
Biologically-Inspired Design of Autonomous and Adaptive Grid Services 
 

Chonho Lee and Junichi Suzuki 
Department of Computer Science 

University of Massachusetts, Boston 
{chonho, jxs} @ cs.umb.edu 

 
Abstract—This paper describes and evaluates a bio-
logically-inspired network architecture that allows grid ser-
vices to autonomously adapt to dynamic environment 
changes in the network. Based on the observation that the 
immune system has elegantly achieved autonomous adapta-
tion, the proposed mechanism, the iNet artificial immune 
system, is designed after the mechanisms behind how the 
immune system detects antigens (e.g., viruses) and specifi-
cally reacts to them. iNet models a set of environment condi-
tions (e.g., network traffic and resource availability) as an 
antigen and a behavior of grid services (e.g., migration and 
replication) as an antibody. iNet allows each grid service to 
autonomously sense its surrounding environment conditions 
(an antigen) to evaluate whether it adapts well to the sensed 
conditions, and if it does not, adaptively perform a behavior 
(an antibody) suitable for the sensed conditions. Simulation 
results show that iNet allows grid services to autonomously 
adapt their population and location to environmental 
changes for improving their performance (e.g., response time 
and throughput) and balancing workload. 

 1. Introduction 
Grid computing applications are expected to be 

autonomous and adaptive to dynamic environmental 
changes (e.g., workload surges) in order to improve 
user experience, expand application’s operational lon-
gevity and reduce maintenance cost [1, 2, 3]. As inspi-
ration for a new design paradigm for grid applications, 
we observe various biological systems have elegantly 
achieved autonomy and adaptability. We believe if 
grid applications are designed after certain biological 
concepts and mechanisms, they may be able to attain 
autonomy and adaptability. 

BEYOND 1  is a network architecture that applies 
key biological mechanisms to design autonomous and 
adaptive grid applications. In BEYOND, a grid appli-
cation is modeled as a decentralized group of software 
agents. This is analogous to a bee colony (an applica-
tion) consisting of multiple bees (agents). Each agent 
implements a functional service related to the applica-
tion and follows biological behaviors such as migra-
tion, replication, energy exchange and death. 

This paper focuses on an adaptation mechanism for 
agents (i.e., grid applications) to autonomously adapt 
to dynamic environmental changes. The proposed ad-
aptation mechanism, iNet, is designed after the mecha-
                                                           
1 Biologically-Enhanced sYstem architecture beyond Ordinary Net-
work Design 

nisms behind how the immune system detects antigens 
(e.g., viruses) and produces specific antibodies to kill 
them. iNet models a set of environment conditions 
(e.g., network traffic) as an antigen and a behavior of 
agents as an antibody. iNet allows each agent to 
autonomously sense its local environment conditions 
(an antigen) to evaluate whether it adapts well to the 
sensed conditions, and if it does not, adaptively per-
form a behavior (an antibody) suitable for the condi-
tions. For example, agents may invoke migration be-
havior for moving towards network hosts that accept a 
large number of user requests for their services. This 
leads to the adaptation of agent locations, and agents 
can reduce response time for users. Simulation results 
show iNet allows agents to autonomously adapt to dy-
namic environmental changes for improving their per-
formance (e.g., response time and throughput) and 
balancing workload. This paper is organized as fol-
lows: Section 2 overviews the design principles of 
BEYOND. Section 3 describes the design of iNet. Sec-
tion 4 shows simulation results. Sections 5 and 6 con-
clude with comparison with related work. 

2. BEYOND 
In BEYOND, agents are designed based on the four 

principles described below. 
Decentralization: Agents are decentralized. There 

are no central entities to control and coordinate agents 
(i.e. no directory servers and no resource managers). 
Decentralization allows grid services to be scalable and 
simple by avoiding performance bottleneck and any 
central coordination in deploying them [4, 5]. 

Autonomy: Agents are autonomous. Agents moni-
tor their local network environments and autono-
mously behave and interact without any interventions 
from/to other agents and human users. 

Adaptability: Agents are adaptive to dynamic envi-
ronment conditions (e.g., user demands and resource 
availability). Each agent contains iNet, which allows it 
to adaptively behave against the current environment 
conditions (Figure 1). 

Symbiosis: Agents are grouped as species depend-
ing on the services they provide. Different species 
(groups of agents) usually compete with each other for 
resources such as CPU cycles and memory space. 



However, in some circumstances, they share available 
resources to live together in a cooperative manner. 

Agents run (or live) on a middleware platform in a 
network host. Each platform provides a set of runtime 
services that agents use to perform their services and 
behaviors.  

Each agent consists of attributes, body and behav-
iors. Attributes carry descriptive information regarding 
the agent (e.g., agent ID). The body implements a ser-
vice the agent provides. For example, an agent may 
implement a genetic algorithm for an optimization 
problem, while another agent may implement a physi-
cal model for scientific simulations. Behaviors imple-
ment non-service related actions inherent to all agents. 
This paper focuses on the following six behaviors.   

Migration: Agents may move between platforms. 
Energy exchange and storage: Agents may receive 

and store energy in exchange for providing services to 
other agents or users. Agents may also expend energy 
for services that they receive from other agents, and for 
resources available on a platform (e.g. memory space). 

Communication: Agents may communicate with 
other agents for the purposes of, for example, request-
ing a service or exchanging energy. 

Replications: Agents may make their copies in re-
sponse to higher energy level, which indicates higher 
demand for the agents. A replicated agent is placed on 
the platform that its parent agent resides on, and it re-
ceives the half amount of the parent’s energy level. 

Death: Agents die due to energy starvation. If en-
ergy expenditure of an agent is not balanced with en-
ergy gain, the agent cannot pay for the resources it 
needs; thus, it dies from lack of energy. When an agent 
dies, an underlying platform removes the agent and 
releases all resources allocated to the agent. 

Swapping: Different groups of agents (species) may 
cooperatively separate their locations (habitats) in the 
network when a group receives much larger number of 
service requests than another group. Agents in higher 
demand can ask other agents in lower demand to swap 
their locations. As a result, agents in higher demand 
can preferentially migrate towards users or certain re-
sources; thereby increasing their performance (e.g., 
response time for users and throughput).  

3. The iNet Artificial Immune System 
This section overviews how the natural immune 

system works (Section 3.1), and describes how the 
iNet artificial immune system is designed after the 
natural immune system (Section 3.2). 

3.1. Natural Immune System 

The immune system is an adaptive defense mecha-
nism to regulate the body against dynamic environ-

ment changes (e.g. antigen invasions). Through a num-
ber of interactions among various white blood cells 
(e.g. macrophages and lymphocytes) and molecules 
(e.g. antibodies), the immune system evokes two re-
sponses to antigens: innate and adaptive immune re-
sponse. 

In the innate immune response, the immune system 
performs self/non-self discrimination to detect antigens. 
This response is initiated by macrophages and T-cells, 
a type of lymphocytes. Macrophages move around the 
body to ingest antigens and present them to T-cells so 
that T-cells can recognize them. T-cells are produced 
in thymus and trained through the negative selection 
process. In this process, thymus removes T-cells that 
react with the body’s own (self) cells. The remaining 
T-cells are used as detectors to identify non-self cells 
(i.e. antigens). When T-cells detect non-self cells, they 
secrete chemical signals to activate the second immune 
response: adaptive immune response. 

In the adaptive immune response, the immune sys-
tem produces antibodies that specifically react and kill 
an antigen identified by T-cells. Antibodies form a net-
work structure and communicate with each other [6]. 
This network is formed with stimulation and suppres-
sion relationships among antibodies. Thus, the adap-
tive immune response is offered by multiple types of 
antibodies, although a single type of antibody (the best 
matched with an antigen) may play the dominant role. 
The immune network also helps to keep the quantita-
tive balance of antibodies. Through the stimulation and 
suppression interactions, the population of specific 
antibodies rapidly increases following the recognition 
of an antigen and, after eliminating the antigen, de-
creases again. Performed based on this self-regulation 
mechanism, the adaptive immune response is an emer-
gent product from many interactions among antibodies. 

3.2. Design and Implementation of iNet 

The iNet artificial immune system consists of the 
environment evaluation (EE) facility and behavior 
selection (BS) facility (Figure 1) corresponding to the 
innate and adaptive immune response, respectively. EE 
allows each agent to continuously sense a set of cur-
rent environment conditions as an antigen and examine 
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Figure 1. Organization of the iNet artificial immune system
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Figure 4. An Example Decision Tree 

Randomly generated
environment condition

(X)

Self detector
(Ds)

User defined Self 
environment condition (S)

Non-self 
detector (Dn)Distance (X, S)

> T
=< T

T: threshold

D3 0 (Self)

D1 0 (Self)
D2 1 (Non-self)

….

F1 F2 F3 ….      Class

Features

Feature Table

Feature Vectors
(detectors)

Randomly generated
environment condition

(X)

Self detector
(Ds)

User defined Self 
environment condition (S)

Non-self 
detector (Dn)Distance (X, S)

> T
=< T

T: threshold

D3 0 (Self)

D1 0 (Self)
D2 1 (Non-self)

….

F1 F2 F3 ….      Class

D3 0 (Self)

D1 0 (Self)
D2 1 (Non-self)

….

F1 F2 F3 ….      Class

Features

Feature Table

Feature Vectors
(detectors)

 
Figure 3. Initialization Step in EE whether it is self or non-self. A self antigen indicates 

that the agent adapts to the current environment condi-
tions well, and a non-self antigen indicates it does not. 
When EE detects a non-self antigen, EE activates BS 
(Figure 1). BS allows each agent to choose a behavior 
as an antibody that specifically matches with the de-
tected non-self antigen. 

3.2.1. Environment Evaluation Facility (EE) 

EE performs two steps: initialization and self/non-
self classification (Figure 2). The initialization step 
produces detectors that identify self and non-self anti-
gens (i.e. environment conditions). In iNet, an antigen 
(i.e. a set of environment conditions) is implemented 
as a feature vector. Each feature vector (X) consists of 
a set of features (F) and a class value (C). F contains a 
series of environment conditions. If an agent senses 
agent population on a local platform, resource utiliza-
tion on a local platform and workload (the number of 
user requests) on a local platform, a feature vector may 
be represented such as Xcurent=((Low: Agent population, 
Low: Resource utilization, Heavy: Workload), C).  C 
indicates whether a given antigen (i.e. a set of environ-
ment conditions) is self (0) or non-self (1). 

To evaluate whether an antigen (i.e. feature vector) 
is self or non-self, the initialization step produces de-
tectors that identify it (Figure 2). This step is designed 
after the negative selection process in the immune sys-
tem. In the initialization step, EE first generates feature 
vectors randomly, and separates them into self detec-
tors, which closely match with self antigens (feature 
vectors), and non-self detectors (T-cells in the immune 
system), which do not closely match with self antigens 
(feature vectors). This separation is performed via vec-
tor matching between randomly generated feature vec-
tors and self antigens that human users supply (Figure 
3). Currently, EE uses the Euclidean vector matching 
algorithm. After vector matching, both self and non-
self detectors are stored in a feature table (Figure 3)2.  

                                                           
2 The immune system removes non-self detectors through negative 
selection process. However, in iNet, both self and non-self detectors 
are kept in a feature table to perform self/non-self classification.  

The second step in EE performs self/non-self classi-
fication of environment conditions (Figure 2). It uses 
the detectors in a feature table to classify the current 
environment conditions into self or non-self. The 
self/non-self classification step is performed with a 
decision tree built from detectors in a feature table. 
Figure 4 shows an example decision tree. EE starts to 
examine a set of given current environment conditions, 
Xcurrent, at the root of the decision tree. Each node in the 
tree specifies which feature is considered. Based on the 
value of the specified feature in Xcurrent, EE follows 
down along the branch indicating the value. This proc-
ess is repeated until EE reaches at the leaf of tree 
which notices the class value of Xcurrent. Once EE de-
tects a non-self antigen, it activates BS immediately. 

The reasons for using decision tree as a classifier 
are ease of implementation and algorithmic efficiency. 
Since a decision tree is easy to understand and imple-
ment, iNet can maintain a lower barrier for developers 
to design adaptive grid applications. Also, a decision 
tree performs classification much faster than other al-
gorithms such as clustering, support vector machine 
and Markov model algorithms [7, 8]. The efficiency of 
classification is one of the most important require-
ments in iNet because each agent periodically senses 
and classifies its surrounding environment conditions. 

3.2.2. Behavior selection facility (BS) 

Once EE classifies the current environment condi-
tions as a non-self antigen, it activates BS. BS selects 
an antibody (i.e. agent’s behavior) suitable for the de-
tected non-self antigen (i.e. environment conditions). 
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Figure 2. iNet Adaptation Process 



Each antibody is structured as shown in Figure 5. It 
consists of Paratope, precondition under which it is 
selected (one of environment conditions), Behavior ID, 
one of agent behaviors, and Idiotope, relationships to 
other antibodies (one or more links). Antibodies are 
linked with each other using stimulation and suppres-
sion relationships (see Section 3.1). Each antibody has 
its own concentration value corresponding to the num-
ber of the antibody. The value is used to prioritize anti-
bodies (behaviors). BS identifies candidate antibodies 
(behaviors) suitable for a given non-self antigen (envi-
ronment conditions), prioritizes them based on their 
concentration values, and selects the most suitable one 
from the candidates. When prioritizing antibodies (be-
haviors), stimulation relationships between them con-
tribute to increase their concentration values, and sup-
pression relationships contribute to decrease it. Each 
relationship has its own strength (affinity), which indi-
cates the degree of stimulation or suppression. 

Figure 6 shows a generalized network of antibodies. 

The antibody i stimulates M antibodies and suppresses 
N antibodies. mji and mik denote affinity values be-
tween antibody j and i, and between antibody i and k. 
mi is an affinity value between an antigen and antibody 
i. The concentration of antibody i, denoted by ai, is 
calculated with the following equations. 
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In the equation (1), the first and second terms in a 

big bracket denote the stimulation and suppression 
from other antibodies. The affinity values between 
antibodies (i.e. mji and mik) are positive between 0 and 
1. mi is 1 when antibody i is stimulated directly by an 
antigen, otherwise 0. k denotes the dissipation factor 
representing the natural death of an antibody. This 
value is 0.1. The initial concentration value for every 
antibody, ai(0), is 0.01. The equation (2) is a sigmoid 
function used to squash the Ai(t) value between 0 and 1. 

Every antibody’s concentration is calculated 200 
times repeatedly. This repeat count is obtained from a 
previous simulation experience [9, 10]. If no antibody 
exceeds a predefined threshold (0.7) during the 200 

calculation steps, the antibody whose concentration 
value is the highest is selected (i.e. winner-tales-all 
selection). If one or more antibodies’ concentration 
values exceed the threshold, an antibody is selected 
based on the probability proportional to the current 
concentrations (i.e. roulette-wheel selection). 

Figure 7 shows an example network of antibodies. 
It contains four antibodies, which represent migration, 
replication, swapping and death behaviors. Antibody 1 
represents the migration behavior invoked when dis-
tance to users is far. Antibody 1 suppresses Antibody 3 
when it is stimulated Now, suppose that a (non-self) 
antigen indicates (1) user location is far, (2) network 
traffic is heavy on the local platform and (3) resource 
availability is high at local platform. This antigen 
stimulates Antibodies 1, 2 and 4 simultaneously. Their 
population increases, and it is likely that Antibody 2’s 
concentration value becomes highest because Anti-
body 2 suppresses Antibody 4, which in turn sup-
presses Antibody 1. As a result, Antibody 2 (i.e. repli-
cation behavior) would be selected. 

4. Simulation Results 
This section shows simulation results to examine 

the autonomous adaptability of agents developed with 
iNet. The simulations are carried out on the BEYOND 
simulator3. Figure 8 shows a simulated network. A 
server farm consists of network hosts connected in a 
15 x 15 grid topology, and service requests travel from 
users to agents via user access point. This simulation 
study assumes that a single (emulated) user runs on the 
access point and sends service requests to agents.  
                                                           
3 The BEYOND simulator contains 13,490 lines of Java code. It is 
available for researchers who investigate autonomous and adaptive 
grid applications (http://dssg.cs.umb.edu). 
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Figure 7. An Example Network of Antibodies 



When a user issues a service request, the service re-
quest is passed to the local platform where the user 
resides on, and the platform performs a discovery 
process to search a target agent that can process the 
issued service request. The platform (discovery origi-
nator) forwards a discovery message to its neighboring 
platforms, asking whether they host a target agent. If a 
neighboring platform hosts a target agent, it returns a 
discovery response to the discovery originator. Other-
wise, it forwards the discovery message again to its 
neighboring platforms. Figure 9 shows pseudo code 
for this agent discovery through platform connectivity4.  
 
While (not simulation last cycle) 
      If ( Discovery messages arrived) 

For each of discovery msgs (under the max # of messages to be 
processed in each simulation cycle) Do 
If ( Discovery message matches one of the local agents) 

          Returns a discovery response to discovery originator 
Else   

           Forward the discovery message to neighboring platforms 
End If 

End For 
      End If 
End While 

Figure 9. Pseudo Code for Agent Discovery Process 
in each Simulation Cycle 

4.1. Local-Area Grid 

In the first simulation study, each agent implements 
web server functionality in its body and possesses an 
iNet immune network that implements three behaviors 
(migration, replication and death), five environment 
conditions (energy level, workload on the local/ 
neighboring platforms, and resource availability on the 
local/neighboring platforms), 10 antibodies and 7 
stimulation/suppression relationships. An assumed 
application in this simulation study is web servers 
hosted on a server cluster. At the beginning of simula-
tion, a single agent is deployed on a platform at the 
right bottom corner of server farm (Figure 8). 

Figure 10 (1) (All figures are shown in the last 
page.) shows how service request rate changes over 
time. It starts with 1000 requests/min, spikes to 60,000 
requests/min at 2:00, and drops to 1,000 requests/min 
at 5:00. The peak-to-trough ratio is 60:1. This ratio is 
designed based on a workload trace of the 1998 World 
Cup official web site [16]. 
                                                           
4 Note that there is no centralized directory to keep track of agents. 

Figure 10 (2) shows how agents autonomously 

adapt their population to workload changes. When the 
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Figure 8. Simulated Network 
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Figure 10. Simulation results in 15x15 network 



workload spikes, agents gains more energy from users 
and perform replication behavior to increase their 
population. On the other hand, when the workload 
drops, some agents die due to energy starvation be-
cause they cannot balance their energy gain from users 
and energy expenditure to utilize the resources. As a 
result, agents shrink their population by eliminating 
idle ones. 

Figure 10 (3) shows how agents autonomously 
adapt response time for a user. At the beginning of 
simulation, response time becomes very high because 
only one agent processes 1,000 requests a minute and 
distance between the agent and users is long. However, 
after the agents accumulate enough energy from users 
and start migrating towards users and replicating them-
selves, they rapidly decrease response time (less than a 
second). When workload spikes at 2:00, the response 
time spikes up to 14 seconds (Figure 10 (4)), but 
agents decrease it to 1 second in 20 minutes by per-
forming replication behavior according to the demand 
change. 

Figure 10 (5) depicts the average distance between 
agents and users. Initially, a single agent is placed at 
the right bottom corner, and users are at the left most 
(Figure 8). Therefore, the initial distance between 
agents and users is 22. Agents autonomously decrease 
the distance by performing migration behavior.  

Figure 10 (6) shows the throughput achieved by 
agents. It is measured as the number of responses that 
users receives a minute from agents. Figure 9 demon-
strates that agents autonomously meet given workload 
by dynamically adjusting their population and loca-
tions through replication and migration behaviors. 

4.2. Wide-Area Grid 

The second simulation study is carried out to evalu-
ate how agents autonomously balance workload placed 
on them and how symbiosis among agents (swapping 
behavior) impact agent performance. In this study, 
each agent implements multimedia streaming function 
in its body and possesses an iNet immune network that 
implements three behaviors (migration, replication, 
death and swapping), five environment conditions (en-
ergy level, workload on the local/neighboring plat-
forms, and resource availability on the lo-
cal/neighboring platforms), 13 antibodies and 10 
stimulation/suppression relationships.  

An assumed application in this simulation study is 
multimedia content distribution in a grid (a collection 
of servers) that covers a geographically wide area. For 
example, a large sport event such as Olympic game 
may deploy servers at multiple event sites such as ath-
letics stadiums, swimming pools and gymnasiums. The 
servers are connected with each other to form a wide-
area grid. Each event site has a wireless base station 

connected to this grid, and spectators in the event site 
can access realtime zoom-in video or playback video. 
This simulation study assumes that 15x15 (225) serv-
ers are deployed, each agent contain a multimedia 
steam (or a fragment of the stream), and user access 
point is a wireless base station through which users 
access agents for multimedia contents.  

In this simulation, there are two types of agents that 
provide different types of multimedia contents: A and 
B. At the beginning of simulation, three agents for 
each service A and B are randomly deployed in the 
network. Figure 11 shows dynamic changes of service 
request rate for service A and B. Service A is con-
stantly requested at the rate of 25K requests/min from 
0:00 to 2:00. This simulates that spectators in an ath-
letic stadium constantly request playback movie of an 
athletic match. At 2:00, service request rate spikes 
from 0 to 35K requests/min. This simulates that the 
spectators in an athletic stadium rapidly access the 
movie of a swimming final match that generated the 
world record. 

Figure 12 shows how a swapping behavior effec-
tively works in terms of response time for users. The 
black line indicates response time by agents with 
swapping behavior, and the gray line indicates re-
sponse time by agents without swapping behavior. The 
first graph in Figure 11 shows that response time is 
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slightly increasing (about 0.4sec) because agents for 
service A yield their resources to agents for service B. 
However, the second graph in Figure 11 shows that 
response time drops about 4 sec since agents for ser-
vice B gain more resources by swapping behavior. So, 
the total average response time also reduces. As pre-
sented in section 2, a swapping behavior is performed 
between two different types of agents. Agents compare 
their workload with others, and if the workload is 
heavier then they try to swap their location and gain 
resources closer to users. 

Figure 13 shows that how agents dynamically dis-
tribute their workload over the simulated grid network. 
Load Balancing Index (LBI) is measured with 

 
 
Xi indicates the current workload of platform i per a 

resource unit (i.e. the # of messages processed by 
agents running on platform i divided by resource utili-
zation on platform i). µ represents the expected aver-
age of X (i.e. the total # of messages processed by all 
agents divided by the total amount of resource utiliza-
tion on all platforms N where those agents are run-
ning.) Hence, LBI represents a variance of workload 
on each platform. Figure 13 shows that LBI is decreas-
ing from 2:00 to 3:00. This indicates that, when agents 
receive service B requests at 2:00, agents start replicat-
ing, and the workload is being distributed over the 
network. 

Figure 14 describes how each group of agents (i.e. 
agents for service A and B) forms a cluster when they 
migrating toward users. Figure 14 (A) shows the clus-
ter size of agents for service A. At 0:00, three agents 
are deployed and form a cluster with size 10. When 
they receive requests from users, they migrate toward 
users and reduce cluster size to about 2.5. Similarly, 
figure 14 (B) shows the cluster size of agents for ser-
vice B. When they receive requests at 2:00, they start 
migrating toward users from up, right and bottom (due 
to initial location). At 2:15, they can no longer migrate 
(with cluster size 8) because of a boundary of agents 
for service A which are already consuming resources 
closer to users. However, agents for service B invoke 
swapping behavior and get close to each other (with 
cluster size 6) at 3:00. Swapping behavior helps to 
reduce cluster size of the same type of agents. 

5. Related work 
Artificial immune systems have been proposed and 

used in various application domains such as anomaly 
detection [11] and pattern recognition [12]. [11] 
mainly focuses on the generation of detectors for 

self/non-self classification and improves the negative 
selection process of the artificial immune system. [12] 
focuses on the accuracy for the matchmaking of an 
antigen and antibody. On the other hand, this paper 
proposes an artificial immune system to improve 
autonomous adaptability in grid network services. To 
the best of our knowledge, this work is the first attempt 
to apply an artificial immune system into the auto-
nomic adaptation domain. 

There are lots of research efforts to achieve decen-
tralized network applications based on the concept of 
natural immune system. For example, [17] uses the 
concept of memory B-cells to reduce search response 
time. Once the target for query is found, B-cell (user 
node) remembers the query and the peers (nodes) who 
contain the target. They move close each other and 
form clusters so that reducing response time for the 
query encountered before. [18] follows the concept of 
stimulation/suppression interaction among antibodies 
to find the recommending items that have been never 
seen before by users. Stimulation affects to increase 
the concentration of similar items to a user profile as 
recommending items; suppression affects to keep items 
that have seen before by users far away from the rec-
ommending items. Similar to [17][18], iNet agent in-
cludes the concept of B-cells such as the network of 
antibodies and the memory of antibody’s concentration 
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in the BS facility. However, the iNet agent also in-
cludes the function of T-cells such as self/non-self 
discrimination in the EE facility. This additional func-
tion results in reducing the overhead of behavior selec-
tion. 

Similar work has been proposed in Organic Grid 
[13] project. [13] attempts to the decentralized task 
scheduling for large-scale computation on grid envi-
ronment over the Internet. Similar to iNet, mobile 
agents autonomously executes their services (e.g. com-
puting subtasks) on the platform embedded in each 
host and perform their replication behavior to achieve 
their objectives (e.g. compute as fast as possible). Yet, 
iNet focuses on the grid service adaptation. Agents 
consider more behaviors for adaptation, and through 
those various adaptation decisions, the high adaptabil-
ity of grid network services (i.e. agents) is achieved. 

There are several research efforts that allow net-
work systems to adapt to application and end-user re-
quirements with a technique of runtime component 
replacement. For example, [14, 15] can dynamically 
replace running components (e.g. byte code) with oth-
ers according to the monitored environment conditions. 
The difference is that [14, 15] assumes a centralized 
network architecture where a centralized server col-
lects environment conditions from each component to 
make replacement decisions. In contrast, iNet assumes 
a decentralized network architecture where each agent 
monitors its surrounding environment and makes adap-
tation decisions. 

6. Concluding Remarks 
This paper describes and evaluates a biologically-

inspired mechanism that allows grid services to 
autonomously adapt to dynamic changes in the net-
work. The proposed adaptation mechanism, called the 
iNet artificial immune system, allows each grid service 
to autonomously sense its surrounding environment 
conditions to evaluate whether it adapts well to the 
conditions, and if it does not, adaptively perform a 
behavior suitable for the conditions. Simulation results 
show that iNet allows agents to autonomously adapt to 
dynamic environmental changes for improving their 
performance (e.g., response time and throughput) and 
balancing workload. 
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