
Macroprogramming Spatio-temporal Event Detection and Data Collection in
Wireless Sensor Networks: An Implementation and Evaluation Study

Hiroshi Wada, Pruet Boonma and Junichi Suzuki
Department of Computer Science

University of Massachusetts, Boston
Boston, MA 02125-3393

{shu, pruet, jxs}@cs.umb.edu

Abstract
This paper proposes and evaluates a spatio-temporal

macroprogramming paradigm for wireless sensor networks
(WSNs). The proposed paradigm, called SpaceTime Oriented
Programming (STOP), is designed to reduce the complexity
to program event detection and data collection by specify-
ing them from a global viewpoint as a whole rather than a
viewpoint of sensor nodes as individuals. STOP treats space
and time as first-class citizens and combines them as space-
time continuum. A spacetime is a three dimensional object
that consists of a two spatial dimensions and a time playing
the role of the third dimension. STOP allows application de-
velopers to program event detection and data collection to
spacetime, and abstracts away the details in WSNs. The no-
tion of spacetime provides an integrated abstraction to seam-
lessly express event detection and data collection for both the
past and future in arbitrary spatio-temporal resolutions. This
paper describes the implementation of STOP, and evaluates
the performance of applications built with STOP.

1. Introduction
Macroprogramming is an emerging programming

paradigm for wireless sensor networks (WSNs). It allows
developers to implement each WSN application from a global
viewpoint as a whole rather than a viewpoint of sensor nodes
as individuals. A macro-program specifies an application’s
global behavior. It is transformed to node-level (micro) pro-
grams, and the micro-programs are deployed on individual
nodes. Macroprogramming aims to increase the simplicity
and productivity in WSN application programming.

WSN applications are traditionally classified into event de-
tection and data collection applications. In an event detection
application, nodes send sensor data to base stations only when
they detect an event (e.g., significant changes in their sensor
readings). In a data collection application, individual nodes
periodically send sensor data to base stations. Alternatively,
central entities (e.g., servers and base stations) query nodes to
collect sensor data. Existing macroprogramming languages
consider event detection and data collection largely in iso-

lation, as discussed in Section 7. However, WSN applica-
tions are often required to implement both aspects when they
are designed to detect and monitor spatiotemporally dynamic
events, which change over space and time (e.g., wild fires,
oil spills and chemical/gas dispersions). For example, once
detecting an event, an application may be required to collect
past sensor data in the event area to seek any foretastes that
help understand the nature of the event.

This paper proposes a new macroprogramming paradigm,
called SpaceTime Oriented Programming (STOP). STOP pro-
vides an abstraction to program spatio-temporal event detec-
tion and data collection as the global behaviors of each WSN
application. STOP considers both spatial and temporal as-
pects of sensor data, and treats space and time as first-class
citizens in programming. Space and time are combined as
spacetime continuum. A spacetime is a three dimensional
object that consists of a two spatial dimensions and a time
playing the role of the third dimension. STOP allows devel-
opers to program event detection and data collection to space-
time, and abstracts away the low-level details in WSNs, such
as how many nodes are deployed, how nodes are connected
and synchronized, and how packets are routed. The notion
of spacetime provides an integrated abstraction to seamlessly
express event detection and data collection for both the past
and future in arbitrary spatio-temporal resolutions.

Moreover, STOP provides several mechanisms to cus-
tomize micro-programs. The customization mechanisms al-
low developers to flexibly tune the performance and resource
consumption of their applications by altering the details in
event detection and data collection algorithms.

This paper is organized as follows. Section 2 overviews
a motivating application that STOP is currently implemented
and evaluated for. Section 3 describes how the STOP macro-
programming language is designed and how the language is
used to specify event detection and data collection. Section 4
presents how macro-programs work on the STOP runtime en-
vironment and how the runtime environment is implemented.
Section 5 describes how to customize micro-programs. Sec-
tion 6 shows simulation results to characterize the perfor-

mance of applications built with STOP. Sections 7 and 8 con-
clude with some discussion on related work and future work.

2. A Motivating WSN Application
STOP is designed to implement spatio-temporal event de-

tection and data collection in WSNs, each of which consists
of battery-operated stationary sensor nodes and several base
stations. As an example application, STOP is currently used
and tested for coastal oil spill detection and monitoring.

Oil spills occur frequently1 and have enormous impacts
on maritime/on-land businesses, nearby residents and the en-
vironment. When an oil spill occurs due to, for example, bro-
ken equipment of a vessel and coastal oil station, illegal oil
dumping or terrorism, an in-situ WSN of fixed buoy-attached
sensor nodes2 (e.g., fluorometers3) detects and monitors the
spill. Oil may move and spread, change the direction of
movement, and split into multiple chunks. Some chunks may
burn, and others may evaporate and generate toxic fumes.

An in-situ WSN is expected to provide real-time sensor
data to human operators so that they can efficiently dispatch
first responders to contain spilled oil in the right place at the
right time and avoid secondary disasters by directing nearby
ships to evacuate, alerting nearby facilities or evacuating peo-
ple from nearby beaches. In-situ WSNs can quickly deliver
more accurate information (sensor data) to operators than vi-
sual observation from the air or coast. Also, in-situ WSNs
are more operational and less expensive than radar observa-
tion with aircrafts or satellites [5]. (In-situ WSNs can operate
during nighttime and poor weather, which degrade the quality
of airborne and satellite observation.)

3. STOP Macroprogramming Language
STOP addresses the following requirements for the design

of its macroprogramming language.

Conciseness. The conciseness of programs increases the
ease of writing and understanding. This can improve the
productivity of application development.

Extensibility. Extensibility allows application developers to
introduce their own (i.e., user-defined) operators for in-
network processing for meeting their application needs.

Seamless integration of event detection and data collec-
tion. As described in Section 1, STOP is required to sup-
port both event detection and data collection to imple-
ment applications for spatiotemporally dynamic events.

In order to satisfy the above requirements, the STOP
macroprogramming language is designed as an extension to
Ruby4. Ruby is an object oriented language that supports

1The US Coast Guard reports that 50 oil spills occurred in the US shores
in 2004 [1], and the Associated Press reported that, on average, there was an
oil spill caused by the US Navy every two days from 1990 to 1997 [2].

2Each sensor node is installed in a sealed and waterproof container.
3Fluorescence is a strong indication of the presence of oils. Certain com-

pounds in oil absorb ultraviolet light, become electronically excited and flu-
oresce [3]. Different types of oil yield different fluorescent intensities [4].

4www.ruby-lang.org

dynamic typing. The notion of objects combines program
states and functions, and modularizes the dependencies be-
tween states and functions (i.e., which functions are sup-
posed to change which states). This simplifies programs and
improves their readability [6]. Dynamic typing makes pro-
grams concise and readable by omitting type declarations and
type casts [7]. This allows application developers to focus
on their macroprogramming logic without considering type-
related housekeeping operations.

In general, a programming language can substantially im-
prove its expressiveness and ease of use by supporting do-
main specific concepts inherently in its syntax and seman-
tics [8]. To this end, the STOP macroprogramming lan-
guage is defined as an embedded domain specific language
(DSL) of Ruby. Ruby accepts embedded DSLs, which extend
Ruby’s constructs with particular domain specific constructs.
By leveraging this mechanism, the STOP macroprogramming
language reuses Ruby’s syntax/semantics and introduces new
keywords and primitives specific to spatio-temporal event de-
tection and data collection (e.g., time, space, spacetime and
spatio-temporal resolutions). Moreover, STOP assumes the
JRuby interpreter5 to execute macro-programs so that they
can reuse existing Java libraries.

Ruby can encapsulate a code block as a process object and
accept a user-defined operator as a process object. With this
mechanism, the STOP macroprogramming language allows
developers to define new user-defined operators to meet their
application needs.

In macroprogramming, developers need to write an event
detection and a corresponding handler to respond to the event.
They also need to write a data collection and a correspond-
ing hander to process collected data. Ruby supports closures,
each of which modularizes a code block as an object (similar
to an anonymous method). The STOP macroprogramming
language uses closures to define handlers and concisely asso-
ciate them with event detection or data collection.

The STOP macroprogramming language supports proac-
tive (one time or periodical) and reactive (or event-driven)
data collection. An reactive data collection is specified as a
combination of event detection and data collection.

3.1. Proactive Data Collection
Proactive data collection is executed one time or period-

ically. It is used to implement data collection applications.
Proactive data collection pairs a data query and a correspond-
ing data handler to process obtained data. Listing 1 shows
a STOP macro-program that specifies several proactive data
collections. This program is visualized in Figure 1.

A spacetime is created at Line 5. In STOP, a class is in-
stantiated with the new() class method. This spacetime (sp) is
defined as a polygonal prism consisting of a triangular space
(s) and a time period of an hour (p). STOP supports the con-
cepts of absolute time and relative time, and allows applica-
tion developers to denote relative time as a number annotated

5jruby.sourceforge.net

with its unit (Week, Day, Hr, Min or Sec) (Line 4).
get_space_at() is a method that the Spacetime class has

(Table 1). It is called on a spacetime to obtain a snapshot
space at a given time in a certain spatial resolution. In Line
7, an obtained space, s1, contains sensor data available on at
least 60% of nodes (the third parameter) in the space at 30
minutes before (the first parameter) with a 20 seconds time
band (the second parameter).
Listing 1: A STOP Macro-Program for an Proactive Data Collection

1 points = [Point.new(10, 10),
2 Point.new(100, 100), Point.new(80, 30)]
3 s = Polygon.new(points)
4 p = RelativePeriod.new(NOW, Hr -1)
5 sp = Spacetime.new(s, p)
6
7 s1 = sp.get_space_at(Min -30, Sec 20, 60)
8 avg_value = s1.get_data(’f-spectrum’, AVG, Min 3) {
9 | data_type , value, space, time |

10 # the body of a data handler comes here. }
11
12 spaces = sp.get_spaces_every(Min 5, Sec 10, 80)
13 max_values = spaces.collect { |space|
14 space.get_data(’f-spectrum’, MAX, Min 2){
15 | data_type , value, space, time |
16 # data handler
17 if value > avg_value then ... }}
18
19 name = ’f-spectrum’
20 event_spaces =
21 spaces.select{|s| s.get_data(name, STDEV, Min 5)<=10)}
22 .select{|s|
23 s.get_data(name, AVG, Min 5) -
24 spaces.prev_of(s).get_data(name, AVG, Min 5)>20)} }

X

YTimeFuture

Past

NOW
(10, 10) (80, 30)

(100, 100)

Hr -1

Space (s)Spacetime (sp)

Min 5
Figure 1: An Example Proactive Data Collection

get_data() is used to specify a data query. It is called on
a space to collect sensor data available on the space (the first
parameter) and process the collected data with a given oper-
ator (the second parameter). STOP provides several data ag-
gregation operators shown in Table 2. In Line 8, get_data()
obtains the average of fluorescence spectrum (’f-spectrum’)
data in the space s1. The third parameter of get_data() spec-
ifies the tolerable delay (i.e., deadline) to collect and process
data (three minutes in this example).

get_data() can accept a data handler as a closure that
takes four parameters: the type of collected data, the value of
collected data, the space where the data is collected, and the
time when the data is collected. In this example, a code block
from Line 9 to 10 is a closure, and its parameters contain
a string ’f-spectrum’, the average fluorescence spectrum in
s1, the space s1 and the time instant at 30 minutes before. An
arbitrary data handler can be written with these parameters.

get_spaces_every() is called on a spacetime to obtain a
discrete set of spaces that meet a certain spatio-temporal res-
olution. In Line 12, this method returns spaces at every five

minutes with the 10 seconds time band, and each space con-
tains data available on at least 80% of nodes within the space.
Then, the maximum data is collected from each space (Lines
13 and 14). In STOP, a list has the collect() method6, which
takes a closure as its parameter, and the closure is executed on
each element in a list. In this example, each element in spaces

is passed to the space parameter of a closure (Line 15).
select() is used to obtain a subset of a list based on a

certain condition specified in a closure. From Line 20 to 24,
event_spaces obtains subset spaces, each of which yields 10
or lower standard deviation of data and finds a 20 or higher
degrees difference in average data compared with a previous
space at five minutes before.

Table 1: Key Methods in STOPMethod Description

Spacetime::get_space_at Returns a snapshot space at a
given time

Spacetime::get_spaces_every Returns a set of snapshot spaces
Spacetime +/- spacetime Returns an union/difference of

two spacetimes
Space::get_data Executes a data query
Space::get_node Returns a node in a space
Space::get_nodes Returns a set of nodes in a space
Space::get_border Returns a set of nodes that form

the border of a space
Space +/- Space Returns an union/difference of

two spaces

Table 2: Data Aggregation Operators in STOPOperator Description

COUNT Returns the number of collected data
MAX Returns the maxmum value among collected data
MIN Returns the minimum value among collected data
SUM Returns the summation of collected data
AVG Returns the average of collected data
STDEV Returns the standard deviation of collected data
VAR Returns the variance of collected data

3.2. Reactive Data Collection
Reactive (or event-driven) data collection is used to imple-

ment event detection applications. It is performed when an
event is detected. It pairs an event specification and a cor-
responding event handler to respond to the event. Listing 2
shows a STOP macro-program that specifies an reactive data
collection. It is visualized in Figure 2. This example assumes
that each node detects an event (oil spill) when fluorescence
spectrum exceeds 300nm. Once an oil spill is detected, this
macro-program collects sensor data from an event area in the
last 30 minutes and examines the source of the oil spill. This
macro-program also collects sensor data from the event area
over the next one hour in a high spatio-temporal resolution.
The data is used to monitor how the detected oil spreads.

6In Ruby, a method can be called without parentheses when it takes no
parameters.

Reactive data collection is specified with GLOBALSPACE, a
special space that covers the whole observation area. An
event specification is defined as a closure of GLOBALSPACE’s
select() method (Line 1). In this example, when sensor data
exceeds 300nm in some area, select() returns the space. The
on_event() method is called on the space.

An event handler is specified as a closure of on_event()

(Line 4 to 23). Its parameters are the type of an event, the
value of an event, the space where an event occurred, and
the time when an event occurred (Line 5). Developers can
use these parameters to write event handlers. In Line 9, a
spacetime (sp1) is created to cover event_space and a period
of 30 minutes. Then, sp1 is used to examine how many nodes
observed 280nm or higher fluorescence spectrum every six
minutes. In Line 18, another spacetime (sp2) is created to
specify a future data collection. sp2 covers a larger space than
event_space for an hour in the future. It is used to monitor
the maximum fluorescence spectrum every three minutes.
Listing 2: A STOP Macro-Program for an Reactive Data Collection

1 GLOBALSPACE.select{
2 # an event specification
3 |s| s.get_data(’f-spectrum’, MAX) > 300 }
4 .on_event{
5 | event_type , value, event_space , event_time |
6 # event handler
7
8 # query for the past
9 sp1 = Spacetime.new(event_space ,event_time ,Min -30)

10 past_spaces = sp1.get_spaces_every(Min 6,Sec 20,50)
11 num_of_nodes =
12 past_spaces.get_nodes.select{|node|
13 node.get_data(’f-spectrum’,Min 3) > 280}.size
14
15 # query for the future
16 s2 = Circle.new(
17 event_area.centroid, event_area.radius * 2)
18 sp2 = Spacetime.new(s2, event_time , Hr 1)
19 future_spaces =
20 sp2.get_spaces_every(Min 3, Sec 10, 80)
21 future_spaces.get_data(’f-spectrum’, MAX, Min 1){
22 | data_type , value, space, time |
23 # data handler } } }

event_time X
Time

Min -30
Spacetime(sp2)Min 6

Hr 1 YMin 3
Spacetime (sp1)Space(event_space)

Space (s2)Future
Past
Figure 2: An Example Reactive Data Collection

3.3. User-defined Operators
The STOP macroprogramming language allows applica-

tion developers to introduce their own (i.e., user-defined) op-
erators in addition to the predefined operators shown in Table
2. In STOP, both predefined and user-defined operators are
implemented in the same way.

Listing 3 shows the implementations of SUM, COUNT and AVG

operators (Table 2). Each operator is defined as a process
object, which is a code block that can be executed with the
call() method. (See Line 14 for an example.) The keyword

proc declares a process object, and its implementation is en-
closed between the keywords do and end. sensor_readings

is an input parameter to each operator (i.e., a set of sensor
data to process) (Lines 1, 9 and 13).

Listing 4 shows an example user-defined operator,
CENTROID, which returns the centroid of sensor data. This
way, developers can define and use arbitrary operators that
they need in their applications

Listing 3: Implementation of Predefined Operators
1 SUM = proc do |sensor_readings|
2 sum = 0.0
3 sensor_readings.each do |sensor_reading|
4 sum += sensor_reading.value
5 end
6 sum
7 end
8
9 COUNT = proc do |sensor_readings|

10 sensor_readings.size
11 end
12
13 AVG = proc do |sensor_readings|
14 SUM.call(sensor_readings)/COUNT.call(sensor_readings)
15 end

Listing 4: An Example User-defined Operator
1 CENTROID = proc do |sensor_readings|
2 centroid = [0, 0] # indicates a coordinate (x, y)
3 sensor_readings.each do |sensor_reading|
4 centroid[0] += sensor_reading.value*sensor_reading.x
5 centroid[1] += sensor_reading.value*sensor_reading.y
6 end
7 centroid.map{ |value| value / sensor_readings.size }
8 end

4. STOP Implementation
STOP is currently implemented with an application archi-

tecture that leverages mobile agents in a push and pull hybrid
manner (Figure 3). In this architecture, each WSN applica-
tion is designed as a collection of mobile agents, and there
are two types of agents: event agents and query agents. An
event agent (EA) is deployed on each node. It reads a sensor
at every duty cycle and stores its sensor data in a data stor-
age on the local node. When an EA detects an event (i.e., a
significant change in its sensor data), it replicates itself, and a
replicated agent carries (or pushes) sensor data to a base sta-
tion by moving in the network on a hop-by-hop basis. Query
agents (QAs) are deployed at Agent Repository (Figure 3),
and move to a certain spatial region (a certain set of nodes)
to collect (or pull) sensor data that meet a certain temporal
range. When EAs and QAs arrive at the STOP server, it ex-
tracts the sensor data the agents carry, and stores the data to a
spatio-temporal database (STDB).

Spatio-TemporalDatabase (STDB)
Gateway

Base StationSensors
STOPServer

Event Agent Query Agent

AgentRepositoryWireless SensorNetwork

Figure 3: A Sample WSN Organization

At the beginning of a WSN operation, the STOP server
examines network topology and measures the latency of each
link by propagating a measurement message (similar to a
hello message). EAs and QAs collect topology and latency
information as moving to base stations. When they arrive at
the STOP server, they update the topology and latency infor-
mation that the STOP server maintains. The STOP server also
maintains each node’s physical location through a certain lo-
calization mechanism.

4.1. Visual Macroprogramming
In addition to textual macroprogramming shown in Figures

1 and 2, STOP provides a visual macroprogramming environ-
ment. It leverages Google Maps (maps.google.com) to show
the locations of sensor nodes as icons, and allows application
developers to graphically specify a space where they observe.
Figure 4 shows a pentagonal space (an observation area) on
an example WSN deployed at the Boston Harbor. Given a
graphical space definition, the STOP visual macroprogram-
ming environment generates a skeleton macro-program that
describes a set of points (pairs of longitude and latitude) con-
structing the space. Listing 5 shows a macro-program gener-
ated from a graphical space definition in Figure 4.

Figure 4: STOP Visual Macroprogramming Environment

Listing 5: A Generated Skeleton Code
1 points = [# (Latitude, Longitude)
2 Point.new(42.35042512243457, -70.99880218505860),
3 Point.new(42.34661907621049, -71.01253509521484),
4 Point.new(42.33342299848599, -71.01905822753906),
5 Point.new(42.32631627110434, -70.99983215332031),
6 Point.new(42.34205151655285, -70.98129272460938)]
7 s = Polygon.new(points)

4.2. STOP Runtime Environment
Once a macro-program is completed, it is transformed to

a servlet (an application runnable on the STOP server) and
interpreted by the JRuby interpreter in the STOP runtime en-
vironment (Figures 5 and 6). The STOP runtime environment
operates the STOP server, STDB, gateway and Agent Repos-
itory. The STOP library is a collection of classes, closures
(data/event handlers) and process objects (user-defined oper-
ators) that are used by STOP macro-programs. STDB stores
node locations in SensorLocations table and the sensor data
agents carry in SensorData table. Node locations are repre-
sented in the OpenGIS Well-Known Text (WKT) format7.

When a STOP macro-program specifies a data query for
the past, a SQL query is generated to obtain data from STDB.

7www.opengeospatial.org

Application
Developers

STOPSTOP

Macro
Programs

EA/QA Micro
Programs

Servlet
(Ruby)

EA/QA code
(TinyScript)

Implement

transformed STOPServer
deployed on

Mote
dispatched to BombillaVMconfigure

AgentRepository
Figure 5: STOP Development Process

GUI on
Google maps

STOP
Macro
program

PostgreSQL+ PostGIS
Sensor LocationsSensorID Location

Sensor DataSensorID Time Value
OpenGIS

(WKT)

visualize interpret

generate

query

conf.

EA/QA code

Sensor DataSensor DataSensor Data

STOP Runtime EnvironmentSTOP Runtime Environment

EAs / QAs

dispatch to
certain nodes

EAs / QAs

Code DispatcherData Receiver
store

notify

AgentRepository

GatewayGateway

STOP ServerSTOP Server

STOP
Micro
program

use toconf. EA/QA
JRuby Interpreter

STOPClass Library

Figure 6: STOP Runtime Environment

Spacetime::get_data() implements this mapping from a
data query to SQL query. Listing 6 shows an example SQL
query. It queries ids, locations and sensor data from the nodes
located in a certain space (space in Line 6). Contains() is an
OpenGIS standard geographic function that examines if a ge-
ometry object (e.g., point, line and two dimensional surface)
contains another geometry object. Also, this example query
collects data from a given temporal domain (Lines 7 and 8).
The result of this query is transformed to a Ruby object and
passed to a corresponding data handler in a macro-program.

Listing 6: An Example SQL
1 SELECT SensorLocations.id, SensorLocations.location ,
2 SensorData.value
3 FROM SensorLocations , SensorData
4 WHERE SensorLodations.id = SensorData.id AND
5 Contains(
6 space, SensorLocations.location) = true AND
7 SensorData.time >= time - timeband AND
8 SensorData.time <= time + timeband;

If STDB does not have enough data that satisfy a data
query’s spatio-temporal resolution, QAs are dispatched to
certain sensor nodes in order to collect extra sensor data. They
carry the data back to STDB.

When a STOP macro-program specifies a future data
query, QAs are dispatched to a set of nodes that meet the
query’s spatial resolution. Spacetime::get_data() imple-

ments this mapping from a data query to QA dispatch. After
a QA is dispatched to a node, the QA periodically collects
sensor data in a given temporal resolution. It replicates itself
when it collects data, and the replicated QA carries the data
to STDB. The data is passed to a corresponding data handler.

As shown above, the notion of spacetime allows ap-
plication developers to seamlessly specify data collection
for the past and future. Also, developers do not have to
know whether STDB has enough data that satisfy the spatio-
temporal resolutions that they specify.

4.3. In-Network Processing
As described in Section 3.3, STOP macroprogramming

language supports user-defined data processing operators.
get_data() can specify a data processing operator as its pa-
rameter (Section 3.1). Data processing is performed on the
STOP server or in a network depending on data queries.

When a data query collects sensor data in the past and
STDB can provide enough data, collected data is processed
on the STOP server. Otherwise, a QA visits sensor nodes,
collects sensor data, processes them on the last node of its
route, and returns the result to a STOP macro-program. This
in-network data processing saves the power consumption in a
sensor network by reducing the amount of data to exchange
between nodes. In STOP, to reduce the amount of data QAs
brings, a QA is designed to have only its state and not to have
code to execute on nodes. A code for in-network data pro-
cessing is deployed only on the last node of QA’s route, and
a QA executes the code to process its data before returning
to a base station. The STOP server transforms a code for
in-network data processing in STOP macroprogramming lan-
guage (Section 3.3) into TinyScript, and sends it to the last
node of QA’s route through the shortest path between a base
station to the node before dispatching a QA.

4.4. Concurrency in the STOP Server
STOP macroprogramming language allows a STOP

macro-program to have multiple data queries and data pro-
cessing. This design strategy makes it easy to write queries
and data processing which depend on results of precede data
queries and data processing. However, without an appropriate
threading model, i.e., if STOP macro-programs follow sin-
gle thread model, they suffer from their low performance be-
cause data queries may take long time and block other data
queries and data processing continually. To maximize the per-
formance of STOP macro-programs, STOP macro-programs
automatically create new threads so that multiple data queries
and data processing perform in a parallel manner.

STOP macro-programs which deployed on the STOP
server, i.e., servlets, can be invoked via SOAP, i.e., a XML-
based protocol.As illustrated in Figure 7, a STOP macro-
program (Servlet) starts when its run method is called. (run
method is automatically generated during a transformation
from a STOP macro-program to a servlet, and it is used to exe-
cutes the original STOP macro-program.) Then, a new thread
(Data Collection Thread) is created when a STOP macro-

program calls get_data() so that it can perform a data collec-
tion in parallel with program’s main thread. Each get_data()

creates its own thread automatically. A data collection thread
checks if STDB provides enough data, and collects data from
STDB or dispatches QAs (Section 4.2). When a data collec-
tion thread dispatches QAs, it registers a corresponding event
handler to a STOP macro-program. Once a gateway receives
returning QA(s), it retrieves collected sensor data from the
QA(s) and send it to the STOP server via SOAP (Figure 6).
The STOP server notifies it to a STOP macro-program, and a
STOP macro-program invokes the registered event handler.

Since a program’s main thread and data collection threads
run in parallel manner, get_data() may not be able to return a
result to a program’s main thread immediately. For example,
in Listing 1, a variable max_values may not contain results of
get_data() (Line 14) when a main thread accesses it (e.g., for
drawing a graph or creating another data query based on the
variable). In STOP, a main thread and a data collection thread
are synchronized when a variable which contains a result of
get_data() is accessed by a main thread.

Local DBLocal DB
STOP Program

Data CollectionThread<<create>>get_data Handler(closure)
ST DB

Enough data?

Dispatch QAs

[enough]

STOP Server
run

Register an event handler

Return a result
Invoke anevent hander

Collect data

Invoke anevent hander

Alt

Receive a QA notify

Figure 7: Concurrency in the STOP Server

5. STOP Microprogramming Language
STOP provides a microprogramming language to cus-

tomize the default mapping between macro-programs and
micro-programs. This allows developers to flexibly tune the
performance and resource consumption of their applications
by providing a means to tailor EAs and QAs. The STOP mi-
croprogramming and macroprogramming languages share the
same syntax and semantics.

5.1. The Microprogramming for EA
By implementing push_when method on space, STOP

microprogramming language allows specifying a condition
when a EA replicates itself and a replicated agent starts mi-
grating to a base station. Listing 7 shows an example micro-
program for EA. Each node contained in GLOBGALSPACE pe-
riodically obtains its sensor data and executes push_when

method. (The default period is one second.) push_when re-
turns true or false. When it returns true, a EA replicates

itself on the node and a replicated EA starts migrating to a
base station with sensor data. If it returns false, the node
stores sensor data in its local storage (e.g., flush memory). A
QA may visit to the node and collect the stored data in fu-
ture. In Listing 7, each node periodically check whether local
sensor data exceed 300nm or not.

Listing 7: A Micro-Program for EA (Local Filtering)
1 GLOBALSPACE.push_when{ |node|
2 node.get_data(’f-spectrum’) > 300 }

Listing 8 is another example of a micro-program for EA.
In Listing 8, when a local sensor data exceeds 300nm, each
node obtains a list of neighbors within one hop away (Line 4),
and checks if the average of their sensor data exceed 300nm.
This algorithm reduces the number of false positive sensor
data compare with the algorithm in Listing 7 since each EA
uses an average of neighbors’ sensor data to decide whether to
return a replicated EA, but may consume much energy since
nodes exchange packets to obtains neighbors’ sensor data.

Listing 8: A Micro-Program for EA (Neighthood Filtering)
1 GLOBALSPACE.push_when{ |node|
2 if node.get_data(’f-spectrum’) <= 300 then false
3
4 neighbors = node.get_neighbors_within(1)
5 total = node.get_data(’f-spectrum’)
6 neighbors.each{ |neighbor|
7 total += neighbor.get_data(’f-spectrum’) }
8 total > 300 * (neighbors.size + 1); }

Listing 9 is another example. In Listing 9, if local sensor
data exceed 300nm, each node broadcasts its local sensor data
to one hop neighbors with a label f-spectrum (Line 4 and 5).
Once receiving a broadcast message, each node keeps it as
a tuple consisting of a source node id and a received value
in a table of which name is f-spectrum. After that, a node
retrieves sensor data from its f-spectrum table and checks
if the average of them exceeds 300nm. Compare with the
algorithm in Listing 8, this algorithm consumes less energy
since it uses broadcasts to exchange sensor data instead of
node-to-node communications.

Listing 9: A Micro-Program for EA (Gossip Filtering)
1 GLOBALSPACE.push_when{ |node|
2 if node.get_data(’f-spectrum’) <= 300 then false
3
4 node.bloadcast(
5 node.get_data(’f-spectrum’), ’f-spectrum’, 1)
6 total = node.get_data(’f-spectrum’)
7 node.get_table(’f-spectrum’).each{ |node_id, value|
8 total += value }
9 total > 300 * (node.get_table.size + 1) }

As shown in Listing 7, 8 and 9, STOP microprogramming
language allows defining arbitrary algorithm to decide when
a replicated EA starts migrating to a base station. Depending
on the requirements of WSN applications, e.g., low latency,
low energy consumption or less false positive sensor data, ap-
plication developers can implement their own algorithms and
deploy them on nodes in a certain space.

5.2. Implementation of EA
STOP extends a Bombilla VM [9] and TinyScript to sup-

port mobile agents as one of messages which can move
among sensor nodes with sensor data. A micro-program is

used to configure EA code (template) in Agent Repository
and a configured EA code is deployed on certain nodes by the
STOP server (Figure 5 and 6). Listing 10 is an example EA
code configured with Listing 7. A micro-program for EA is
transformed into TinyScript and copied to a template. STOP
server deploys this code on certain nodes in a space specified
in a STOP macro-program.

Listing 10: A Fragment of EA Code in TinyScript
1 agent ea;
2 private data = get_sensor_data();
3 if (get_sensor_data() > 300) then
4 ea = create_event_agent();
5 set_source(ea, id());
6 set_sensor_data(ea, data);
7 return_to_basestation(ea);
8 end if

5.3. STOP Microprogramming for QA
In a default algorithm for QA’s routing, only one QA visits

to nodes in a certain space in the order of node’s id. How-
ever, STOP microprogramming language allows implement-
ing QA’s routing algorithms such as Clarke-Wright Savings
(CWS) algorithm [10].

CWS is a well known algorithm for Vehicle Routing Prob-
lem (VRP), one of NP-hard problems. The CWS algorithm
is a heuristic algorithm which uses constructive methods to
gradually create a feasible solution with modest computing
cost. Basically, the CWS algorithm starts by assigning one
agent per vertex (node) in the graph (sensor network). The
algorithm then tries to combine two routes so that an agent
will serve two vertices. The algorithm calculates the "sav-
ings" of every pair of routes, where the savings is the reduced
total link cost of an agent after a pair of route is combined.
The pair of routes that have the highest saving will then be
combined if no constraint (e.g., deadline) is violated.

Listing 11 implements a QA’s routing algorithm based on
CWS. CWS_ROUTING is a process object which is executed right
before dispatching QAs by the STOP server. The process ob-
ject takes a set of nodes to visit (nodes in Line 2), a spa-
tial resolution and a tolerable delay specified by a data query
(percentage and tolerable_delay), and the maximum num-
ber of nodes an agent can visit (max_nodes). Since the size
of the agent’s payload is predefined, an agent is not allowed
to visit and collect data from more than a certain number of
nodes. The process object returns a set of sequences of nodes
as routes on which each QA follows (routes in Line 9), e.g.,
if it returns three sequences of nodes, three QAs will be dis-
patched and each of them uses each sequence as its route.

In Listing 11, CWS_ROUTING selects part of nodes based
on a spatial resolution (Line 9 to 12), and calculates sav-
ings of each adjacent nodes pair (Line 14 to Line 22). Af-
ter that, routes are created by connecting two adjacent nodes
in the order of savings. As described in Section 4, the
STOP server stores the topology and latency information col-
lected by EAs and QAs, and micro-programs can use that
information through node object, e.g., get_closest_node,
get_shortest_path and get_delay methods (Line 4 to 6).

Listing 11: An Micro-Program for QA (CWS Routing)

1 CWS_ROUTING = Proc.new{
2 | nodes, percentage , tolerable_delay , max_nodes |
3
4 closest = get_closest_node(base, nodes)
5 delay = tolerable_delay/2 -
6 closest.get_shortest_path(base).get_delay(base)
7
8 # select closest nodes
9 nodes = nodes.sort{|a, b|

10 a.get_shortest_path(closest).get_delay <=>
11 b.get_shortest_path(closest).get_delay}
12 [0, (nodes.length * percentage/100).round - 1]
13
14 nodes.each{ |node1| # get savings of each pair
15 nodes.each{ |node2|
16 next if node1.get_hops(node2) != 1
17 saving =
18 node1.get_shortest_path(closest).get_delay +
19 node2.get_shortest_path(closest).get_delay -
20 node1.get_shortest_path(node2).get_delay
21 savings[saving].push({node1, node2}) } }
22
23 # connect nodes in the order of savings
24 savings.keys.sort{ |saving|
25 savings[saving].each{ |pair|
26 if !pair[0].in_route && !pair[1].in_route ||
27 pair[0].is_end != pair[1].is_end then
28 route1 = pair[0].get_route_from(closest)
29 route2 = pair[1].get_route_from(closest)
30 if route1.get_delay <= delay &&
31 route1.get_size <= max_nodes &&
32 route2.get_delay <= delay &&
33 route2.get_size <= max_nodes then
34 pair[0].connect_with(pair[1]) # connect
35 end
36 end } }
37
38 # return routes
39 nodes.select{|node| node.is_end}
40 .map{|node| node.get_route_from(closest)} }

5.4. Implementation of QA
A micro-program for QA is executed on the STOP server

to configure QAs’ routes. Each QA is implemented in
TinyScript. As illustrated in Figures 5 and 6, QA’s template
code is stored in Agent Repository. The STOP server config-
ures QA’s route with a micro-program.

Listing 12 is a fragment of a configured QA code
in TinyScript which is executed once at a base station.
set_agent_path sets a path, i.e., a sequence of nodes to visit.
set_start_collecting sets when to start collecting data by
specifying an index of a node. In this example, a QA migrates
from a base station to node 1 and 3, and collects data from
nodes 11, 9 and 15. After visiting all nodes, the QA returns
to a base station. A list of nodes to collect data is provided
by a micro-program for QA. A list of nodes before starting a
data collection (node 1 and 3) is the shortest path from a base
station to the node to start collecting sensor data (nodes 11).

Also, set_timestamp_from and set_timestamp_untill

specifies a time window of data to collect. STOP assumes
timers of all nodes are synchronized and the STOP server can
convert a representation of a time instant in a macro-program,
i.e., absolute and relative times, into a clock of node.

Listing 12: A Fragment of QA Code
1 agent qa;
2 buffer path;
3 qa = create_query_agent();
4 path[]=1; path[]=3; path[]=11; path[]=9; path[]=15;
5 set_agent_path(qa, path);
6 set_start_collecting(qa, 2);
7 set_timestamp_from(qa, 100);
8 set_tiemstamp_untill(qa, 500);
9 migrate(qa);

Listing 13 is a fragment of a code deployed on each node
beforehand, and used to accept QAs. It is executed when a
node receives a broadcast message. (QAs are transmitted via
broadcast.) It checks whether a QA collects data from the cur-
rent node (Line 6). If the current node is the last one to visit,
a QA executes a code for in-network processing (Section 4.3)
and returns to a base station along the shortest path (Line 11
and 12). If not, a QA migrates to the next node (Line 14).

Listing 13: A Fragment of Code to Accept EAs
1 agent qa;
2 private node_id;
3 qa = migratebuf(); # retrieves a QA from a buffer
4 node_id = id(); # get the current node id
5
6 if (do_collection(qa, node_id)) then # collect data?
7 add_data(qa, get_sensor_data());
8 end if
9

10 if (is_end(qa, node_id)) then # the last node to visit?
11 # do in-network processing here
12 return_to_basestation(qa);
13 else
14 migrate(qa); # move to the next node
15 end if

6. Simulation Evaluation
This simulation study simulates a WSN deployed on the

sea to detect oil spills in the Boston Harbor of Massachusetts.
The WSN consists of nodes equipped with fluorometers.
Nodes are deployed in an 6x7 grid topology in an area of ap-
proximately 620x720 square meters. They use MICA2 motes
with the outdoor transmission range (radius) of 150 meters,
38.4kbps bandwidth, 128kB program memory (flush mem-
ory) and 2000 mAh battery capacity (two AA battery cells).
The node running one of four WSN corners works as the base
station. This study assumes that 100 barrels (approximately
3,100 gallons) of crude oil is spilled at the center of WSN.
Simulation data set is generated with an oil spill trajectory
model implemented in the General NOAA Oil Modeling En-
vironment [11]. Sensor data shows a fluorescence spectrum
of 280nm when there is no spilled oil, and it reaches 318nm
when there exists oil. Each sensor has a white noise that is
simulated as a normal random variable with its mean of zero
and standard deviation of five percent of sensor data.

6.1. Event Detection
This section describes the performance differences be-

tween EA’s algorithms shown in Listings 7 (Local Filtering),
8 (Neighborhood Filtering) and 9 (Gossip Filtering). Figure
8(a) and Figure 9 show the number of packets to transmit EAs
to the base station and the number of false positive data. With
Local Filtering, nodes decide whether to send replicated EAs
independently; the base station receives many false positive
data. With Neighborhood Filtering and Gossip Filtering, the
base station receives mush less false positive data because
nodes interact with each other before sending EAs. How-
ever, as shown in Figure 8(b), this interaction requires con-
trol overhead (i.e., power consumption). (There is no con-
trol overhead in Local Filtering.) Figure 8(c) shows the total
number of packet transmissions. By reducing the number of

0
50

100
150
200
250

0 50 100 150 200Time (min)

Local FilteringNeighborhood FilteringGossip Filtering

(a) Packet Transmission

0
50

100
150
200
250
300

0 50 100 150 200Time (min)

Local FilteringNeighborhood FilteringGossip Filtering

(b) Control Overhead

050
100150200250300350400450500

0 50 100 150 200Time (min)

Local FilteringNeighborhood FilteringGossip Filtering

(c) Total Packet Transmission

Figure 8: Packet Transmission

false positive data, the total number of packet transmissions
is comparable in Gossip Filtering and Local Filtering.

0
2
4
6
8

10

0 50 100 150 200time (min)The
Num
. of F
alse
Posi
tive
Sens
or D
ata Local FilteringNeighborhood FilteringGossip Filtering

Figure 9: The Number of False Positive Sensor Data

6.2. Event Collection
As described in Section 4.2, QAs are dispatched to nodes

to collect senor data when a query retrieves historical data and
STDB cannot provide enough data.

Table 3 compares the behavior of different routing algo-
rithms for QA, i.e., a default QA’s routing algorithm and the
CWS algorithm in Listing 11, when a query retrieves data
from nodes in 3x3 nodes in the center of the WSN with 100%
spatial-resolution and three minutes tolerable delay. The de-
fault QA’s routing algorithm dispatches only one QA, and the
QA simply visits to all nodes in the order of node’s id. Since
it does not consider query’s timeliness, the result violates the
tolerable delay specified by a query (i.e., three minutes). The
CWS-based routing algorithm considers the tolerable delay
and dispatches three QAs simultaneously, and one of QAs
takes 2887ms to collect data and return to the base station
(Other two take 2679ms and 2380ms). Since these three QAs’
routes are partially over wrapped, especially a route between
a base station and the area in where the 3x3 nodes are lo-
cated, the total number of hops QAs take is larger than one of
the default routing algorithm.

Depending on the requirements of WSN applications, e.g.,
timeliness and low energy consumption, application develop-
ers can implement their own algorithms for routing QAs by
leveraging STOP microprogramming language.

In addition to queries for the past, QAs are used for queries
for the future. Figure 10 shows the number of agents (sensor
data carried by EAs and QAs) from 3x3 nodes in the center

Table 3: A Measurement on QA for the PastDefault Routing CWS Routing

of QAs 1 3
Latency (ms) 4459 2887
Total # of Hops 26 48

of the WSN to the base station when a future query is used
as in Listing 2. The temporal resolution of the future query
is three minutes, i.e., obtain data every three minutes, and
the spatial resolution varies from 0% to 100%. In addition to
QAs, Gossip Filtering-based EAs are deployed on each node.

0 25 50 75 100 125 150 175 200 225

020406080100

0

5

10# of agents

time (min)spatial resolutionin a future query (%)
Figure 10: The Number of Sensor Data Received by the Base Sta-
tion with a Future Query

When a spatial resolution is 0%, no future query is used,
and few sensor data are transmitted during the first 75 min-
utes since only EAs send sensor data (replicated EAs). When
a spatial-resolution is larger than 0%, deployed QAs send sen-
sor data (replicated QAs) to the base station every three min-
utes according to a spatial-resolution even if deployed EAs do
not send sensor data. In Figure 10, spikes appear every three
minutes, and they correspond transmitted QAs. This way, a
future query in STOP allows collecting sensor data to satisfy
specified spatio-temporal resolutions even if there is no event.

6.3. Memory Footprint
Table 4 shows memory footprints on each sensor node.

Total program sizes include TinyOS, Bombilla VM, and EA
and QA code deployed on each node. As shown in Table 4,

STOP is lightweight enough to run on MICA2 mote, which
has 128kB program memory. It runs on even much smaller
sensor nodes, e.g. TelosB, which has only 48kB ROM.

Table 4: Memory FootprintEA Algorithms Total (kB) EA Code (kB)

Local Filtering 41.3 0.077
Neighborhood Filtering 41.3 0.114
Gossip Filtering 41.3 0.116

7. Related Work
This work is an extension to the authors’ previous work

[12]. In this work, STOP is extended to support user-defined
operators and micro-program customization, which were be-
yond the scope of the previous work. Moreover, this work
evaluate and characterize the performance and resource con-
sumption of applications built with STOP.

Kairos [13] and SNLong [14] provide programming ab-
stractions to describe spatial relationships and data aggrega-
tion operations across nodes. Event detection, i.e., sending
data to a base station, can be expressed without specifying the
details of node-to-node communication and data aggregation.
However, these languages require application developers to
explicitly write programs to individual nodes. In contrast,
STOP allows developers to program event detection to space-
time as a global behavior of a WSN application. Also, Kairos
and SNLong do not consider a temporal aspect of sensor data,
i.e., they do not support data collection; data is always han-
dled only at the current time frame.

Regiment [15] is another WSN macroprogramming lan-
guage supporting in-network data processing and spatial-
temporal event detection. It allows developers to specify arbi-
trary event detection algorithms, but Regiment does not sup-
port data collection and the notion of spatial and temporal
resolutions. STOP supports data collection for both the fu-
ture and past in arbitrary spatio-temporal resolutions.

TinyDB [16] extends SQL to support in-network data pro-
cessing as well as spatio-temporal data collection. It allows
application developers to program data collection for the fu-
ture, but not for the past. Moreover, since TinyDB is an ex-
tension to SQL, its expressiveness is too limited to specify
event handlers although it is well applicable to specify data
queries. Therefore, developers need to learn and use an ex-
tra language to implement event handlers. In contrast, STOP
supports spatio-temporal data collection for both the future
and past. Its expressiveness is high enough to provide an in-
tegrated programming abstraction for data queries and event
handlers. Also, TinyDB supports reactive data collections
that are executed upon predefined events; however, it does
not support event detection on individual nodes.

8. Conclusion
This paper proposes a new macroprogramming paradigm,

called SpaceTime Oriented Programming (STOP). It is de-
signed to reduce the complexity of WSN programming to
specify spatio-temporal event detection and data collection.

This paper describes how STOP macroprogramming and mi-
croprogramming are implemented and how the STOP runtime
environment is implemented. This paper also characterizes
the performance of applications built with STOP.

Several extensions are planned as future work. For ex-
ample, an additional algorithm will be implemented to route
QAs efficiently. It will consider combining QAs when they
return the base station. This can reduce the number of packet
transmissions, thereby power consumption.

References
[1] U. C. Guard. Polluting Incident Compendium: Cumulative

Data and Graphics for Oil Spills 1973-2004. Technical report,
September 2006.

[2] L. Siegel. Navy Oil Spills. Webpage, November 1998.
[3] J. M. Andrews and S. H. Lieberman. Multispectral Fluo-

rometric Sensor for Real Time in-situ Detection of Marine
Petroleum Spills. In The Oil and Hydrocarbon Spills, Mod-
eling, Analysis and Control Conference, July 1998.

[4] C. Brown, M. Fingas, and J. An. Laser Fluorosensors: A Sur-
vey of Applications and Developments. In The Arctic and Ma-
rine Oil Spill Program Technical Seminar, June 2001.

[5] M. Fingas and C. Brown. Review of Oil Spill Remote Sensors.
Spill Science & Technology Bulletin Journal, 4(4), 1997.

[6] G. Booch. Object-Oriented Analysis and Design with Appli-
cations. Addison-Wesley, second edition, 1993.

[7] E. Meijer and P. Drayton. Static Typing Where Possible, Dy-
namic Typing When Needed: The End of the Cold War Be-
tween Programming Languages. ACM OOPSLA Workshop on
Revival of Dynamic Languages, October 2004.

[8] M. Mernik, J. Heering, and A. Sloane. When and how to de-
velop domain-specific languages. ACM Comp. Surveys, 37(4),
2005.

[9] P. Levis and D. Culler. Mate: A Tiny Virtual Machine for Sen-
sor Networks. Int’l Conf. on Architectural Support for Pro-
gramming Languages and Operating Systems, October 2002.

[10] G. Clarke and J. W. Wright. Scheduling of Vehicles from a
Central Depot to a Number of Delivery Points. Operations
Research, 4(12), 1964.

[11] C. Beegle-Krause. General NOAA Oil Modeling Environment
(GNOME): A New Spill Trajectory Model. Internation Oil
Spill Conference, March 2001.

[12] H. Wada, P. Boonma, and J. Suzuki. A SpaceTime Oriented
Macro Programming Paradigm for Push-Pull Hybrid Sensor
Networking. IEEE ICCCN Workshop on Advanced Network-
ing and Communications, August 2007.

[13] R. Gummadi, O. Gnawali, and R. Govindan. Macro-
programming Wireless Sensor Networks using Kairos. IEEE
Int’l Conf. on Distributed Computing in Sensor Systems, 2005.

[14] D. Chu, A. Tavakoli, L. Popa, and J. Hellerstein. Entirely
Declarative Sensor Network Systems. Int’l Conference on
Very Large Data Bases, September 2006.

[15] R. Newton, G. Morrisett, and M. Welsh. The Regiment Macro-
programming System. Int’l Conference on Information Pro-
cessing in Sensor Networks, April 2007.

[16] S. Madden, M. Franklin, J. Hellerstein, and W. Hong. TinyDB:
An Acqusitional Query Processing System for Sensor Net-
works. ACM Transactions on Database Systems, 2005.

