
Towards Green Grids: A Biologically-Inspired Adaptive Architecture for
Power Efficient Server Farms

Paskorn Champrasert and Junichi Suzuki

Department of Computer Science
University of Massachusetts, Boston

{paskorn, jxs}@cs.umb.edu

Abstract

This paper describes a biologically-inspired network
architecture, called SymbioticSphere, which allows
server farms to autonomously adapt to dynamic envi-
ronmental changes and achieve power efficiency. Symbi-
oticSphere follows certain biological principles such as
decentralization, natural selection, emergence and sym-
biosis to design server farms (application services and
middleware platforms). Each application service and
middleware platform is modeled as a biological entity,
analogous to an individual bee in a bee colony. Simula-
tion results show that, like in biological systems, desir-
able system properties (e.g., adaptability and power effi-
ciency) emerge from collective actions and interactions
of application services and platforms.

1. Introduction
Server farms such as Internet data centers and grid

clusters have become integral components to operate
Internet services and scientific computation. Since they
have been increasing in scale and complexity, server
farm electricity costs are already in the range of $3.3
billion annually (in 2005), and the number of servers in
the United States is expected to increase more than 50%
over the next four years [1]. [2] reports that 2% of elec-
tricity consumption in the US (74TWh/year; $6 bil-
lion/year) was used to operate the Internet in 1999. Ac-
cording to [3], the US Secretary of Energy reported that
the demands of the Internet already consume 8% to 13%
of electricity in 2001. As such, one of the current key
issues for server farm administrators is to balance elec-
tricity costs and computation power.

Regarding the workload placed on server farms, the
recent research efforts have revealed large daily and sea-
sonal fluctuations in workload [4, 5, 6]. Therefore, this
paper studies an autonomous and adaptive strategy in
which server farms autonomously achieve power effi-
ciency through adapting their operations to dynamic en-
vironmental changes in the network (e.g., changes in
workload and resource availability).

In order to make this power efficiency strategy a real-
ity, this paper proposes a network architecture, called
SymbioticSphere, which applies biological principles to
design autonomous and adaptive server farms with
power efficiency in mind. SymbioticSphere is motivated
by the observation that various biological systems have

developed the mechanisms necessary to achieve auton-
omy and adaptability. For example, bees in a bee colony
act autonomously, influenced by local conditions and
local interactions with other bees. A bee colony adapts to
dynamic environmental conditions. When the amount of
honey in a hive is low, many bees leave the hive to
gather nectar from flowers. When the hive is full of
honey, most of bees rest in the hive. Bees also adjust
energy consumption in different seasons by changing
reproduction rate [7]. We believe that if server farms
adopt certain biological principles, they may be able to
attain autonomy and adaptability for power efficiency.

SymbioticSphere consists of application services and
middleware platforms. Each of them is modeled as a
biological entity, analogous to an individual bee in a bee
colony. Both application services and middleware plat-
forms follow several biological principles such as decen-
tralization, natural selection, emergence and symbiosis.
An application service is implemented as an autonomous
software agent. Each agent implements a functional ser-
vice and follows simple biological behaviors such as
replication, death, migration and energy exchange. A
middleware platform runs on a network host and oper-
ates agents. Each platform provides a set of runtime ser-
vices that agents use to perform their services and behav-
iors, and implements simple biological behaviors such as
replication, death and energy exchange.

This paper describes the biologically-inspired mecha-
nisms in SymbioticSphere and evaluates how they con-
tribute for server farms (i.e., agents and platforms) to
autonomously improve their power efficiency through
adapting to dynamic environmental changes. Simulation
results show server farms autonomously adapt to dy-
namic network environment and save over 50% of power
consumption without sacrificing their performance.

This paper is organized as follows. Section 2 summa-
rizes the key design principles in SymbioticSphere. Sec-
tion 3 describes the design of agents and platforms. Sec-
tion 4 evaluates simulation results. Sections 5 and 6 con-
clude with discussion on related work.

2. Design Principles in SymbioticSphere
SymbioticSphere consists of two components: agents

and middleware platforms. Agents run on platforms,
which in turn run on network hosts. Agents and plat-
forms are designed based on the following principles.

(1) Decentralization: There are no central entities to
control and coordinate agents/platforms (i.e., no directo-
ries and no resource managers). Decentralization allows
agents/platforms to be scalable and simple by avoiding a
single point of performance bottlenecks [8] and avoiding
any central coordination to deploy agents/platforms [9].

(2) Autonomy: Agents and platforms sense their local
network environments, and based on the sensed envi-
ronmental conditions, they autonomously behave, and
interact with each other without any intervention from/to
other agents, platforms and human users.

(3) Natural selection: Agents and platforms store and
expend energy for living. Each agent gains energy in
exchange for performing its service to other agents or
human users, and expends energy to use network and
computing resources. Each platform gains energy in ex-
change for providing resources to agents, and periodi-
cally evaporates energy. The abundance or scarcity of
stored energy triggers natural selection of
agents/platforms. For example, an abundance of stored
energy indicates higher demand for an agent/platform;
thus the agent/platform replicates itself to increase its
availability. A scarcity of stored energy (an indication of
lack of demand) causes death of the agent/platform. Like
in biological natural selection where more favorable spe-
cies in an environment becomes more abundant, the
population of agents/platforms dynamically changes
based on the demands for them.

(4) Emergence: Agents and platforms behave against
dynamic environmental conditions (e.g., user demands
and resource availability). For example, an agent may
invoke migration behavior to move towards a platform
that forwards a large number of request messages for its
services. A platform may replicate itself on a neighbor-
ing host whose resource availability is high. Through
collective behaviors and interactions of individual agents
and platforms, desirable system characteristics such as
adaptability and survivability emerge in a swarm of
agents and platforms. Note that these desirable character-
istics are not present in any single agent/platform.

(5) Symbiosis: Agents and platforms are modeled as
different biological species. The two types of biological
entities are designed to complement with each other (or
in a symbiotic manner). Agents cannot survive without
platforms, and platforms cannot survive without agents.
This symbiotic relationship between agents and plat-
forms can improve power efficiency by turning off the
network hosts that host no agents.

3. SymbioticSphere
This section presents the design of SymbioticSphere.

3.1 The Architecture of SymbioticSphere
SymbioticSphere models agents and platforms as dif-

ferent species, and follows ecological principles to de-
sign energy exchange among agents, platforms and envi-

ronment. Fig. 1 shows a simplified energy flow in the
ecological system. The Sun gives light energy, and pro-
ducers (e.g., plants and microorganisms) convert it to
chemical energy. The chemical energy flows through
multiple species, called consumers. It will be eventually
transferred to decomposers (e.g., bacteria and fungi). For
example, shrubs (producers) convert the Sun light energy
to chemical energy, hares (primary consumers) consume
shrubs, and foxes (secondary consumers) consume hares.

In energy exchange between different species, it is
known that about 10% of the energy maintained by one
species is transferred to another species [10]. The re-
maining 90% of the energy is used for metabolism,
growth and actions/behaviors (e.g., reproduction).

 Sun

Producers Primary
Consumers

N-th
Consumers

Decomposers

Ecosystem

Fig. 1 Energy Flow in Ecosystem

Fig. 2 shows the energy exchange in SymbioticSphere.
SymbioticSphere models each user as the Sun, agents as
producers and platforms as (primary) consumers. Similar
to the Sun, users have unlimited amount of energy.
Agents gain energy from users1, and expend energy to
consume resources provided by platforms (e.g., memory
space). They periodically transfer 10% of the current
energy level to platforms on which they operate. Plat-
forms periodically gain energy from agents, and evapo-
rate 10 % of the current energy level to the environment.

Platform

Host

SymbioticSphere

Environment

Service

Energy

Energy
evaporation

ResourceEnergy

Agent

Service

Platform

Host Host

Energy

Service request

User

Fig. 2 Energy Exchange in SymbioticSphere

3.2 Agents
Each agent consists of three parts: attributes, body and

behaviors. Attributes carry descriptive information re-
garding the agent, such as agent ID, energy level and
description of a service it provides. Body implements a
service that the agent provides. For example, an agent

1 Each agent specifies the price of its service (in energy units).

may implement a web service and contains web pages in
its body while another agent may implement a physical
model for scientific simulations. Behaviors implement
actions that are inherent to all agents. Although Symbiot-
icSphere defines nine standard agent behaviors [11], this
paper focuses on three of them.
• Replication: Agents may make a copy of themselves

as a result of abundance of energy. A replicated (child)
agent is placed on the platform that its parent agent re-
sides on, and it receives the half amount of the par-
ent’s energy level.

• Death: Agents die due to energy starvation. When an
agent dies, an underlying platform removes the agent
and releases all resources allocated to the agent.

• Migration: Agents may move from one platform to
another.

3.3 Platforms
Each platform runs on a network host and operates

agents. It consists of attributes, behaviors and runtime
services. Attributes carry descriptive information regard-
ing the platform, such as platform ID, energy level and
health level. Health level is defined as a function of the
age of and resource availability on a network host that
the platform runs on. The age indicates how long a net-
work host remains alive (i.e., how much stable a network
host is). Resource availability indicates how much re-
sources (e.g., memory space) are available for agents and
platforms on a network host. Health level affects behav-
iors of a platform and agent. For example, higher health
level indicates higher stability of and/or higher resource
availability on a network host that the platform resides
on. Thus, the platform may replicate itself on a healthier
neighboring host than the current local host. This results
in the adaptation of platform locations. Platforms strive
to run on more stable and resource rich network hosts.

Behaviors are the actions inherent to all platforms.
• Replication. Platforms may make a copy of themselves

as a result of abundance of energy (i.e., higher demand
for resources available on the platforms). The child
platform receives the half amount of the parent’s en-
ergy level.

• Death. Platforms die due to the lack of energy. A dy-
ing platform uninstalls itself and releases all resources
the platform uses.
Runtime services are middleware services that agents

and platforms use to perform their behaviors. In order to
maximize decentralization and autonomy of
agents/platforms, they only use their local runtime ser-
vices. They are not allowed to invoke any runtime ser-
vices running on a remote platform.

3.4 Behavior Policies of Agents and Platforms
Each agent and platform has policies for its behaviors.

A behavior policy defines when to and how to invoke a
particular behavior. Each behavior policy consists of one

or more factors (Fi), which evaluate environment condi-
tions (e.g., network traffic and resource availability) or
the status of agent/platform/host (e.g., energy level and
health level)2. Each factor is given a weight (Wi) relative
to its importance. Behaviors are invoked if the weighted
sum of factor values (Σ Fi*Wi) exceeds a threshold.

The factors in agent migration behavior include:
• Health level Ratio: The ratio of health levels in a re-

mote and the local hosts. This factor encourages
agents to move to platforms on healthier hosts.

• Service Request Ratio: the ratio of the number of ser-
vice requests on a remote platform by the number of
service requests on a local platform, which encour-
ages agents to move towards users.

• Migration interval: interval from the time of a previ-
ous migration, which discourages agents to migrate
too often.
If there are multiple neighboring platforms that an

agent can migrate to, the agent calculates a weighted
sum of the above factors for each platform, and move to
a platform that generates the highest weighted sum.

Agent replication and death behaviors have a factor
that evaluates the current energy level of agent.
 Platform replication behavior has a factor of health
level ratio, which encourages platforms to replicate
themselves on a healthier neighboring host. A replicated
(child) platform is placed on a host whose health level is
highest among neighboring hosts.

Platform death behavior has a factor that evaluates the
current energy level of platform. Platforms never die
while an agent(s) runs on the platform.

Each agent/platform incurs energy loss to invoke be-
haviors (i.e., behavior cost) except death behavior. When
the energy level of an agent/platform exceeds the cost of
a behavior, the agent/platform decides whether it per-
forms the behavior by calculating a weighted sum of
factor values.

4. Simulation Results
This section shows simulation results to evaluate how

the biologically-inspired mechanisms in Symbiotic-
Sphere impact the adaptability and power efficiency of
server farms3. In this paper, adaptability is an ability of
server farms (i.e., agents and platforms) to adjust the
availability (service availability and resource availabil-
ity) and performance (response time and throughput)
according to dynamic environmental conditions. Service
availability is measured as the number of available

2 Each agent and platform can sense its surrounding environment con-
ditions. An agent can sense agent population, network traffic and re-
source availability on the local and neighboring platforms. A platform
can sense agent population on itself, and health level of the local and
neighboring hosts.
3 Simulations were carried out with the SymbioticSphere simulator,
which contains 14,200 lines of Java code. It is available for researchers
who investigate autonomic network systems (dssg.cs.umb.edu).

agents. Resource availability is measured as the number
of platforms that make resources available for agents.
Power efficiency is measured with the power consump-
tion by network hosts.

Fig. 3 shows a simulated network. A server farm con-

sists of hosts connected in an N x N grid topology, and
service requests travel from users to agents via user ac-
cess point. This simulation study assumes that a single
(emulated) user runs on the access point and sends ser-
vice requests to agents. Each host has an Intel Pentium 4
CPU, 100Mbps Ethernet interface card and 256MB
memory4. Out of the memory space, an operating system
consumes 128 MB, and Java virtual machine consumes
64MB. Thus, 64MB is available for a platform and
agents on each host. Each agent and platform consumes
5 MB and 20 MB, respectively. This assumption is ob-
tained from a prior empirical experiment [11].

Each host operates in active or inactive state. When a
platform works on a host, the host is in active state and
consumes 60W power. The host goes to inactive state
when a platform dies on it. An inactive host consumes
5W power. This assumption on power consumption is
obtained from [12]. A host can become active from inac-
tive state using the Wake On LAN (WOL) technology
[13]. When a platform replicates itself on an inactive
host, the platform sends a WOL packet to the host to
wake it up.

Fig. 3 shows a pseudo code to run users, agents and
platforms in each simulation cycle.
While (not the last cycle in a simulation)

For each user Do
 Send service requests to agents according to a configured

 service request rate.
End For
For each platform Do

Make a decision on replication and death behaviors.
Update health level.
Expend (evaporate) energy.

End For
For each agent Do

If (a service request(s) arrived)
 Process the request(s) and gain energy.

 End If
Make a decision on replication, migration and death behaviors.
Expend energy to the local platform.

End For
End While

Fig. 3 Pseudo Code of Each Simulation Cycle

4 Currently, memory availability represents resource availability on
each platform/host.

When a user issues a service request, the service re-
quest is passed to the local platform where the user re-
sides on, and the platform performs a discovery process
to search a target agent that can process the issued ser-
vice request. The platform (discovery originator) for-
wards a discovery message to its neighboring platforms,
asking whether they host a target agent. If a neighboring
platform hosts a target agent, it returns a discovery re-
sponse to the discovery originator. Otherwise, it for-
wards the discovery message again to its neighboring
platforms. Fig. 4 shows this peer-to-peer agent discovery
process through platform connectivity5.

Se
rv

ic
e

re
qu

es
t

fro
m

 u
se

rs
User

access point

Server Farm

Host

(Simulated User)Se
rv

ic
e

re
qu

es
t

fro
m

 u
se

rs
User

access point

Server Farm

Host

(Simulated User)

Fig. 3 Simulated Network

While (not simulation last cycle)
 If (Discovery messages arrived)

For each of discovery messages (under the max # of messages to be
processed in each simulation cycle) Do
If (Discovery message matches one of the local agents)

 Return a discovery response to discovery originator.
Else

 Forward the discovery message to neighboring platforms.
End If

End For
 End If
End While

Fig. 4 Pseudo Code for Agent Discovery Process
in Each Simulation Cycle

Through the above discovery process, a user finds a
set of platforms hosting the target agents that can process
his/her service request. The user chooses the platform
closest from him/her and forwards his/her service request
to the platform. When the service request arrives the
platform, it inserts the request in its request queue. Each
platform inspects the length of its request queue and the
number of local agents running on it in each simulation
cycle. If the number of queued service requests exceeds
the number of service requests that local agents can
process in a simulation cycle, the platform propagates
the queued requests to other platforms hosting the agents
that can process the requests. This propagation continues
until the number of queued requests becomes is smaller
than the number of service requests that local agents can
process in a simulation cycle. Fig. 5 shows this request
propagation process.

While (not the last cycle in a simulation)
 If (# of queued service requests > # of service requests that local agents
 can process in a simulation cycle)

 If (there is available platform)

 transfer service requests to available hosts in round robin
 End If

 Else If
 Process the service request
 End If
End While

Fig. 5 Pseudo Code to Process and Propagate
Service Requests in Each Simulation Cycle

Each simulation runs for 24 hours in simulation time.
Fig. 6 shows how service request rate changes through a

5 Note that there is no centralized directory to keep track of agents.

simulation. This is taken from a workload trace of the
1998 Olympic official website [14]. (The peak is 9,600
request/min.) A simulated server farm is 7x7 (49 hosts).
At the beginning of a simulation, one agent and one plat-
form are deployed on a host.

Fig. 7 shows how service availability (i.e., the number

of agents) and resource availability (i.e., the number of
platforms) change dynamically. Starting with an agent
and a platform at 0:00, they change their populations
through replication in order to handle the demand placed
on them (6,000 requests/min). When service request rate
increases from 12:00 to 2:00, agents gain more energy
form users and replicate themselves more often. In re-
sponse to higher energy intake, they also transfer more
energy to platforms. As a result, platforms also increase
their population through replications. When service re-
quest rate decreases from 14:00, some of agents and plat-
forms die because they cannot balance energy gain and
expenditure due to less energy transfer from users. Fig. 7
shows that biological mechanisms in SymbioticSphere
contribute for agents and platforms to autonomously
adapt their availability to dynamic demand changes.

Fig. 8 shows the average response time and the

throughput achieved by agents. In the first hour, re-
sponse time is high (25 sec) because there is only one
agent and one platform needs to process 6,000 requests a
minute at the beginning of a simulation. As a result,
throughput does not reach 100%. However, as agents
and platforms replicate themselves and agents migrate
towards users, the response time drops to 1 second at
2:00. (throughput reaches 100%.) After 2:00, the re-
sponse time is constantly 1 second and the throughput is
constantly 100%, although service request rate increases
from 12:00 to 2:00. This means agents and platforms
responsively change their populations and locations

against demand changes. Fig. 8 shows that the biological
mechanisms in SymbioticSphere contribute for agents
and platforms to collectively retain response time and
throughput performance by adjusting their populations
and locations.

0

2000

4000

6000

8000

10000

0 2 4 6 8 10 12 14 16 18 20 22 24Se
rv

ic
e

R
eq

ue
st

 R
at

e
(#

 o
f m

es
sa

ge
s /

 m
in

)

Simulation time (hour)
Fig. 6 Service Request

Fig. 9 shows resource efficiency, which indicates

how many service requests can be processed per re-
source unit. It is measured as (the total number of user
requests processed by agents) / (the total amount re-
sources consumed by agents and platforms). The re-
source efficiency of SymbioticSphere is compared with a
scenario where platforms do not have biological behav-
iors (replication and death). This scenario simulates the
always-on operation in traditional grids. (49 platforms
always run on hosts.) Since platforms of Symbiotic-
Sphere dynamically adjust resource availability accord-
ing to demand changes (Fig. 7), SymbioticSphere outper-
forms traditional grids in resource efficiency. Figs. 9 and
8 show that the biological mechanisms in Symbiotic-
Sphere contribute for platforms to adapt resource effi-
ciency to dynamic demand changes while helping agents
improve response time and throughput performance.

0
5

10
15
20
25

0 2 4 6 8 10 12 14 16 18 20 22 24
0
20
40
60
80
100

Average Response Time
% Throughput

A
ve

ra
ge

 re
sp

on
se

 ti
m

e
(s

ec
)

Simulation time (hour)

Th
ro

ug
hp

ut
/S

er
vi

ce

R
eq

ue
st

 R
at

e

Fig. 8 Response Time and Throughput

0

5

10

15

0 2 4 6 8 10 12 14 16 18 20 22 24

Biological platforms
Non-biological platforms

R
es

ou
rc

e
Ef

fic
ie

nc
y

Simulation time (hour)
Fig. 9 Resource Efficiency

0

100

200

300

400

2 4 6 8 10 12 14 16 18 20 22
0
10
20
30
40
50
60

of agents
of platforms

Th
e

nu
m

be
r o

f a
ge

nt
s

Simulation time (hour)

Th
e

nu
m

be
r o

f p
la

tfo
rm

s

Fig. 7 The Number of Agents and Platforms
Fig. 10 shows power saving ratio compared with an

always-on scenario where platforms do not have biologi-
cal behaviors (replication and death). SymbioticSphere
saves nearly 40% power consumption at maximum,
compared with traditional grids. The average power sav-
ing ratio is 17.51%. Fig. 9 demonstrates that platforms of
SymbioticSphere autonomously decrease their popula-
tion when service request rate is low. When service re-
quest rate becomes higher from 12:00 to 2:00, platforms
replicate themselves so that agents can handle higher
workload. As a result, power saving ratio decreases to
0%. Fig. 10 and 8 show that the biological mechanisms
in SymbioticSphere contribute for platforms to improve

power efficiency and adaptively trade power efficiency
and agent performance (response time and throughput).

Figs. 11, 12 and 13, show the average response time,

average throughput and average power saving ratio in
different network sizes. The same service request rate
(shown in Fig. 5) is placed on 5x5, 7x7 and 10x10 net-
works. The response time and throughput improve when
network size increases, because agents and platforms can
utilize more resources to process service requests. The
energy saving ratio increases when network size in-
creases, because more platforms can deactivate idle hosts
during low service request rate. In a 10x10 network,
SymbioticSphere achieves over 50% power saving.

5. Related Work
This work is an extension to the Bio-Networking Ar-

chitecture [11, 15]. In this architecture, biologically-
inspired agents adapt their population and location to

dynamic environmental changes in a decentralized man-
ner. However, platforms do not adapt to environmental
changes because they are static and non-biological enti-
ties. Also, the Bio-Networking Architecture does not
consider power efficiency. In SymbioticSphere, both
agents and platforms are biological entities, and they
achieve autonomous adaptability and power efficiency.

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16 18 20 22 24Po
w

er
 S

av
in

g
R

at
io

 (%
)

Simulation time (hour)
Fig. 10 Power Saving Ratio

In order to improve power efficiency in server farms,
there are typical two approaches: (1) decreasing the fre-
quency and voltage of CPUs (e.g., [16, 17]) and (2) turn-
ing off idle hosts (e.g., [19]). The first approach requires
dynamic voltage scaling (DVS) CPUs; it cannot be used
with standard CPUs. Moreover, CPU power consump-
tion is generally small (approximately 15%) in the total
power consumption in a host [18]. The power saving
with this approach is limited. SymbioticSphere follows
the second approach. Network hosts are turned off when
platforms die on the hosts, and they are turned on when
platforms replicate themselves on the hosts.

Following the above second approach, [19] addresses
power efficiency of cluster systems. It is similar to Sym-
bioticSphere in that it turns on and off hosts based on the
workload placed on them. In [19], a centralized work-
load monitor periodically inspects resource utilization on
hosts (e.g., CPU, disk and bandwidth utilization) and
decides which hosts to be turned on and off. Thus, the
workload monitor needs to be always on; power saving
is not applied on the workload monitor. In contrast,
SymbioticSphere does not rely on any centralized enti-
ties. Individual hosts make turn-on/off decisions them-
selves. Power saving is applied to all the hosts in the
network.

Resource Broker [20] and Muse [21] are designed to
dynamically adjust resource allocation for server clusters
via centralized system monitor. Resource Broker in-
spects the stability and resource availability of each host,
and adjusts resource allocation for applications. Muse
inspects power consumption of a server cluster (i.e., mul-
tiple servers) and adjusts resource allocation for applica-
tions. Rather than following centralized architectures,
agents and platforms in SymbioticSphere decide where
to run themselves in a decentralized manner. Also, Re-
source Broker does not consider power efficiency of
server clusters. Muse addresses power efficiency by
monitoring power consumption of servers and changing
resource allocation. In contrast, platforms in Symbiotic-
Sphere do not monitor power consumption of hosts. In-
stead, they monitor health level (i.e., resource availabil-
ity) of local hosts and adjust their population. Power
efficiency is a result of emergence from collective ac-
tions of platforms (i.e., replication and death behaviors).

Rainbow investigates the adaptability of server clus-
ters [22]. A centralized system monitor periodically in-
spects the current environment conditions (e.g., work-
load placed on hosts), and performs an adaptation strat-
egy (e.g., service migration and platform replica-

1.45

1.5

1.55

1.6

5x5 7x7 10x10R
es

po
ns

e
Ti

m
e

(s
ec

)

Network Size
Fig. 11 Response Time in Different Network Size

99.25

99.3

99.35

99.4

99.45

5x5 7x7 10x10

Th
ro

ug
hp

ut
/S

er
vi

ce

R
eq

ue
st

 R
at

e

Network Size
Fig. 12 Throughput in Different Network Size

0

10

20

30

40

50

5x5 7x7 10x10Po
w

er
 S

av
in

g
R

at
io

 (%
)

Network Size
Fig. 13 Power Saving Ratio in Different Network Size

tion/removal). SymbioticSphere implements more adap-
tation strategies such as agent replication (service repli-
cation) and agent death (service removal). It also ad-
dresses power efficiency as well as adaptability with the
same set of agent/platform behaviors. Rainbow does not
consider power efficiency.

[23] proposes a decentralized design for server clus-
ters to guarantee response time to users. Symbiotic-
Sphere does not guarantee any system measures includ-
ing response time because the dynamic improvement of
those measures is an emergent result from collective
behaviors and interactions of agents and platforms. As a
result, agents and platforms in SymbioticSphere can ad-
apt more system measures to dynamic environmental
changes than [23] does, such as throughput and power
consumption. [23] does not consider power efficiency.

The concept of energy in SymbioticSphere is similar
to money in economy. MarketNet [24] and WALRAS
[25] apply the concept of money to address market-based
access control for network applications. Instead of access
control, SymbioticSphere focuses on adaptability and
power efficiency of network systems (network applica-
tions and middleware platforms).

[26] implements the concept of symbiosis between
groups of peers (hosts) in peer-to-peer networks. Peer
groups symbiotically connect or disconnect with each
other in order to improve the speed and quality of que-
ries. A special type of peers implements the symbiotic
behaviors for peer group connection/disconnection.
Since the number of the symbiotic peers is statically
fixed, they do not scale well to network size and traffic
volume. They do not address power efficiency. In Sym-
bioticSphere, all agents and platforms are designed in a
symbiotic manner They scale well to network size and
traffic volume, and achieve power consumption effi-
ciency.

6. Conclusion
This paper overviews the design of SymbioticSphere,

and evaluates how its biological mechanisms impact the
adaptability and power efficiency of server farms. Simu-
lation results show SymbioticSphere allows server farms
to autonomously improve their adaptability and power
efficiency without sacrificing their performance.

Reference
[1] IDC, “Server Power Consumption Reemerges as a Critical Cost

Factor in Datacenters,” Document#: 33937, August 2005.
[2] K. Kawamoto, J. Koomey, B. Nordman, R. Brown, M. Piette, M.

Ting, A. Meier, “Electricity Used by Office Equipment and Net-
work Equipment in the US,” Technical Report LBNL-45917,
Lawrence Berkeley National Laboratory, February 2001.

[3] J. Fuller, “U.S. Officials Cite Serious Energy Shortage,” Wash-
ington File, April 2001.

[4] S. Manley, and M. Seltzer, “Web Facts and Fantasy,” Proc. of
USENIX Symposium on Internet Technologies and Systems, 1997.

[5] M. F. Arlitt and T. Jin, “A Workload Characterization Study of
the 1998 World Cup Web Site,” IEEE Network, May/June 2000.

[6] J. Challenger, P. Dantzig, and A. Iyengar, “A Scalable and
Highly Available System for Serving Dynamic Data at Fre-
quently Accessed Web Sites,” Proc. of ACM/IEEE SC’98, No-
vember 1998.

[7] Seeley, T., The Wisdom of the Hive, Harvard University Press,
1995.

[8] N. Minar, K. H. Kramer and P. Maes, “Cooperating Mobile
Agents for Dynamic Network Routing,” Software Agents for Fu-
ture Communications Systems, Chapter 12, Springer, 1999.

[9] G Cabri, L. Leonardi and F Zambonelli, “Mobile-Agent Coordi-
nation Models for Internet Applications,” IEEE Computer, Feb-
ruary 2000.

[10] R. M. Alexander, “Energy for Animal Life,” Oxford University
Press, May 1999.

[11] J. Suzuki and T. Suda, “A Middleware Platform for a Biologi-
cally-inspired Network Architecture Supporting Autonomous and
Adaptive Applications” IEEE J. on Selected Areas in Comm. Feb-
ruary 2005.

[12] P. Gunaratne, K. Christensen, and B. Nordman, “Managing
Energy Consumption Costs in Desktop PCs and LAN Switches
with Proxying, Split TCP connections, and Scaling of Link
Speed,” Int’l J. of Network Management, Vol. 15, No. 5, 2005.

[13] Advanced Micro Devices, Inc., Magic Packet Technology, Tech-
nical White Paper 20213, November 1995.

[14] C. Lefurgy, K. Rajamani, F. Rawson, W. Felter, M. Kistler, and
T. W. Keller. “Energy management for commercial servers,”
IEEE Computer, 36(12):39-48, December 2003.

[15] T. Suda, T. Itao and M. Matsuo, “The Bio-Networking Architec-
ture: The Biologically Inspired Approach to the Design of Scal-
able, Adaptive, and Survivable/Available Network Applications,”
The Internet as a Large-Scale Complex System, Oxford Univer-
sity Press, June 2005.

[16] Sharma, A. Thomas, T. Abdelzaher, Z. Lu, and K. Skadron,
“Power-Aware QoS Management on Web Servers.” Proc. of the
24th Int’l Real-Time Systems Symposium, Dec. 2003

[17] M. Elnozahy, M. Kistler, and R. Rajamony, Energy Conservation
Policies for Web Servers. Proc. of the 4th USENIX Symposium on
Internet Technologies and Systems, March 2003

[18] Intel Corporation, PC Energy-Efficiency Trends and Technolo-
gies, technical white paper, 2002.

[19] E. Pinheiro, R. Bianchini, E. Carrera, and T. Heath, “Load Bal-
ancing and Unbalancing for Power and Performance in Cluster-
Based Systems,” Technical Report DCS-TR-440, Rutgers Uni-
versity, May 2001

[20] A. Othman, P. Dew, K. Djemame, I, Gourlay, “Adaptive Grid
Resource Brokering,” Proc. of IEEE Int’l Conference on Cluster
Computing, Dec. 2003

[21] J. Chase, D. Anderson, P. Thakar, and A. Vahdat, “Managing
Energy and Server Resources in Hosting Centers,” Proc. of ACM
SOSP'01, October 2001

[22] S. Cheng, D. Garlan, B. Schmerl, P. Steenkiste and N. Hu,
“Software Architecture-based Adaptation for Grid Computing,”
Proc. of IEEE HPDC, July 2002.

[23] C. Adam, R. Stadler, “Adaptable Server Clusters with QoS Ob-
jectives,” Proc. of IFIP/IEEE IM, May, 2005.

[24] Y. Yemini, A. Dailianas, and D. Florissi, “MarketNet: A Market-
based Architecture for Survivable Large-scale Information Sys-
tems,” Proc. of ISSAT International Conference on Reliability
and Quality in Design, Aug. 1998

[25] M. P. Wellman, “A Market-Oriented Programming Environment
and Its Application to Distributed Multicommodity Flow Prob-
lems,” Journal of Artificial Intelligence Research, Vol. 1, 1993.

[26] N. Wakamiya and M. Murata, “Toward Overlay Network Sym-
biosis,” Proc. of P2P 2005, September 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

