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Abstract
Wireless sensor applications (WSNs) are often required

to simultaneously satisfy conflicting operational objectives
(e.g., latency and power consumption). Based on an obser-
vation that various biological systems have developed the
mechanisms to overcome this issue, this paper proposes a
biologically-inspired adaptation mechanism, called MON-
SOON. MONSOON is designed to support data collection
applications, event detection applications and hybrid appli-
cations. Each application is implemented as a decentralized
group of software agents, analogous to a bee colony (appli-
cation) consisting of bees (agents). Agents collect sensor
data and/or detect an event (a significant change in sen-
sor reading) on individual nodes, and carry sensor data to
base stations. They perform these data collection and event
detection functionalities by sensing their surrounding en-
vironment conditions and adaptively invoking biologically-
inspired behaviors such as pheromone emission, reproduc-
tion and migration. Each agent has its own behavior pol-
icy, as a gene, which defines how to invoke its behaviors.
MONSOON allows agents to evolve their behavior policies
(genes) and adapt their operations to given objectives. Sim-
ulation results show that MONSOON allows agents (WSN
applications) to simultaneously satisfy conflicting objec-
tives by adapting to dynamics of physical operational envi-
ronments and network environments (e.g., sensor readings
and node/link failures) through evolution.

1. Introduction
Autonomous adaptability is a key challenge in wireless

sensor networks (WSNs) [1–4]. With minimal intervention
to/from human operators, WSN applications are required to
adapt their operations to dynamic changes in physical op-
erational environments (e.g., sensor readings) and network
environments (e.g., network traffic and node/link failures).
A critical issue in this challenge is that each WSN appli-
cation tends to have conflicting operational objectives. For
example, the success rate of data transmissions from indi-
vidual nodes to base stations is an important objective be-
cause higher success rate ensures that base stations have
more data for operators to better understand a physical oper-

ational environment and make better informed decisions. At
the same time, the latency of data transmissions from indi-
vidual nodes to base stations is another important objective.
Lower latency ensures that base stations can collect sensor
data for operators to understand a physical operational en-
vironment more quickly and make more timely decisions.
Success rate and latency conflict with each other. For im-
proving success rate, hop-by-hop recovery is often applied;
however, this can degrade latency. For improving latency,
nodes may transmit data to base stations with the shortest
paths; however, success rate can degrade because of traffic
congestion on the paths.

In order to address this adaptability issue, the authors
of the paper envision autonomous WSN applications that
understand their operational objectives and simultaneously
satisfy them against the dynamics of network environments.
Toward this vision, the authors observe that various bio-
logical systems have developed the mechanisms to over-
come the above adaptability issue. For example, each
bee colony autonomously satisfies conflicting objectives to
maintain its well-being [5]. Those objectives include max-
imizing the amount of collected honey, maintaining tem-
perature inside a nest and minimizing the number of dead
drones. If bees focus only on foraging, they fail to venti-
late their nest and remove dead drones. Given this obser-
vation, the proposed application architecture, called BiS-
NET/e (Biologically-inspired architecture for Sensor NET-
works, evolutionary edition), applies key biological mecha-
nisms to implement adaptive WSN applications.

Figure 1 shows the BiSNET/e runtime architecture. The
BiSNET/e runtime operates atop TinyOS on each node. It
consists of two software components: agents and middle-
ware platforms, which are modeled after bees and flowers,
respectively. Each WSN application is designed as a decen-
tralized group of agents. This is analogous to a bee colony
(application) consisting of bees (agents). Agents collect
sensor data and/or detect an event (a significant change
in sensor reading) on platforms (flowers) atop individual
nodes. Then, they carry sensor data to base stations, in
turn, to a backend server (the MONSOON server in Figure
1), which is modeled after a nest of bees. Agents perform
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Figure 1. BiSNET/e Runtime Architecture

these data collection and event detection functionalities by
autonomously sensing their surrounding environment con-
ditions and adaptively performing biological behaviors such
as pheromone emission, reproduction, migration, swarming
and death. A middleware platform runs on each node, and
hosts an arbitrary number of agents (Figure 1). It provides
a series of runtime services that agents use to perform their
functionalities and behaviors.

This paper describes a key mechanism in BiSNET/e,
called MONSOON1, which is an co-evolutionary adapta-
tion framework for agents. Each agent possesses its own
behavior policy, as a gene, which defines how to invoke its
behaviors. MONSOON allows agents to evolve their behav-
ior policies via genetic operations (mutation and crossover)
across generations and simultaneously adapt the behavior
policies to conflicting objectives in dynamic physical op-
erational environments and network environments. Cur-
rently, MONSOON considers three objectives: success rate,
latency and power consumption. The evolution process
in MONSOON frees application designers from anticipat-
ing all possible environment conditions and tuning their
agents’s behavior policies to the conditions at design time.
Instead, agents can autonomously evolve and tune their be-
havior policies. This significantly simplifies the implemen-
tation and maintenance of agents (i.e., WSN applications).

MONSOON supports data collection applications, event
detection applications and hybrid applications. Different
types of applications are implemented with different types
of agents. Data collection and event detection applications
are implemented with data collection agents (DAs) and
event detection agents (EAs), respectively. Both DAs and
EAs are used to implement hybrid applications, which per-
form both data collection and event detection. In hybrid
applications, DAs and EAs coevolve and adapt their behav-
ior policies (genes) in a symbiotic manner. EAs helps DAs
improve their behavior policies, and vice versa.

This paper is organized as follows. Section 2 overviews
the BiSNET/e runtime, and Section 3 describes the design
of MONSOON. Section 4 evaluates MONSOON with a
series of simulation results. Simulation results show that
MONSOON allows agents (WSN applications) to simul-

1Multiobjective Optimization for Network of Sensors using a cO-
evOlutionary mechaNism

taneously satisfy conflicting objectives by adapting to dy-
namics of physical operational environments and network
environments (e.g., sensor readings and node/link failures)
through evolution. Sections 5 and 6 conclude with some
discussion on related work.

2. The BiSNET/e Runtime
At the beginning of a WSN’s operation, one DA and

one EA are deployed on each node. They have randomly-
generated behavior policies. A DA collects sensor data on
each node periodically (i.e., at each data collection cycle)
and carry the data to a base station on a hop-by-hop basis.
An EA collects sensor data on each node periodically, and if
it detects an event (i.e., a significant change in sensor data),
carries the data to a base station on a hop-by-hop basis. If
an event is not detected, the EA discards the data.

2.1. Agent Structure and Behaviors
Each agent consists of attributes, body and behaviors.

Attributes carry descriptive information on an agent. They
include agent type (i.e., EA or DA), behavior policy (gene),
sensor data to be reported to a base station, the data’s time
stamp, and the ID of a node where the data is collected.

Body implements the functionalities of an agent: collect-
ing and processing sensor data (e.g., discarding it or report-
ing it to a base station).

Behaviors implement actions inherent to all agents. Sim-
ilar to biological entities (e.g., bees), agents sense their
surrounding environment conditions and behave according
to the sensed conditions without any intervention from/to
other agents, platforms, base stations and human operators.
This paper focuses on the following seven behaviors.

(1) Food gathering and consumption: Biological enti-
ties strive to seek food for living. For example, bees gather
nectar to produce honey. Similarly, each agent periodically
reads sensor data (as nectar) to gain energy (as honey)2, and
consumes a constant amount of energy for living.

(2) Pheromone emission: Agents may emit different
types of pheromones: migration and alert pheromones.
They emit migration pheromones on their local nodes
when they migrate to neighboring nodes. Each migration
pheromone references the destination node an agent has mi-
grated to. Agents also emit alert pheromones when they fail
migrations within a timeout period. Each alert pheromone
references a possibly failed node that an agent could not mi-
grate to. Each pheromone has its own concentration, which
decays by half at every data collection cycle. A pheromone
disapears when its concentration becomes zero.

(3) Replication: EAs may make a copy of themselves
in response to the abundance of stored energy, while DAs
always make a copy of themselves in each data collection

2The concept of energy in BiSNET/e does not represent the amount of
physical battery in a node. It is logically affects agent behaviors.



cycle. A replicated (child) agent is placed on the node that
its parent resides on, and it inherits the parent’s agent type
and behavior policy (gene). Replicated agents are intended
to move toward base stations to report collected sensor data.

(4) Migration: Agents may move from one node to an-
other. Migration is used to transmit agents (sensor data) to
base stations. Each agent chooses a migration destination
node by sensing three types of pheromones available on the
local node: base station, migration and alert pheromones.

Each base station periodically propagates base station
pheromones to individual nodes in the network. Their con-
centration decays on a hop-by-hop basis. Using base station
pheromones, agents can sense where base stations exist ap-
proximately, and move toward the base stations by climbing
pheromone’s concentration gradient3.

An agent may move to a base station by following a mi-
gration pheromone trace on which many other agents have
traveled. The trace can be the shortest path to the base
station. Conversely, an agent may goes off a migration
pheromone trace and follows another path to a base station
when the concentration of migration pheromones is too high
on the trace (i.e., when too many agents have followed the
trace). This avoids separating the network into islands. The
network can be separated with the migration paths that too
many agents follow, because the nodes on the paths con-
sume more power and go down earlier than the others.

An agent may also avoid moving to a node referenced
by an alert pheromone. This allows agents to reach base
stations by bypassing link/node failures.

(5) Swarming: Agents may swarm (or merge) with oth-
ers on their ways to base stations. Multiple agents become
a single agent. (A DA can merge with both DAs and EAs,
and an EA can merge with both EAs and DAs.) The re-
sulting agent (swarm) aggregates sensor data contained in
other agents, and uses the behavioral policy of the best agent
in the swarm in terms of latency and power consumption.
This data aggregation saves power consumption of nodes
because in-node data processing requires much less power
consumption than data transmission does.

(6) Reproduction: Once agents arrive at the MON-
SOON server ( Figure 1), they are evaluated according to
their objectives. Then, MONSOON selects best-performing
(or elite) agents, and propagates them to individual nodes.
An agent running on each node performs reproduction with
one of the propagated agents. A reproduced agent inher-
its a behavior policy (gene) from its parents via crossover,
and mutation may occur on the inherited behavior policy.
Reproduced agents perform a generation change by taking
over existing agents running on individual nodes.

Reproduction is intended to evolve agents so that the
agents that fit better to the environment become more abun-

3Base station pheromones are designed after the Nasonov gland
pheromone, which guides bees to move toward their nest [6].

dant. It retains the agents whose fitness to the current net-
work conditions is high (i.e., the agents that have effective
behavior policies, such as moving toward a base station in
a short latency), and eliminates the agents whose fitness is
low (i.e., the agents that have ineffective behavior policies,
such as consuming too much power to reach a base station).
Through successive generations, effective behavior policies
become abundant in agent population while ineffective ones
become dormant or extinct. This allows agents to adapt to
dynamic network conditions.

(7) Death: Agents periodically consume energy for liv-
ing, and expend energy to invoke their behaviors. (The en-
ergy costs to invoke behaviors are constant for all agents.)
Agents die due to lack of energy when they cannot bal-
ance energy gain and expenditure. The death behavior is
intended to eliminate the agents that have ineffective behav-
ior policies. For example, an agent would die before arriv-
ing at a base station if it follows a too long migration path.
When an agent dies, the local platform removes the agent
and releases all resources allocated to the agent.

2.2. Behavior Sequences for DAs and EAs
Figures 2 and 3 show a sequence of behaviors that each

DA and EA perform on a node in each data collection cycle.
A DA reads sensor data (as nectar) with the underlying

sensor device and gains a constant amount of energy (as
honey). Given the energy intake (EF), each agent updates
its energy level as follows.

E(t) = E(t−1) + EF (1)

E(t) is the current energy level of the DA, and E(t−1) is
the DA’s energy level in the previous data collection cycle.
t is incremented by one at each data collection cycle.

If a DA’s (E(t)) becomes very low (below the death
threshold: TD), the DA dies due to starvation4.

A DA replicates itself in each data collection cycle. A
replicating (parent) agent splits its energy units to halves
( E(t)−ER

2 ), gives a half to its child agent, and keeps the other
half. ER is the energy cost for an agent to perform the repli-
cation behavior. A child agent contains the sensor data that
its parent collected, and carries it to a base station.

Each replicated DA migrates toward a base station on a
hop by hop basis. On each intermediate node, it examines
Equation 2 to determine which next node it migrates to.

WS j =

3∑
t=1

wt
Pt, j −Ptmin

Ptmax −Ptmin

(2)

An DA calculates this weighted sum (WS j) for each
neighboring node j, and moves to a node that generates
the highest weighted sum. t denotes pheromone type; P1 j,

4If all agents are dying on a node at the same time, a randomly selected
agent for each type (i.e., EA and DA) will survive. At least one agent of
each type runs on each node.



P2 j and P3 j represent the concentrations of base station,
migration and alert pheromones on the node j. Ptmax and
Ptmin denote the maximum and minimum concentration of
Pt among neighboring nodes.

When a DA is migrating to a neighboring node, it emits
a migration pheromone on the local node. If the DA’s
migration fails, it emits an alert pheromone. Each alert
pheromone spreads to one-hop away neighboring nodes.

for each data collection cycle

do



Read sensor data and gain energy (EF ).
Update energy level (E(t)).
if E(t) < the death threshold (TD)

then Invoke the death behavior.
Invoke the replication behavior to make a child agent.
Give the half of the current energy level to a replicated (child) agent.
for each migrating agent

do



Determine the destination node of migration.
Emit a migration pheromone on the local node.
Migrate to a neighboring node.
if Migration fails

then
{

Emit an alert pheromone on the local node.
Propagate it to neighboring nodes.

Figure 2. A Sequence of DA Behaviors in
Each Data Collection Cycle

while true

do



Read sensor data and gain energy (EF ).
Update energy level (E(t)).
if E(t) < the death threshold (TD)

then Invoke the death behavior.
while E(t) > the replication threshold (TR(t))

do
{

Invoke the replication behavior to make a child agent.
Give the half of the current energy level to the child agent.

for each migrating agent

do



Determine the destination node of migration.
Emit a migration pheromone on the local node.
Migrate to a neighboring node.
if Migration fails

then
{

Emit an alert pheromone on the local node.
Propagate it to neighboring nodes.

Figure 3. A Sequence of EA Behaviors

When an EA reads sensor data (as nectar) with the under-
lying sensor device and gains energy (as honey), its current
energy level (E(t)) is updated with Equation 3.

E(t) = E(t−1) + S ·M (3)

S represents the absolute difference between the current
and previous sensor data. M is metabolic rate, which is a
constant value between 0 and 1.

Each EA replicates itself if its energy level exceeds the
replication threshold: TR(t) (Figure 3). The replication
threshold is continuously adjusted as EWMA (Exponen-
tially Weighted Moving Average) of each EA’s energy level:

TR(t) = (1−α)TR(t−1) +αE(t) (4)

TR(t) is the current replication threshold, and TR(t − 1)
is the one in the previous data collection period. EWMA

is used to smooth out short-term minor oscillations in the
data series of E. It places more emphasis on the long-term
transition trend of E; only significant changes in E have the
effects to change TR. The α value is a constant to control
the responsiveness of EWMA against the changes of E.

Similar to DAs, a parent EA splits its energy units to
halves, gives a half to its child agent, and keeps the other
half. The EA keeps replicating itself until its energy level
becomes less than its TR. A child agent contains the sensor
data that its parent collected, and carries it to a base station.

EAs perform the migration behavior with Equation 2 in
the same way as DAs do.

2.3 Agent Behavior Policy

EAs and DAs have the same structure for behavior poli-
cies (genes). Each behavior policy contains a set of weight
values in Equation 2 (wt,1 ≤ t ≤ 3). w1 and w3 are non neg-
ative, and w2 can be negative. These weight values govern
how agents perform the migration behavior. For example,
if an agent has zero for w2 and w3, the agent ignores mi-
gration and alert pheromones, and moves toward the base
stations by climbing the concentration gradient of base sta-
tion pheromones. If an agent has a positive value for w2, it
follows a migration pheromone trace on which many other
agents have traveled. A negative w2 value allows an agent
to go off a migration pheromone trace and follow another
path toward a base station. If an agent has a positive w3, it
moves to a base station by bypassing link/node failures.

3. MONSOON
MONSOON is a coevolutionary multiobjective adapta-

tion mechanism designed for agents in BiSNET/e. It allows
agents to heuristically adapt to multiple objectives simulta-
neously. This adaptation process is performed through elite
selection and genetic operations. The elite selection process
evaluates each type of agents (DAs and EAs) that arrive at
base stations, based on given objectives, and chooses the
best (or elite) ones. Elite agents are propagated to the net-
work in order to perform genetic operations and reproduce
an offspring (next generation) agent on each node. Elite se-
lection is performed in the MONSOON server (see Figure
1), and genetic operations are performed in each node.

3.1. Operational Objectives
Agents (DAs and EAs) consider three conflicting objec-

tives: latency, cost and success rate of their migration (i.e.,
data transmission) from individual nodes to base stations.

(1) Latency represents the time required for an agent
(DA or EA) to travel to a base station from a node where
the agent is born (replicated). As depicted below, latency is
measured as a ratio of this agent travel time to the physical
distance (PD) between a base station and a node where the



agent is born. The MONSOON server knows the location
of each node with a certain localization mechanism.

Latency =
Agent travel time (sec)

PD (meter)
(5)

(2) Cost represents the amount of power consumption
required for an agent (DA or EA) to travel to a base station
from a node where the agent is born. It is measured with
the total number of data transmissions, each node’s radio
transmission range (radius), and PD.

Cost =
Total # o f data transmissions

Transmission range/PD
(6)

The total number of data transmissions include success-
ful and unsuccessful (failed) agent migrations as well as the
transmissions of migration or alert pheromones.

(3) Success Rate is measured differently for DAs and
EAs. For DAs, it is measured as follows.

S uccess rateDA =
# o f agents that arrive at base stations

The total # o f nodes
(7)

For EAs, success rate is measured as follows.

S uccess rateEA =
# o f success f ul agent migrations

The total # o f attempts o f agent migrations
(8)

3.2. Elite Selection
Figure 4 shows how elite selection occurs at the MON-

SOON server in each data collection cycle. The MON-
SOON server performs the same selection process for EAs
and DAs separately. The first step is to obtain three objec-
tive values (i.e., latency, cost and success rate) from each of
the agents that reach the MONSOON server via base sta-
tions. Then, each agent is evaluated whether it is dominated
by another agent. An agent is considered to be dominated if
another agent outperforms it in all of three objectives.
Empty the archive
for each data collection cycle

do



Empty the population pool.
Collect agents from the network.
Add collected agents to the population pool.
Move agents from the archive to the population pool.
Empty the archive
for each agent of the ones in the population pool

do


if not dominated by all other agents in
the population pool
then Add the agent to the archive.

Select elite agents from the archive.
Propagate elite agents to the network.

Figure 4. Elite Selection in MONSOON

In the next step, a subset of non-dominated agents are
selected as elite agents. This is performed with a hypercube
space, which a three dimensional space whose axes repre-
sent three objectives (i.e., latency, cost and success rate).
Each axis of the hypercube space is divided so that the space

is divided into small cubes. Each non-nominated agent is
plotted in this hypercube space based on their objective val-
ues. A single agent is randomly selected from each cube as
an elite agent. This elite selection is designed to maintain
the diversity of elite agents’ genes. The diversification of
agent genes contribute to improve agents’ adaptation even
to unanticipated network conditions.

Figure 5 shows an example hypercube space. Each axis
is divided into two ranges; therefore, eight cubes exist in
total. Thus, the maximum number of elite agents is eight. In
this example, six (A to F) non-dominated agents are plotted
in the hypercube space. Three agents (B, C, and D) are
plotted in the lower left cube, while the other three agents
(A, E, and F) are plotted in three different cubes. From the
lower left cube, only one agent is randomly selected as an
elite agent. A, E, and F are selected as elite agents because
they are in different cubes.

Success Rate
(Maximize)

Latency
(Minimize)

Cost
(Minimize)

Non-dominated
 agent

A

B

C
D

E

F

Figure 5. An Example Elite Selection

3.3. Genetic Operations
Once elite DAs and EAs are selected, the MONSOON

server propagates them to each node in the network. They
are propagated with base station pheromones.

Based on a certain reproduction probability, an agent
performs the reproduction behavior on each node through
genetic operations (crossover and mutation) when elite
agents arrive at the node. As a mating partner, the agent se-
lects one of the elite agents that has the most similar gene.
Gene similarity is measured with the Euclidean distance be-
tween the values of two genes. DAs can mate with elite
EAs, and EAs can mate with elite DAs. This cross-mating
allows DAs and EAs to coevolve their behavior policies;
DAs can improve EAs’ genes, and vice versa.

During reproduction, an agent inherits the half of its gene
from its parent agent and the other half from its parent’s
mating partner. Mutation occurs on the child agent’s gene
with a certain mutation probability by randomly changing
gene values within a predefined value range.

4. Simulation Results
This section shows a set of simulation results to evaluate

MONSOON. It is evaluated with a data collection applica-



tion (Section 4.1), event detection application (Section 4.2)
and hybrid application (Section 4.3). A simulated WSN
consists of 100 nodes uniformly deployed in an observa-
tion area of 300x300 square meters. Each node’s commu-
nication range is 30 meters. A base station is deployed
on the northwestern corner of the observation area. The
base station links the MONSOON server via emulated se-
rial port connection. All the software components in the
BiSNET/e runtime are implemented in nesC, and the MON-
SOON server is implemented in Java. Simulation time is
counted with ticks. Each tick represents five minutes. In
genetic operations, the reproduction probability is 0.75, and
the mutation probability is 0.025.

4.1 Data Collection Application
A data collection application is implemented with DAs

that perform the sequence of behaviors shown in Figure 2.
No EAs are used in this application. The data collection
cycle corresponds to a simulation tick (five minutes).

Figure 6 (a) shows the average objective values produced
by DAs at each simulation tick. Each objective value grad-
ually improves and converges at the 17th tick. This simula-
tion result shows that MONSOON allows DAs to simulta-
neously satisfy conflicting objectives by evolving their be-
havior policies.

Figures 8, and 9 and 10 show the objective values that
elite DAs produced at the 20th tick. Since each objective
value’s change is less than 1% from the 17th to 20th tick, it
is fair enough to say that the elite DAs are on the Pareto
front at the 20th tick. Figures 8, and 9 and 10 plot the
elite DAs in three different perspectives: latency-cost, cost-
success rate, and latency-success rate perspectives. Each
gray dot represents an elite DA, and a black dot represents
overlapping elite DAs. These figures demonstrate that elite
agents are well diversified as intended by an elite selection
process described in Section 3.2.

Figure 6 (b) shows how the performance of DAs changes
against a dynamic node addition. 25 nodes are added at ran-
dom locations at the 20th tick. Upon this change in the net-
work environment, objective values degrade dramatically
because DAs have randomly-generated behavior policies on
the new nodes. Those DAs cannot migrate efficiently to-
ward the base station. Also, enough pheromones are not
available on new nodes; DAs cannot make proper migra-
tion decisions when they move to the new nodes. However,
DAs gradually improve their performance again, and objec-
tive values converge again at the 43th tick. MONSOON al-
lows DAs to autonomously recover application performance
despite dynamic node addition by evolving their behavior
policies.

Figure 6 (c) shows how the performance of DAs changes
against dynamic node failures. 25 nodes randomly fail
at the 20th tick. Objective values degrade because some
DAs try to migrate to failed nodes referenced by migration
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Figure 6. Objective Values of DAs
without EAs
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(b) Node Addition
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(c) Random Node Failure
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(d) Selective Node Failure
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(e) Base Station Failure

Figure 7. Objective Values of EAs
without DAs
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jective Values on the Pareto Front

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Latency (Minimize)

S
u

c
c
e
s
s
 R

a
te

 (
M

a
x
im

iz
e
)

Figure 10. Latency-Success
Rate Objective Values on the
Pareto Front

pheromones. This increases the number of unsuccessful
agent migrations. However, DAs gradually improve their
performance again, and objective values converge again at
the 45th tick. MONSOON allows DAs to autonomously
recover application performance despite dynamic node fail-
ures by evolving their behavior policies.

Figure 6 (d) shows how the performance of DAs changes
when nodes selectively fail in a specific area. At the 20th
tick, 20 nodes fail in the middle of WSN observation area.
Hence, a WSN has a hole in its middle area. Compared with
Figure 6 (c), it takes longer time for DAs to recover their
performance. Objective values converge at 50th tick again.
The converged cost and latency are worse than the ones at
the 20th tick because DAs have to detour a hole (i.e., a set of
failed nodes) and take longer migration paths to the base sta-
tion. This simulation results shows that MONSOON allows
DAs to survive selective node failures through evolution.

Figure 6 (e) shows how the performance of DAs changes
against base station failures. In this simulation scenario,
two base stations are deployed at the northwestern and
southeastern corners of WSN observation area. At the 20th
tick, a base station at the southeastern corner fails. Ob-
jective values degrade because some DAs try to migrate
toward the failed base station referenced by base station
pheromones. This increases the number of unsuccessful
agent migrations. However, DAs gradually improve their
performance again, and objective values converge again at
the 37th tick. MONSOON allows DAs to autonomously
evolve and recover application performance despite dy-
namic base station failures.

4.2 Event Detection Application

An event detection application is implemented with EAs
that perform the sequence of behaviors shown in Figure 3 in
every simulation tick. No DAs are used in this application.
This simulation study simulates an event, which occurs in
the middle of WSN observation area at the 50th tick and
radially spreads over time.

Figure 7 (a) shows the average objective values at each
simulation tick. Upon an event detection, objective values
are low because EAs use random behavior policies at first.
However, each objective value gradually improves and con-
verges at the 45th tick. This simulation result shows that
MONSOON allows EAs to simultaneously satisfy conflict-
ing objectives by evolving their behavior policies.

Figure 7 (b) shows how the performance of EAs changes
against a dynamic node addition. 25 nodes are added at
random locations at the 50th tick. Upon this environmental
change, objective values degrade slightly because EAs have
randomly-generated behavior policies on the new nodes.
Those EAs cannot migrate efficiently toward the base sta-
tion. However, EAs gradually improve their performance
immediately, and objective values converge again at the
70th tick. MONSOON allows EAs to autonomously re-
cover application performance despite dynamic node addi-
tion by evolving their behavior policies.

Figure 7 (c) shows how the performance of EAs changes
against dynamic node failures. 25 nodes randomly fail at the
50th tick. Objective values degrade slightly because some
EAs try to migrate to failed nodes referenced by migration
pheromones. This increases the number of unsuccessful
agent migrations. However, EAs gradually improve their
performance again, and objective values converge again at
the 72th tick. MONSOON allows EAs to autonomously
recover application performance despite dynamic node fail-
ures by evolving their behavior policies.

Figure 7 (d) shows the result of a simulation when 20
sensor nodes are selected in selective fashion, i.e. create a
hole in the middle of network, to be deactivated at the 50th
tick. Hence, the sensor network contains a hole in the mid-
dle of the network. Compared with the result in figure 7 (c),
MONSOON takes longer time to improve the performance
of the WSN. The success rate converges at about the 75th
tick to approximately 38%. The cost and latency also show
the similar trend. Particularly, after the 52nd tick, the av-



erage value of cost and latency are higher than the values
just before the 20th tick because agents have to detour in a
longer path to avoid the hole in the middle of the network.
The simulation results shows that MONSOON allows WSN
to survives a selective sensor nodes failure by adjusting the
operational parameters of WSN to be suitable to the changes
in network condition.

Figure 7 (e) shows the result of a simulation which ini-
tially has two base stations deployed at the northwestern and
southeastern corner of the observation area. Then, at the
50th tick, the base station at the southeastern corner is de-
activated. From the figure, at the 51st tick, the success rate
drops sharply to about 20% from around 50% in the 50th
tick because more than a half of the agents still try to move
to the base station at the southeastern corner. However, the
success rate is improved successively and reach the same
level as before the base station is deactivated at the 66th tick.
Cost and latency show the same trend. MOSOON allows
WSN to survives a base station failure by autonomously di-
recting all agents to the remaining base station.

4.3 Hybrid Application
This section represents simulation results from a sen-

sor network with two application deployed simultaneously.
Figure 11 shows the average objective values from collected
DAs, i.e. for data collection application, in each simulation
ticks. On the other hand, figure 12 shows the average ob-
jective values from collected EAs, i.e. for event collection
application, in each simulation ticks.

In the figure 12 (a), at 50th simulation ticks, oil spill hap-
pens and EAs start detecting and moving to the base station.
The impact of EAs on DAs can be observed from the figure
with the drop in success rate and the increase of cost and
latency. However, within ten simulation ticks, MONOON
allows DAs to adapt to the EAs and retain their perfor-
mance. The simulation results shows that MONSOON al-
lows a WSN application to adapt to the other application
such that they can co-exist tranquilly in a same sensor net-
work.

Figure 12 (b), (c), (d) and (e) show the similar scenario as
in figure 12 (b), (c), (d) and (e), respectively. The simulation
result in the former set of the figures also show the similar
trend as in the later set of the figures; therefore, MONSOON
allows a WSN application to adapt to network changes, i.e.
partial node failure or the base station failure, even when it
has to work simultaneously with another application on the
same network.

Figure 12 (a) portraits the same scenario as in figure 7
(a). In the figure, 12 (a), sensor network hosts two appli-
cations, data collection and event detection. However, the
objective values of event detection application, i.e. EAs, in
figure 12 (a) are improved faster than in figure 7 (a). For ex-
ample, the latency is reduced to lower than 0.05 at around
the 28th tick in figure 12 (a) but it takes about the 38th tick
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(b) Node Addition
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(c) Random Node Failure
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(d) Selective Node Failure
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(e) Base Station Failure

Figure 11. Objective Values of DAs
with EAs
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(b) Node Addition
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Figure 12. Objective Values of EAs
with DAs



in figure 7 (a) to reduce to the same level. Thanks to cross-
mating (see Section 3.3) , MONSOON allows event detec-
tion application, i.e., EAs, to improve its objective values
by using information from the other application. Figure 12
(b), (c), (d) and (e) also show the similar results.

4.4 Power Consumption
Figure 13 shows the impact of MONSOON and BiS-

NET/e on power consumption, and compare it with the
power consumption by RUGGED [7, 8]. RUGGED is a
gradient-based routing protocol. Figure 13 compares the
average power consumption of nodes running BiSNET/e
and RUGGED in the simulation scenario of Figure 6 (a).
BiSNET/e consumes more power than RUGGED first be-
cause agents use random behavior policies. However,
MONSOON allows agents to evolve their behavior poli-
cies and, in turn, reduce power consumption. After the
17th tick, power consumption is mostly same in BiSNET/e
and RUGGED. Power consumption is nearly constant in
RUGGED because it does not have dynamic adaptation
mechanisms.
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Figure 13. Average Power Consumption

4.5 Memory Footprint
Table 1 shows the memory footprint of the BiSNET/e

runtime in a MICA2 mote, and compares it with the foot-
print of Blink (an example program in TinyOS), which pe-
riodically turns on and off an LED, RUGGED and Agilla,
which is a mobile agent platform for WSNs [9]. The BiS-
NET/e runtime is lightweight in its footprint thanks to the
simplicity of the biologically-inspired mechanisms in BiS-
NET/e. BiSNET/e can even run on a smaller-scale nodes,
for example, TelosB, which has 48KB ROM.

Table 1. Memory Footprint in a MICA2 Mote
RAM (KB) ROM (KB)

BiSNET 2.5 30.0
Blink 0.04 1.6

RUGGED 0.84 20
Agilla 3.59 41.6

5. Related Work
This work is an extension to the authors’ prior work,

BiSNET [10]. BiSNET allows agents to autonomously
adapt to dynamic network conditions. However, it does
not investigate evolutionary adaptation (i.e., MONSOON);

agent behavior policies are manually configured through
trial-and-errors and fixed at runtime. Unlike BiSNET, BiS-
NET/e allows agents to dynamically adapt their behavior
policies even to unanticipated network conditions.

MONSOON is designed as an extension to an existing
mutiobjective optimization algorithm, called PESA-II [11],
which in turn extends the NSGA-II algorithm [12]. MON-
SOON executes elite selection and genetic operations at
physically different locations (i.e., at the MONSOON server
and individual nodes, respectively), while both PESA-II and
NSGA-II execute the two processes at the same location. In
MONSOON, an agent chooses a mate that has the closest
gene to its own gene, in order to consider the agent’s per-
formance stability. A mate is randomly chosen from the
elite archive in PESA-II. In NSGA-II, a mate is selected
with a binary tournament. Moreover, unlike PESA-II and
NSGA-II, MONSOON considers coevolution between dif-
ferent types of agents (DAs and EAs).

kOS is an operating system that applies biological mech-
anisms to implement adaptive WSN applications [13].
However, kOS has not implemented specific biologically-
inspired mechanisms yet. Also, [13] does not provide
any evaluation results as well as the implementation de-
tails of kOS. In contrast, BiSNET/e implements specific
biologically-inspired mechanisms such as pheromone emis-
sion, reproduction, genetic operations and migration. More-
over, this paper evaluates the impacts of those mechanisms
on WSN applications’ (i.e., agents’) adaptability.

Agilla proposes a programming language to implement
mobile agents for WSNs, and provides a runtime system
(interpreter) to operate agents on TinyOS [9]. On the other
hand, BiSNET/e does not focus on investigating a new pro-
gramming language for WSNs. BiSNET/e and Agilla pro-
vide a similar set of behaviors such as migration and repli-
cation. However, Agilla does not address the research is-
sues that BiSNET/e focuses on: evolutionary adaptation to
conflicting objectives. In addition, BiSNET/e focuses on
its design simplicity and runtime lightweight. As shown in
table 1, BiSNET/e is much more lightweight than Agilla.

Several research efforts have applied genetic algorithms
to WSNs, for example, to cluster-based routing [14–17],
data processing [18], localization [19] and node place-
ment [20, 21]. Every work uses a fitness function that com-
bines multiple objective values as a weighted sum, and uses
the function to rank agents/genes in elite selection. Applica-
tion designers need to manually configure the weight values
in a fitness function through trial-and-errors. In BiSNET/e,
no manually-confired parameters exist for elite selection be-
cause of a domination ranking mechanism. As a result, BiS-
NET/e requires much less configuration cost for application
designers. Also, [14,15,17,19–21] do not consider dynam-
ics in the network, but assumes the network is static.

Evolutionary multiobjective optimization algorithms



have been used for node placement [22–24] and rout-
ing [25, 26]. In each of these work, an optimization process
is performed in a central server. This can lead to scalabil-
ity issue as the network size increases. In contrast, MON-
SOON is carefully designed to perform its adaptation pro-
cess in both the MONSOON server and individual nodes.

6. Conclusion
This paper describes an evolutionary multiobjective

adaptation framework, MONSOON, in a biologically-
inspired application architecture, called BiSNET/e. MON-
SOON allows WSN applications to simultaneously satisfy
conflicting operational objectives by adapting to dynam-
ics of physical operational environments and network en-
vironments (e.g., sensor readings and node/link failures)
through evolution. Thanks to a set of simple biologically-
inspired mechanisms, the BiSNET/e runtime is imple-
mented lightweight.
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