scenario in this case 
because only one platform is used to process all service re-
quests. Scenario 2 is the worst case scenario, because all ser-
vice requests are processed by 16 platforms including idle 
ones that do not operate agents. The result is constantly very 
low. In Scenario 3, both agents and platforms adapt their 
population to dynamic service request rate. Resource effi-
ciency in Scenario 3 is often close to the best case result in 
Scenario 1. Biological mechanisms contribute for agents and 
platforms to keep resource efficiency high.  
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V. RELATED WORK 

This work is an extended work to the Bio-Networking Ar-
chitecture, as described in Section I. In the Bio-Networking 
Architecture, agents are designed as biological entities, and 
they achieve service adaptation in a decentralized and collec-
tive manner [4, 5, 6, 7]. However, platforms are static and 
non-biological entities. Since they do not change their popu-
lation and locations dynamically, they cannot achieve re-
source adaptation. In SymbioticSphere, agents and platforms 
achieve both service adaptation and resource adaptation in a 
decentralized, collective and symbiotic manner. 

Resource Broker [13] proposes a resource adaptation 
mechanism for grid systems. In this mechanism, a centralized 
system component monitors heterogeneous environments 
where different network hosts have different levels of stabil-
ity and different resource availability. Given monitored envi-
ronment conditions, the mechanism adapts resource alloca-
tions for grid applications. Unlike Resource Broker, Symbiot-
icSphere service adaptation as well as resource adaptation 
with decentralized agents and platforms.  

[14] and [15] propose generic adaptation frameworks for 
grid systems. They can be used to achieve both service adap-
tation and resource adaptation. In these frameworks, central-
ized system components store the current environment condi-
tions, and decide which adaptation strategy to execute against 
the monitored conditions. In contrast, SymbioticSphere does 
not assume any centralized system components. Each of 
agents and platforms collects and stores environment condi-
tions, and autonomously decide which behavior to invoke.  

The concept of energy in SymbioticSphere is similar to 
money in economy. MarketNet [16] applies the concept of 
money to achieve market-based access control for network 
applications. However, it does not mention the details on how 
much and how often application components make payments 
with each other. SymbioticSphere currently focuses on ser-
vice adaptability and resource adaptability. It also provides 
application developers the details on energy exchange be-
tween system components (i.e. agents and platforms) so that 
they can consistently develop adaptive network systems.   



VI. CONCLUDING REMARKS 

This paper overviews the architectural design of Symbiot-
icSphere, and presents how it implements biological concepts 
and mechanisms to make grid systems (i.e. services and plat-
forms) scalable, survivable and adaptive. This paper also de-
scribes how agents and platforms interact with each other to 
collectively exhibit emergence of desirable system character-
istics (e.g. adaptability). Preliminary simulation results show 
that agents and platforms collectively adapt to dynamic 
changes in the network (e.g. user location, network traffic and 
resource availability) in a decentralized and autonomous 
manner.  

An extended set of simulations is planned to investigate 
how the proposed biologically-inspired mechanisms impact 
on scalability, survivability and adaptability of grid systems. 
For example, future simulations will operate agents and plat-
forms on larger heterogeneous networks where different net-
work hosts have different resource availability, intermittent 
unstable networks where network hosts and network links 
between them can be occasionally down, and mobile net-
works where users dynamically move.  
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