
A Model-Driven Development Framework for Non-Functional Aspects
in Service Oriented Grids

Hiroshi Wada and Junichi Suzuki
Department of Computer Science

University of Massachusetts, Boston
Boston, MA 02125-3393
{shu, jxs}@cs.umb.edu

Katsuya Oba
OGIS International, Inc.

Palo Alto, CA 94301
oba@ogis-international.com

Abstract
Service-oriented grids are grid computing systems built with

the notion of service-oriented architecture (SOA). Using two ma-
jor abstract concepts, services and connections between services,
each grid application is designed as a collection of loosely-
coupled services in an implementation independent manner. In
service-oriented grids, the non-functional aspects of services and
connections (e.g., message transmission and security) should be
described separately from their functional aspects because differ-
ent applications use services and connections in different non-
functional requirements. This paper presents a UML profile
to graphically specify and maintain non-functional aspects in
service-oriented grids as implementation independent UML mod-
els. The UML models are transformed into implementation spe-
cific code by a model-driven development tool. This paper demon-
strates how the proposed UML profile is used in model-driven de-
velopment of service-oriented grid applications.

1. Introduction
Service-oriented grids are grid computing systems built

with the notion of service-oriented architecture (SOA) [7,
10]. Similar to traditional grids, service-oriented grids share
and virtualize distributed resources (e.g., CPUs), and coor-
dinate them for applications on demand. In addition, unlike
traditional grids, service-oriented grids aim to decompose a
monolithic application to a set of loosely-coupled services.
This allows application designers to reuse and integrate ser-
vices on demand for building their applications in a cost
effective manner. SOA is a driving force for this thrust.

In order to make on-demand service integration a reality,
SOA is intended to improve the reusability and maintain-
ability of services [5, 6, 16]. It is an architectural style to
design applications in an implementation independent man-
ner using two major abstract concepts: services and con-
nections between services. Each service represents a func-
tionality in an application, or encapsulates the function of
a subsystem in an existing system. Each connection de-

fines how services are connected with each other and how
messages (or data) are exchanged through the connection.
SOA hides the implementation details of services and con-
nections (e.g., programming language and remoting mid-
dleware) from application designers. They can reuse and
combine services to build their applications without know-
ing the implementation details of services and connections.

In SOA, the non-functional aspects of services and con-
nections (e.g., message transmission and security) should
be defined separately from their functional aspects because
different applications use services and connections in dif-
ferent non-functional contexts. For example, an application
may use a service via reliable connection that guarantees
message delivery when the service is hosted on an unreli-
able network (e.g., the Internet). Another application may
use the service via connection that does not guarantee mes-
sage delivery when the service is reliably hosted in house.
The separation of functional and non-functional aspects im-
proves the reusability of services and connections. It also
improves the ease of understanding application design and
enables two different aspects to evolve independently. This
results in higher maintainability of applications.

Non-functional aspects should also be captured as ab-
stract models in an early development phase and automat-
ically transformed to code or configuration files in order
to improve development productivity [22, 23]. It incurs
time-consuming and error-prone manual efforts to imple-
ment and deploy non-functional aspects in later develop-
ment phases (e.g., integration and test phases) [22, 23].

This paper describes a model-driven development
(MDD) framework for non-functional aspects in SOA. The
MDD framework consists of (1) a Unified Modeling Lan-
guage (UML) profile to model non-functional aspects in
SOA and (2) an MDD tool that accepts a UML model de-
fined with the proposed UML profile and transforms it to
application code (program code and deployment descrip-
tors). The proposed UML profile allows application de-

signers to graphically describe and maintain non-functional
aspects in SOA as UML diagrams (composite structure di-
agrams and class diagrams). Using the proposed UML pro-
file, non-functional aspects can be modeled without depend-
ing on any particular implementation technologies. The
proposed MDD tool, called Ark, transforms implementa-
tion independent UML models into implementation specific
application code using certain implementation technologies
such as Enterprise Service Buses [4] and GridFTP [1].

This paper is structured as follows. Section 2 motivates
the proposed UML profile with an example. Section 3 de-
scribes the design details of the proposed profile. Section
4 presents how Ark is used in model-driven development
of service-oriented grid applications. Sections 5 and 6 con-
clude with discussion on related work.

2. Background and a Motivating Example

UML provides extension mechanisms (e.g., stereotypes
and tagged-values) to specialize the standard model ele-
ments (e.g., class and association) to precisely describe do-
main or application specific concepts [21, 8]. A stereo-
type is applied to a standard model element, and special-
izes its semantics to a particular domain or application.
Each stereotyped model element can have data fields, called
tagged-values, specific to the stereotype. Each tagged-value
consists of a name and value. A particular set of stereotypes
and tagged-values is called a UML profile.

Figure 1 shows an example model defined with the pro-
posed UML profile. It illustrates an astrophysical virtual
observatory system in which telescopes store space images
in distributed archives and an indexing service maintains the
images’ metadata (e.g., date, latitude and longitude). In this
example, three services (Telescope, AstronomyArchive
and IndexingService) exchange messages. Each ser-
vice is defined as a class decorated with the stereotype
¿ServiceÀ. Services exchange three types of messages
(SpaceImage, RawSpaceImage and Metadata), each of
which is stereotyped with ¿MessageÀ. The data field ste-
teotyped with ¿EncryptedPropertyÀ in SpaceImage

is encrypted with the algorithms specified as tagged-values
(algorithm = ...).

Each pair of a request and reply messages is represented
by ¿MessageExchangeÀ. ¿ConnectorÀ represents a
connection that transmits messages between services. In
this example, messages are delivered through the connec-
tor BatchConn. Every message exchange is bound with
a connector in order to specify which connector is used
to deliver messages. Figure 1 shows that a Telescope

sends a SpaceImage message through BatchConn. In
BatchConn, a SpaceImage is split into two messages,
RawSpaceImage and Metadata, and they are delivered to
an AstronomyArchive and IndexingService, respec-
tively. In addition, BatchConn works as a queue that stores

《MessageSplitter》: Splitter《Connector》 BatchConnrequest《MessageExchange》SpaceImageTransfer request
《Service》AstronomyArchive

request《Message》Metadata
《MessageExchange》RawImageTransfer
《MessageExchange》MetadataTransfer

《Message》RawSpaceImage
《Service》IndexingService

sink

sink

source
input output

outputsink
source

sourcesynchrony = Onewayqueue::size = 100queue::persisitent = truequeue::flushTime = 00:00:00.00queue::flushWhenFull = true

《Service》TelescopeImage: String《EncryptedProperty》metaData: String
signatureMethod =“http://www.w3.org/2000/09/xmldsig#dsa-sha1”《Message》SpaceImage algorithm = http://www.w3.org/2001/04/xmlenc#tripledes-cbc1

* * 1
*
*

*1

11
Figure 1. An Example UML Model

and forwards SpaceImage messages in a batch mode.
As shown above, the proposed UML profile provides a

visual and intuitive abstraction to model the architectures
and non-functional aspects of service-oriented applications.

3. Design of the Proposed UML Profile

The proposed UML profile provides key model elements
to specify service-oriented applications: service, message
exchange, message, connector and filter, each of which is
defined as stereotypes.

Figure 2 shows how the proposed UML profile de-
fines its stereotypes by extending the UML metamodel.
Each stereotype is defined as a metaclass stereotyped
with ¿stereotypeÀ. Except Connector, four stereo-
types inherit the Class metaclass in the Kernel pack-
age of the UML metamodel. Thus, they are ap-
plied to classes in user-defined models (see Figure 1).
Service and Filter can be a source or sink of each
request/reply message. The source and sink are identi-
fied with source and sink, roles on two associations
between a MessageExchange and Services/Filters
(see Figures 1 and 2). MessageExchange can indicate
one-to-many, many-to-one and many-to-many message ex-
changes, using multiplicity on two associations between a
MessageExchange and Services/Filters. For exam-
ple, Figures 1 shows an example of many-to-one message
exchange between Telescopes and a IndexingService.

Connector is a stereotype extending the Class meta-
class in the InternalStructures package of the UML
metamodel (Figure 2). This metaclass defines a compos-
ite class, a special type of class, which can contain other
model elements (e.g., inter classes)1 and have Ports to
indicate how internal model elements interact with exter-
nal elements. In the proposed profile, a Connector can

1Precisely, a composite class can contain any classifiers, defined in the
UML metamodel.

contain multiple Filters to specify the semantics of mes-
sage transmission and message processing. The Ports con-
nected with a Connector identify the Messages it receives
and sends out, using association roles input and output.

《stereotype》Connector
0..*1

10..*
1..*1..*

UML 2.0 metamodel

Proposed UML profile

InternalStructues::StructuredClassifier

1..*

Ports::EncapsulatedClassifierPorts::Port 0..1*InternalStructures::Property 0..1*part

1..*input
output1..*1..* 1..*1..*source

sink 1 0..*《stereotype》MessageExchange
《stereotype》Service

11request reply1 0..*《stereotype》Filter

Kernel::Class InternalStructures::Class

《stereotype》Message
Transceiver

Figure 2. Definition of Stereotypes

3.1. Connector
Connector has six tagged-values (Figure 3). timeout

is a mandatory tagged-value to specify the timeout period
(in millisecond) in which a connector needs to deliver each
message. If a message is not delivered to its destination
(sink) within the timeout period, a connector discards the
message.

synchrony is a mandatory tagged-value to specify the
synchrony semantics of message transmissions between
a message source and destination. Synchronous, asyn-
chronous and oneway non-blocking semantics are defined
as an enumeration in Synchrony (Figure 3), and each con-
nector chooses one of them. In Figure 1, the BatchConn

connector implements a oneway non-blocking semantics for
message transmissions. Telescopes are not blocked when
they send messages.

inOrder ismandatory tagged-value to specify whether
the order of messages that a service (destination) receives is
same as the order of messages that a service (source) sends.

deliveryAssurance is an optional tagged-value to
specify the assurance level of message delivery. Three
different semantics are defined as an enumeration in
DeliveryAssurance (Figure 3), and each connector
chooses one of them at a time. AtLeastOnce means that
a connector retries sending a message until its destination
receives the message. However, the message may be dupli-
cated and delivered to its destination more than once. This
option ignores timeout tagged-value. AtMostOnce means
that a connector discards a message if it has been sent to its
destination, but there is no guarantee of message delivery.
ExactlyOnce satisfies the requirements of the above both
options. It guarantees that a connector delivers a message
to its destination without duplication.

encryptionAlgorithm is an optional tagged-value
used for transport-level encryption in a connector. (see Sec-
tion 3.4 for message-level encryption) This tagged-value
defines an algorithm to secure a connection upon which re-
quest and response messages are transmitted. The encryp-
tion algorithm is specified as a URI defined in the XML
Encryption specification [24].

queueParameters is an optional tagged-value to de-
ploy a message queue between services (message source
and destination) and specify the semantics of message queu-
ing between them. size specifies the maximum number
of queued messages. flushWhenFull specifies whether
queued messages are flushed from a queue to their des-
tinations when the queue overflows. When the value
of flushWhenFull is false, the queue discards a mes-
sage according to discardPolicy; discarding the old-
est message (First-In-First-Out), the newest message (Last-
In-First-Out), the lowest priority message or the closest
deadline message. These four policies are defined as an
enumeration in discardPolicy (Figure 3). flushTime

and flushInterval specify when and how often a queue
flushes messages, respectively. orderingPolicy specifies
how to order messages in a queue: FIFO, LIFO, highest-
priority-first or earliest-deadline-first. perisistent spec-
ifies whether a queue stores messages in a storage (e.g.,
in a file or database) so that the queue can recover
them after it crashes unexpectedly. When the value of
subscriptionRecovery is true, a queue stores all mes-
sages that cannot be delivered to a destination and transmits
them when the destination reconnects to the queue.

An example model in Figure 1 shows that a connec-
tor (BatchConn) works as a queue that stores and for-
wards SpaceImage messages in a batch mode between
Telescopes and an AstronomyArchive. The queue’s
length is 100 and stored in a persistent storage. The queue
flushes messages to an AstronomyArchive at 0:00am ev-
eryday or when it overflows.

《enumeration》SynchronySyncAsyncOneway
1synchrony

《enumeration》DeliveryAssuranceAtMostOnceAtLeastOnceExactlyOnce
0..1deliveryAssurance

QueueParameterssize : intpersistent : booleanflushTime [0..*] : TimeflushInterval [0..1] : TimeflushWhenFull: boolean
0..1queueParameters 《enumeration》DiscardPolicyFIFOLIFOPriorityBasedDeadlineFirst0..1discardPolicy 《enumeration》OrderingPoilcyFIFOLIFOPriorityBasedDeadlineFirst0..1orderingPoilcy

《stereotype》Connectortimeout : TimeencryptionAlgorithm[0..1]: StringinOrder : Booelan

Figure 3. Tagged-Values of Connector

3.2. Filter
This paper describes six of the filters that the proposed

UML profile defines. Filters are defined as stereotypes ex-
tending the Filter stereotype (Figure 4). New filters can
be defined as its subclasses. This section shows four fil-
ters to specify message transmission semantics and a filter
to specify message processing semantics.《stereotype》Filter

《stereotype》Validator
《stereotype》 Logger 《stereotype》 Multicast

《stereotype》 Anycast
《stereotype》 ManycastgroupSize : intstandby : Standbybacktracking : Backtrackingquorum : inttimeout : Timeselection : Selectionretry : inttimeout : Time

priority : intschemata [1..*] :Messages 《enumeration》SelectionRandomRoundRobinPriority
《enumeration》BacktrackingFCFBVoting
《enumeration》StandbyHotWarmCold

《stereotype》MessageSplitter
Figure 4. Tagged-Values of Filters

The stereotypes Multicast, Manycast, Anycast and
Logger are used to define the message transmission seman-
tics in a connector. Multicast receives a request message
from its source and transmits it to multiple destinations si-
multaneously. When it receives reply messages from the
destinations, it sends them back to the source of the request
message. Multicast is used to improve the efficiency of
message transmissions.

Manycast is used for fault tolerance of services by for-
warding a request message to a group of replicated destina-
tions (i.e., to the same type of services). groupSize speci-
fies how many services are deployed as a group (Figure 4).
standby specifies the operation of replicated services: hot
standby, warm standby or cold standby. In hot standby, all
services in a group remain active to receive request mes-
sages. A Manycast filter sends a message to all services in
a group. Manycast returns only one reply message to the
source of request message, out of multiple replies from ser-
vices. backtracking defines two policies to decide which
reply message to be returned (Figure 4). When FCFB (first-
come-first-backtracked) is selected, a Manycast filter re-
turns the first reply that it receives from destination services.
When voting is selected, a Manycast filter performs a
voting process. It counts the number of reply messages and
inspects their contents. If the number of replies that have the
same content reaches quorum, the Manycast filter returns
one of the replies. If the number does not reach quorum

within timeout, the Manycast filter returns the reply that
generates the highest voting count.

In warm standby, all services in a group remain active
to receive request messages. A Manycast filter sends a
message to all services in a group, but only one service re-
turns a reply. In this case, backtracking is not used. In
cold standby, only one service in a group is active, and a

Manycast filter sends a message to the service. If the ser-
vice does not respond within timeout, the filter activates
another service in a group and sends a message to the ser-
vice. In cold standby, backtracking is not used.

Anycast is a variation of the hot standby policy in
Manycast. It forwards a request message to only one desti-
nation in a group of replicated services. This filter is used to
balance workload placed on services. selection defines
how to choose a destination from multiple services. The
destination is selected randomly, on round robin or destina-
tion’s priority basis (the service with the highest priority in
a group is selected). retry specifies the maximum number
of retries to forward a request message. If Anycast fails
to deliver a request message within timeout, it returns an
error message to its source.

Logger records the transmission of each message whose
priority value is higher than priority. When priority

is omitted, all message transmissions are recorded.

In addition to the filters regarding message transmission
semantics, the proposed UML profile provides several other
filters to specify message processing semantics in a con-
nector. This paper describes two of them: Validator

and MessageSplitter (Figure 4). Validator validates
an incoming message against the schemata specified in
schemata, and transmits only validated messages. When
a connector is encrypted with encryptionAlgorithm, a
Validator in the connector cannot validate messages (all
messages are transmitted to their destinations).

Figure 5 shows an astrophysical virtual observatory sys-
tem as well as Figure 1. In this example, through an user in-
terface (Portal), an user submits a request (AnalyseReq)
to an analyze service (SpectralAnalyser) to analyse
space images. The analyse service accesses the image
indexing serivce (IndexingService) to acquire relevant
space images (RawSpaceImage), and sends back a result
(VisualImage) to the user. In Figure 5, the connector
AnalyseConn uses a validator to validate all messages, and
also the connector QueryConn uses a logger to record all
ImageQuery messages.

MessageSplitter divides an incoming message into
multiple fragments with a certain rule. Since UML
does not provide a good means to define rules, the
proposed UML profile has no facility to specify rout-
ing rules at design time. Supporting tools transform
a MessageSplitter to a skeleton source code (e.g.
in Java) or rule description (e.g. in XPath) that per-
forms message routings. Application developers com-
plete the skeleton code/description. In an example model
shown in Figure 1, a MessageSplitter divides a request
message (SpaceImage) into two fragments, and sends
them to different destinations (AstronomyArchive and
IndexingService).

source input《MessageExchange》AnalyseTransfer
request《Service》Portal

《Message》RawSpaceImage《Service》SpectralAnalyser 《AccessControledService》IndexingService
《Connector》QueryConn

sinkoutput 《MessageExchange》QueryTransfersource request
input《Connector》AnalyseConn outputsink

《Message》AnalyseReq

《Validator》: Validator

reply《Message》VisualImage 《Message》ImageQueryrequest

《Logger》: Logger
securityTokens= { “X509v3” }

schemaURI =“http://www.x.org/vos#rawspaceimage”

Figure 5. Astrophysical Virtual Observatory
System

3.3. Service

Service has four optional tagged-values (Figure 6).
priority is the priority of each message that a service is-
sues. The range of priority is 0 to 255. (0 is the lowest
and 255 is the highest.) Message queues (Section 3.1) and
manycast filters (Section 3.2) use this value.

timeout specifies the timeout period (in millisecond) of
each message that a service issues. If a message is not de-
livered to its destination within this time period, a connector
discards the message.

redundancy specifies the number of runtime instances
of a service. Redundant services are used to implement fault
tolerance and load balancing with manycasting and anycast-
ing, respectively (Section 3.2).

securityTokens specifies security tokens (or certifi-
cates) required for a service to authenticate the source (ser-
vice) of each incoming message. This tagged-value can
contain multiple values in order of precedence. The values
use the names defined in the WS-SecurityPolicy specifica-
tion [14]. For example, in Figure 5, an IndexingService

requires an X.509 certificate. (X.509 certificate is used if a
message sender gives both security tokens.)

AccessControlledService is a stereotype extending
the stereotype Service. It is a special type of service
that enforces an access control policy. securityTokens

must be specified in this service for the purpose of au-
thentication. In Figure 5, an IndexingService con-
trols accesses from a SpectralAnalyser using X.509
certificates. Since UML does not provide a good means
to describe policies (or rules), the proposed UML pro-
file does not define how to specify access control policies.
AccessControlledService is used only for indicating
a service implements a certain access policy. A support-
ing tool transforms an AccessControlledService to a
skeleton program code or an access control description in
accordance with an implementation technology that an ap-

plication designer chooses. Application developers are re-
quired to complete implementing access control policies.《stereotype》 Servicepriority[0..1] : inttimeout[0..1] : Timeredundancy[0..1] : intsecurityToken [0..*] : String

《stereotype》AccessControlledService
Figure 6. Tagged-Values of Service

3.4. Message
Message has a mandatory tagged-value, schemaURI,

and three optional tagged-values: priority, timeout and
signatureMethod (Figure 7). schemaURI identifies the
schema of messages as a URI. Application designers can
arbitrarily define it in their applications. For example, they
may define http://www.x.org/vos#rawspaceimage as the URI to
represent the schema of space image messages in Figure 5.

In addition to Message and Connector, Service also
has tagged-values priority and timeout (Sections 3.1
and 3.3). They are used to specify the priority of a message
and the timeout period of a message transmission between
a source to destination, respectively. The precedence is that
Message’s tagged-values override Service’s ones, which
override Connector’s ones.

In order to ensure the integrity of a message,
signatureMethod is used to specify an algorithm for gen-
erating the message’s signature. The algorithm is repre-
sented with a URI defined in the XML Signature specifica-
tion [25]. For example DSA (Digital Signature Algorithm)
is represented with http://www.w3.org/2000/09/xmldsig#dsa-
sha1. In Figure 1, each SpaceImage message is signed with
DSA. When signatureMethod is specified, each message
maintains its signature in signature.

The stereotype EncryptedProperty is used to spec-
ify encryption applied to a message. This stereotype is at-
tached to data fields to be encrypted in a message class (see
Figure 1). EncryptedProperty is defined as a stereo-
type extending Property in the UML metamodel. It has
a tagged-value, algorithm, to specify an algorithm used
to encrypt a message. The semantics of this tagged-value
is same as that of encryptionAlgorithm in Connector

(Section 3.1). An encryption algorithm is specified as a
URI that the XML Encryption specification defines [24].
Different data fields in a message can be encrypted with
different encryption algorithms. In Figure 1, metaData in
SpaceImage is encrypted with Triple DES, which is repre-
sented with http://www.w3.org/2001/04/xmlenc#tripledes-cbc.

4. Model-Driven Development of Service Ori-
ented Grid Applications with Ark

This section demonstrates a model-driven development
(MDD) tool, called Ark, which accepts a UML model de-
signed with the proposed UML profile and generates appli-

《stereotype》Messagepriority[0..1] : inttimeout[0..1] : TimeschemaURI : Stringsignature: StringsignatureMethod[0..1] : String

Kernel::Class Kernel::Property0..*
《stereotype》EncryptedPropertyalgorithm : String

UML 2.0 metamodel

Proposed UML Profile
Figure 7. Tagged-Values of Message

cation code (source code and deployment descriptors). Cur-
rently, Ark implements two types of mappings from the pro-
posed UML profile to MuleESB 2 and GridFTP 3. Applica-
tion designers give their UML models to the MDD tool, and
instruct Ark which mapping to use for transforming their
UML models to application code.

Application Modelwith UML
The ProposedUML Profile uses1. defineApplicationDesigners ArkTransformer

Application Codefor MuleESB- Source code- DeploymentDescriptor Ark Libraryfor MuleESB
3. implementApplicationDevelopers uses

2. TransformXMI TransformationRules

Figure 8. Application Development with Ark

Figure 8 shows the development process using Ark when
MuleESB is used to as middleware to operate applica-
tions. Application designers define an application model
with UML (e.g., example models in Figures 1 and 5) us-
ing the proposed UML profile. The Ark transformer, one
of the components in Ark, takes the application model in
the format of the XML Metadata Interchange (XMI) and
transforms the input model into Java code compliant with
MuleESB. Ark has been tested with MagicDraw, a visual
UML modeling tool that can serialize UML models to XMI.
Ark Transformer is implemented based on AndroMDA, a
model transformation engine. Mapping rules in Ark is im-
plemented as AndroMDA transformation templates, which
defines how to transform UML model elements to applica-
tion code elements.

In mapping rule from the proposed UML profile to
MuleESB, a UML class stereotyped with ¿MessageÀ
or ¿MessageÀ is mapped to a Java class with the

2http://mule.codehaus.org/. One of the major ESB implementations.
3An extension to FTP for transmitting large size of files [1].

same class name and the same data fields (Figure 9).
Ark inserts several operations to the Java class corre-
sponding to a service, depending on whether its as-
sociation role is source/sink against a message ex-
change. The operations are used to send and receive
messages: sendX() to send messages where X refer-
ences the name of a message exchange, and onMessage()

to receive messages. Fragment of the mapping rule is
shown as follows. $service represents a class stereo-
typed with ¿ServiceÀ. $sourceMessageExchange,
$requestMessage and $replyMessage represent a
MessageExchange identified with source, a request and
a reply message respectively. Ark replaces each variable
in the template with names (e.g., class and package names)
specified in a UML model, and generate Java code. When
a service has multiple requests or replies, a set of sendX()
or onMessage() corresponding to them are generated.

package $service.packageName;
public class $service.name {
public void send${sourceMessageExchange.name}(
$requestMessage.fullyQualifiedName request){
// initialize message transmission
// send a message using MuleESB’s API

}
public void onMessage(
$replyMessage.fullyQualifiedName reply){

}
}

The message transmission/processing semantics speci-
fied in a UML model is implemented in Java classes of
message sender and destination. For example, in Fig-
ure 1, an Telescope sends a SpaceImage message to
AstronomyArchives/IndexingService in an oneway
manner. Therefore, Ark generates program code to send
the message unidirectionally using MuleESB’s API, and
embeds the code in sendSpaceImageTransfer() of
Telescope. In addition to Java classes, a deployment de-
scriptor is generated to initialize an application (e.g., to de-
ploy services and establish connections between them).

AstronomyArchiveonMessage(RawSpaceImage)TelescopesendSpaceImageTrans(SpaceImage)
RawSpaceImage
Description<transformer name=“Encrypt" className=“edu.cs.umb.Encryption"><properties><property target=“SpaceImage.metaData“ algorithm=“TripleDES"/></properties></transformer><security-filter className=“edu.cs.umb.securityfilter.Signaturer”><properties><property target=“SpaceImage” value="X509v3"/></properties></security-filter><connector name="gridftpConnector“className="edu.cs.umb.GridFTPConnector"><properties><property name="specification" value="4.0.1"/></properties></connector>

IndexingServiceonMessage(Description)
Telescope’sdeployment descriptor

MessageQueueSpaceImage

Figure 9. Generated Code for MuleESB

Since MuleESB does not support several semantics

that the proposed UML provides (e.g., queue and mes-
sage signatures), Ark provides a set of components, called
Ark library, which implements the missing semantics for
MuleESB. Ark generates application code that uses compo-
nents in Ark library (Table 1). After generation of appli-
cation code, application developers complete their applica-
tions by, for example, writing method code.

In Figure 1, BatchConn is specified to work as
a message queue and divide a SpaceImage message
into two messages, RawSpaceImage and Metadata.
Since MuleESB does not support a message queue,
Ark implements a message queue using Java Message
Service (JMS) and provides it as a service compli-
ant with MuleESB. In Figure 9, the message queue
(MessageQueue) is deployed between Telescopes
and AstronomyArchives/IndexingService,
and configured according to semantics specified
in the model. The MessageSplitter is imple-
mented as a class that implements the interface
org.mule.routing.outbound.AbstractMessageSplitter.
In MuleESB, the class can be attached to a service, and
splits outgoing messages into fragments and routes them to
different services.

As Figure 1 shows, the data field metaData in
SpaceImage is encrypted. Since MuleESB does not
support message-level encryption, Ark implements a
pair of message transformers to encrypt and decrypt
data fields in a message. In MuleESB, each ser-
vice can have an arbitrary number of message trans-
formers as the classes that implement the interface
org.mule.transformer.UMOTransformer. Message
transformers are invoked when a service receives a mes-
sage or when it sends out a message. When a message
is designed to use message-level encryption in an input
UML model, a deployment descriptor is generated to con-
figure the sender and receiver services of the message so
that they use the message encryption/decryption transform-
ers that the authors implemented. Figure 9 shows a frag-
ment of generated deployment descriptor for Telescope.
It instructs Telescope to use a message encryption trans-
former (edu.cs.umb.Encryption) to encrypt the data
field metaData with the Triple DES when it sends out a
SpaceImage.

As Figure 1 shows, each SpaceImage mes-
sage is signed with DSA. Since MuleESB does
not support DSA signatures, Ark provides a set
of security filters to write/read the signatures and
security tokens by implementing the interface
org.mule.umo.security.UMOEndpointSecurityFilter.
Similar to message transformers described above, se-
curity filters are invoked when a service receives a
message or when it sends out a message. Ark gener-
ates deployment descriptor that configures services to

use the security filters Ark provides. Figure 9 shows
a fragment of generated deployment descriptor for
Telescope. It configures Telescope to include a DSA
signature in each SpaceImage message using a filter
(edu.cs.umb.securityfilter.Signature).

In Figure 5, IndexingService performs au-
thentication with X.509. As well as message
signature, MuleESB does not support X.509 se-
curity tokens. Ark provides a security filter
(edu.cs.umb.securityfilter.SecurityToken)
to add a security token to messages, and it configures
services (SpectralAnalyse) to use the filter.

Since MuleESB does not support the semantics of deliv-
ery assurance described in Section 3.1, Ark implements a
pair of message interceptors to support the semantics. Each
interceptor is implemented as a service in MuleESB. One of
interceptors, called sender-side interceptor, intercepts mes-
sages right after a service send them, embeds an unique ID
and a timestamp into each message, stores the messages on
memory, and forwards them to their destinations. The other
interceptor, called receiver-side interceptor, intercepts mes-
sages right before a service receive them, and sends back an
Ack with IDs embedded in the messages to the sender-side
interceptor. It allows the sender-side interceptor to know
which messages are delivered and the sender-side intercep-
tor can resend undelivered messages when ExactlyOnce

is specified. Also, the receiver-side interceptor can detect
if the same message is delivered more than once by check-
ing its ID when AtMostOnce is specified. In addition to
that, the receiver-side interceptor can sort messages by its
departure time by using their timestamps when InOrder is
specified.

In this astrophysical virtual observatory system,
Telescopes employ GridFTP as a message transmission
protocol to send a SpaceImage to a BatchConn (a
message queue). Also, GridFTP is used to transmit a
RawSpaceImage to a AstronomyArchive (Figure 1).
Although MuleESB does not support GridFTP, it provides
a plug-in mechanism to implement arbitrary message
transmission protocols. Ark implements a plug-in for
GridFTP (edu.cs.umb.GridFTPConnector) so that
services can use it in MuleESB. As shown in Figure
9, Ark transformer generates a deployment descriptor
configureing Telescope to use the GridFTP plug-in to
transmit SpaceImage messages.

5. Related Work
There are several UML profiles proposed for SOA. [18]

and [13] propose UML profiles to specify functional as-
pects in SOA. Both profiles are defined based on the XML
schema of Web Service Description Language (WSDL).
Each of the profiles provides a set of stereotypes and tagged-
values that correspond to elements in WSDL, such as

Table 1. Components in Ark Library
Component Description
Message Queue Achieve connector’s queue semantics. Implemented as a service using JMS.
Message Assurance Achieve the semantics of delivery assurance. Implemented as a set of services.
Message Encryption Filter Encrypt/Decrypt message’s properties. Implemented as a set of security filters in MuleESB
Message Signature Filter Add a signature to messages. Implemented as a security filter.
Security Token Filter Add a security token to messages. Implemented as a security filter.
GridFTP Protocol Plug-in Provide GridFTP as a message transmission protocol. Implemented as a plug-in for a protocol in

MuleESB.

Service, Port, Messages and Binding4. Since WSDL
is designed to define only functional aspects of web ser-
vices, non-functional aspects are beyond of the scope of
[18] and [13]. The proposed profile focuses on specifying
non-functional aspects in SOA.

[2] proposes a UML profile to describe both func-
tional and non-functional aspects in SOA. The stereo-
types in this profile are generic enough to specify a wide
range of applications. However, their semantics tend to
be ambiguous. For example, the stereotypes for non-
functional aspects include ¿policyÀ, ¿permissionÀ
and ¿obligationÀ, and ¿obligationÀ is intended to
specify the responsibility of a service. [2] does not pre-
cisely define what developers have to (or can) specify with
this stereotype and how to represent service responsibility
(e.g. using natural languages or parameter values). In con-
trast, the proposed profile carefully defines its stereotypes
and tagged-values in an unambiguous manner so that sup-
porting tools can interpret and transform models to code.

[26] describes a UML profile for data integration in
SOA. It provides primitive data structures to specify mes-
sages in order for users to build data dictionaries that main-
tain message data used in existing systems and new ap-
plications. This profile separates application’s functional
aspect from non-functional aspect in data integration, and
enables data integration in an implementation independent
manner. The proposed profile focuses on non-functional
aspects in message transmission, message processing, se-
curity and service deployment (e.g. service redundancy),
rather than data integration.

[11] proposes a UML profile to describe dynamic service
discovery in SOA. This profile provides a set of stereotypes
such as ¿usesÀ, ¿requiresÀ and ¿satisfiesÀ to
specify relationships among service implementations, ser-
vice interfaces and functional requirements. For examples,
users can specify relationships in which a service uses other
services, and a service requires other services that satisfy
certain functional requirements. These relationship speci-

4In WSDL, Service defines an interface of a web service. Port
specifies an operation in a Service, and Messages defines param-
eters of a Port. Binding specifies communication protocols used by
Ports.

fications are intended to effectively aid dynamic discovery
of services. The proposed profile and [11] focus on dif-
ferent issues in SOA. Service discovery is beyond of the
scope of the proposed profile, and [11] does not consider
non-functional aspects in message transmission, message
processing, security and service deployment.

[9], [12] and [20] define UML profiles to specify ser-
vice orchestration in UML and map it to Business Process
Execution Language (BPEL). These profiles provide a lim-
ited support of non-functional aspects in message transmis-
sion, such as messaging synchrony. The proposed profile
does not focus on service orchestration, but a comprehen-
sive support of non-functional aspects in message transmis-
sion, message processing, security and service deployment.

[17] proposes a UML profile, called SecureUML, to
define role-based access control for network applications.
SecureUML provides notations to assign roles to classes
(¿security.roleÀ), and notations to define access
control permissions (¿security.constraintÀ). Se-
cureUML employs Object Constraint Language (OCL) to
define access control. [15] proposes another UML pro-
file, called UMLsec, to define data encryption (¿data

securityÀ) and secure network links (¿encryptedÀ).
These UML profiles are parallel to the proposed profile in
terms of the ability to describe security aspects in network
applications. However, the proposed UML profile allows
application developers to specify not only security aspects
but also many other non-functional aspects (e.g., message
transmission and message processing) required in SOA.

There are several research efforts to investigate imple-
mentation techniques for non-functional aspects in SOA
[3, 19, 27, 23]. Each technique provides a means to im-
plement non-functional requirements in, for example, per-
formance, reliability and security and to enforce services
to follow the requirements. Rather than providing specific
implementations of non-functional aspects in SOA, the pro-
posed UML profile is intended to provide a means for users
to model and maintain non-functional aspects in vitual and
implementation independent manners so that they can be
mapped on different implementation technologies.

6. Conclusion
This paper proposes a UML profile to graphically spec-

ify and maintain non-functional aspects in SOA without
depending on specific implementation technologies. This
paper presents design details of the proposed profile, and
describes how it is used in model-driven development of
service-oriented grid applications.

7. Acknowledgement
This work is supported in part by OGIS International,

Inc. and Electric Power Development Co., Ltd.

References

[1] W. Allcock, J. Bresnahan, R. Kettimuthu, C. D. M. Link,
I. Raicu, and I. Foster. The Globus Striped GridFTP Frame-
work and Server. Proc. of Super Computing, November
2005.

[2] R. Amir and A. Zeid. A UML Profile for Service Oriented
Architectures. ACM OOPSLA Poster session, 2004.

[3] F. Baligand and V. Monfort. A Concrete Solution for Web
Services Adaptability Using Policies and Aspects. Proc. of
International Conference on Service Oriented Computing,
December 2004.

[4] D. Chappell. Enterprise Service Bus. O’Reilly, June 2004.
[5] M. Endrei, J. Ang, A. Arsanjani, S. Chua, P. Comte, P. Krog-

dahl, M. Luo, and T. Newling. Patterns: Service-Oriented
Architecture and Web Services. IBM Red Books, 2004.

[6] T. Eri. Service-Oriented Architecture: Concepts, Technol-
ogy and Design. Prentice Hall, 2005.

[7] I. Foster. Service-Oriented Science. Science, 308(5723),
May 2005.

[8] L. Fuentes and A. Vallecillo. An Introduction to UML Pro-
files. The European Journal for the Informatics Profes-
sional, 2(5), April 2004.

[9] T. Gardner. UML Modeling of Automated Business Pro-
cesses with a Mapping to BPEL4WS. Proc. of ECOOP
Workshop on OO and Web Services, July 2003.

[10] W. GuiLing, L. YuShun, Y. ShengWen, M. ChunYu, X. Jun,
and S. MeiLin. Service-Oriented Grid Architecture and
Middleware Technologies for Collaborative E-Learning.
Proc. of IEEE International Conference on Services Com-
puting, July 2005.

[11] R. Heckel, M. Lohmann, and S. Thöne. Towards a UML
Profile for Service-Oriented Architectures. Proc. of Work-
shop on Model Driven Architecture: Foundations and Ap-
plications, 2003.

[12] IBM. UML 1.4 Profile for Software Services with a Mapping
to BPEL 1.0. developerWorks (online), July 2004.

[13] IBM. UML 2.0 Profile for Software Services. developer-
Works (online), April 2005.

[14] R. S. IBM, Microsoft and VeriSign. Web Services Security
Policy Language, December 2002.

[15] J. Jr̈jens. UMLsec: Extending UML for Secure Systems
Development. Proc. of ACM/IEEE International Conference
on Unified Modeling Language, October 2002.

[16] G. Lewis, E. Morris, L. Brien, D. Smith, and L. Wrage.
SMART: The Service-Oriented Migration and Reuse Tech-
nique. Technical Report, Software Engineering Institute,
Carnegie Mellon University, September 2005.

[17] T. Lodderstedt, D. Basin, and J. Doser. SecureUML: A
UML-Based Modeling Language for Model-Driven Secu-
rity. Proc. of ACM/IEEE International Conference on Uni-
fied Modeling Language, October 2002.

[18] E. Marcos, V. de Castro, and B. Vela. Representing Web
services with UML: A Case Study. Proc. of the Interna-
tional Conference on Service Oriented Computing, Decem-
ber 2003.

[19] N. Mukhi, R. Konuru, and F. Curbera. Cooperative Mid-
dleware Specialization for Service Oriented Architectures.
Proc. of ACM International World Wide Web Conference,
2004.

[20] Object Management Group. Business Process Definition
Metamodel, January 2003.

[21] Object Management Group. UML 2.0 Superstructure Spec-
ification, July 2005.

[22] S. Paunov, J. Hill, D. C. Schmidt, J. Slaby, and S. Baker.
Domain-Specific Modeling Languages for Configuring and
Evaluating Enterprise DRE System Quality of Service.
Proc. of IEEE International Conference and Workshop on
the Engineering of Computer Based Systems, March 2006.

[23] D. C. Schmidt. Model-Driven Engineering. IEEE Computer,
39(4), February 2006.

[24] The World Wide Web Comsortium. XML Encryption Syn-
tax and Processing, December 2002.

[25] The World Wide Web Comsortium. XML Signature Syntax
and Processing, February 2002.

[26] M. Vokäc. Using a Domain-Specific Language and Custom
Tools to Model a Multi-tier Service-Oriented Application–
experiences and challenges. Proc. of ACM/IEEE Interna-
tional Conference on Model Driven Engineering Languages
and Systems, October 2005.

[27] G. Wang, A. Chen, C. Wang, C. Fung, and S. Uczekaj. In-
tegrated Quality of Service (QoS) Management in Service-
Oriented Enterprise Architectures. Proc. of IEEE Enterprise
Distributed Object Computing Conference, 2004.

