
A SpaceTime Oriented Macroprogramming Paradigm for
Push-Pull Hybrid Sensor Networking

Hiroshi Wada, Pruet Boonma and Junichi Suzuki
Department of Computer Science

University of Massachusetts, Boston
Boston, MA 02125-3393

{shu, pruet, jxs}@cs.umb.edu

Abstract
This paper proposes a spatio-temporal macroprogram-

ming paradigm for push-pull hybrid wireless sensor net-
works (WSNs). The proposed paradigm, called SpaceTime
Oriented Programming (STOP), is designed to reduce the
complexity of WSN programming by specifying data col-
lection and processing from a global viewpoint as a whole
rather than a viewpoint of sensor nodes as individuals.
STOP treats space and time as first-class citizens and com-
bines them as spacetime continuum. A spacetime is a three
dimensional object that consists of a two spatial dimensions
and a time playing the role of the third dimension. STOP
allows application developers to program data collection
and processing to spacetime, and abstracts away the de-
tails in WSNs, such as how many nodes are deployed in a
WSN, how nodes are connected with each other and how to
route data queries in a WSN. Using the notion of spacetime,
data collection/processing is consistently specified for both
the past and future in arbitrary spatio-temporal resolutions.
This paper describes the design of the STOP language and
the implementation of the STOP runtime environment.

1. Introduction
Macroprogramming is a programming paradigm that al-

lows application developers to implement a WSN1 appli-
cation from a global viewpoint as a whole rather than a
viewpoint of sensor nodes as individuals [1]. In general,
a macroprogram specifies a global behavior of a WSN ap-
plication. The macroprogram is transformed to node-level
(micro) programs, and the micro programs are deployed
on individual nodes. This way, macroprogramming is in-
tended to increase the simplicity, productivity and reliability
in WSN application programming.

This paper proposes a new macroprogramming
paradigm, called SpaceTime Oriented Programming

1Wireless Sensor Network (WSN)

(STOP). It provides a new programming abstraction to
specify spatio-temporal data collection/processing as a
global behavior of a WSN application rather than individ-
ual nodes’ behaviors. STOP considers both spatial and
temporal aspects of sensor data, and treats space and time
as first-class citizens in macroprogramming. Space and
time are combined as spacetime continuum. A spacetime
is a three dimensional object that consists of a two spatial
dimensions and a time playing the role of the third di-
mension. STOP allows application developers to program
data collection and processing to spacetime, and abstracts
away the low-level details in WSNs, such as how many
nodes are deployed in a WSN, how nodes are connected
and synchronized with each other, and how packets are
routed among nodes. Using the notion of spacetime, data
collection/processing are consistently specified for both the
past and future in arbitrary spatio-temporal resolutions.

STOP assumes an application architecture that leverages
mobile agents to collect and process sensor data in a push
and pull hybrid manner (Figure 1). In this architecture,
each WSN application is designed as a collection of agents,
and there are two types of agents: event agents and query
agents. An event agent (EA) is deployed on each node.
When an EA detects an event (i.e., a significant change in
its sensor reading), it replicates itself, and a replicated agent
carries (or pushes) sensor data to a base station by moving
in the network on a hop-by-hop basis. Query agents (QAs)
are deployed at the Agent Repository (Figure 1), and move
to a certain spatial region (a certain set of nodes) to collect
(or pull) sensor data that meet a certain temporal range. All
collected sensor data through EAs and QAs are stored in a
spatio-temporal database (STDB).

This paper is organized as follows. Section 2 presents
a motivating WSN application that STOP is currently de-
signed for. Section 3 describes how the STOP language is
designed, and Section 4 describes how the STOP runtime
environment is implemented. Sections 5 and 6 conclude

Figure 1: A Sample WSN Organization

with some discussion on related work and future work.

2. A Motivating WSN Application
STOP operates on a multi-modal WSN2, which consists

of battery-operated sensor nodes and several base stations.
STOP currently assumes that all nodes are stationary. Base
stations are linked to the gateway that in turn connects to the
STOP server (Figure 1). When EAs and QAs arrive at the
STOP server, the STOP server extracts the sensor data the
agents carry and store the data to STDB. Also, the STOP
server maintains each node’s location through a certain lo-
calization mechanism.

STOP is currently designed for coastal oil spill detec-
tion/monitoring. Oil spills occur frequently3 and have enor-
mous impacts on maritime/on-land businesses, nearby resi-
dents and the environment. When an oil spill occurs due to,
for example, broken equipment of a vessel and coastal oil
station, illegal oil dumping or terrorism, an in-situ WSN of
fixed buoy-attached sensor nodes (e.g., fluorometers4, sur-
face roughness sensors5, salinity sensors6 and temperature
sensors7) detects and monitors the spill. Oil may move and
spread fast, change the direction of movement, and split into
multiple chunks. Some chunks may burn, and others may
evaporate and generate toxic fumes. An in-situ WSN can
provide real-time sensor data so that human operators effi-

2A multi-modal WSN deploys multiple types of sensor nodes. Data
from different types of nodes are aggregated, through in-network process-
ing, to provide a multi-dimensional view of collected data.

3The US Coast Guard reports that 50 oil spills occurred in the US
shores in 2004 [2], and the Associated Press reported that, on average,
there was an oil spill caused by the US Navy every two days from fiscal
year 1990 to 1997 [3]

4Fluorescence is a strong indication of the presence of oils. Certain
compounds in oil absorb ultraviolet light, become electronically excited
and fluoresce [4]. Different types of oil yield different fluorescent intensi-
ties (emission wavelengths) [5].

5Oil films locally damp sea surface roughness and give dark signa-
tures, so-called slicks [4].

6Water salinity influences whether oil floats or sinks. Oil floats more
readily in salt water. It also affects the effectiveness of dispersants [6].

7Water temperature impacts how fast oil spreads. Oil spreads faster in
warmer water than in cold water [6].

ciently dispatch first responders to contain spilled oil in the
right place at the right time, and avoid secondary disasters
by directing nearby ships to evacuate, alerting nearby fa-
cilities or evacuating people from nearby beaches. In-situ
WSNs can quickly deliver more accurate information (sen-
sor data) to operators than visual observation from the air
or coast. Also, in-situ WSNs are less expensive than radar
observation with aircrafts or satellites [7].

3. The STOP Language
STOP addresses the following requirements for the de-

sign of its language.

Dynamic typing. Dynamic typing makes programs con-
cise and readable by omitting type declarations and
type casts [8]. This allows STOP developers to focus
on their application logic without considering type-
related housekeeping operations.

Object oriented programming. The notion of objects
combines program states and functions, and modular-
izes their dependencies (i.e., which functions are sup-
posed to change which states). It simplifies programs
and improves their readability [9]. Moreover, since ob-
ject oriented programming have been well accepted in
many languages, it lowers the entry barriers and learn-
ing curve of the STOP language.

Extensibility for domain specific concepts. A program-
ming language can substantially improve its expres-
siveness and ease of use by supporting domain spe-
cific concepts inherently in its syntax and seman-
tics [10]. The STOP language requires an extensi-
bility to support, as its primitives, various concepts
specific to spatio-temporal data collection/processing
(e.g., time, space, timespace, spatio-temporal resolu-
tions, and data processing operators specific to sensor
data).

Integration of a data/event and its handler. In STOP,
application developers can write a data collection
and a corresponding hander to process collected data.
They can also write an event and a corresponding
handler to respond to the event. The STOP language
requires a mechanism to concisely express these pairs.

In order to satisfy the above requirements, the STOP lan-
guage is designed as an extension to Ruby8. Ruby is an
object oriented language supporting dynamic typing. It is
also extensible to support domain specific concepts without
changing its parsers and interpreters. The STOP language
reuses Ruby’s syntax and semantics, and introduces new

8www.ruby-lang.org

language primitives specific to spatio-temporal data collec-
tion/processing. Also, Ruby supports closures, which mod-
ularize a code block as an object (similar to an anonymous
method). The STOP language uses closures to define han-
dlers and concisely associate them with data queries and
events. Moreover, the STOP language assumes the JRuby
interpreter9 to execute STOP programs so that they can use
existing Java libraries.

The STOP language supports on-command (one time or
periodical) and on-demand (or event-driven) data collec-
tion. The two types of data collection are described in Sec-
tions 3.1 and 3.2.

3.1. On-Command Data Collection
On-command data collection is executed one time or pe-

riodically. It pairs a data query and a corresponding data
handler to process obtained data. Listing 1 shows an exam-
ple STOP program that specifies several on-command data
collections. This program is visualized in Figure 2.

A spacetime is created at Line 5. In STOP, a class is
instantiated with the new() class method. This spacetime
(sp) is defined as a polygonal prism consisting of a triangu-
lar space (s) and a time period during the last one hour (p).
STOP supports the concepts of absolute time and relative
time, and allows application developers to denote relative
time as a number annotated with a keyword such as Week,
Day, Hr, Min and Sec (Line 4).
get_space_at() is called on a spacetime to obtain a

snapshot space at a given time in a certain spatial resolu-
tion. In Line 7, an obtained space, s1, contains data on at
least 60% of sensor nodes (third parameter) in the space at
30 minutes before (the first parameter) with a 20 seconds
time band (the second parameter).
get_data() is used to specify a data query. It is called

on a space to query data available on the space (the first
parameter) and process the data with a given operator (the
second parameter). STOP currently supports several data
aggregation operators 1. In Line 8, this method returns the
average of fluorescence spectrum (’f-spectrum’) data from
the space s1. The third parameter of get_data() specifies
the tolerable delay (i.e., deadline) to collect and process data
(the three minutes in this example).
get_data() can take a data handler as a closure. A code

block from Line 9 to 11 is a closure that takes four param-
eters, event_type, value, space and time. In this example,
these parameters contain a string ’f-spectrum’, the average
of fluorescence spectrum data from s1, the space s1 and the
time instant at 30 minutes before. Application developers
write a data handler with these parameter values.
get_spaces_every() is called on a spacetime to return

a discrete set of spaces that meet a certain spatio-temporal

9jruby.sourceforge.net

Table 1: Data Aggregation Operators in STOP
Operator Description

COUNT Returns the number of collected data
MAX Returns the maxmum value among collected data
MIN Returns the minimum value among collected data
SUM Returns the summation of collected data
AVG Returns the average of collected data
STDEV Returns the standard deviation of collected data
VAR Returns the variance of collected data

resolution. In Line 13, this method returns spaces at every
five minutes with the 10 seconds time band, and each space
contains data on at least 80% of nodes it the space. Then,
from Line 14 to 16, the maximum data is selected from
each space. In STOP, a list has the collect() method10,
which takes a closure as its parameter, and the closure is
called on each element in a list. In this example, each el-
ement in spaces is assigned to space parameter of a clo-
sure (Line 14). The maximum data on each space is se-
lected by calling get_data(), and a set of results are con-
tained in max_values. After that, max_values can be used
for further processing. For example, drawing a graph by
calling draw_graph which is implemented in Ruby or Java
(Line 21). STOP supports select()method to return a sub-
set of a list which meets a certain condition specified in a
closure. From Line 24 to 28, event_spaces obtains sub-
set spaces (from spaces), each of which yields 10 or lower
standard deviation of sensor data and finds higher than 20
degrees difference in average data compared with a previ-
ous space in the list spaces (a space at five minutes before).
From Line 30 to 34, this program focus on an individual
node by calling get_node(). get_data() returns raw sensor
data when its second parameter (data processing operator)
is omitted.

Moreover, a closure allows enclosed code to access vari-
ables declared in the outside of the closure. It enables
data queries/data processing to use results of precede data
queries/data processing. In Line 17, a condition of an if
statement refers the variable avg_value which contains a
result of the precede query in Line 8. The variable value
in Line 17 is bound to a closure and contains a result of a
query in Line 15, i.e., the maximum value among collected
fluorescence spectrum data on a space.

Listing 1: An Example STOP Program for an On-Demand
Data Collection

1 points = [Point.new(10, 10),
2 Point.new(100, 100), Point.new(80, 30)]
3 s = Polygon.new(points)
4 p = RelativePeriod.new(NOW, Hr -1)

10In Ruby, a method that takes no parameter can be called without
parentheses.

5 sp = Spacetime.new(s, p)
6
7 s1 = sp.get_space_at(Min -30, Sec 20, 60)
8 avg_value = s1.get_data(’f-spectrum’, AVG, Min 3) {
9 | event_type , value, space, time |

10 # the body of an event handler comes here.
11 }
12
13 spaces = sp.get_spaces_every(Min 5, Sec 10, 80)
14 max_values = spaces.collect { |space|
15 space.get_data(’f-spectrum’, MAX, Min 2){
16 | event_type , value, space, time |
17 if value > avg_value then ...
18 }
19 }
20
21 name = ’f-spectrum’
22 event_spaces =
23 spaces.select{|s| s.get_data(name, STDEV, Min 5)<=10)}
24 .select{|s|
25 s.get_data(name,AVG,Min 5) -
26 spaces.prev_of(s).get_data(name, AVG, Min 5)>20)}
27
28 nodes_over_time =
29 event_spaces.collect{ |space| space.get_node(0) }
30 values = nodes_over_time.collect { |node|
31 node.get_data(name, Min 3)
32 }

X

YTimeFuture

Past

NOW
(10, 10) (80, 30)

(100, 100)

Hr -1

Space (s)Spacetime (sp)Node (0)

List of Nodes(nodes_over_time)
Min 5

Figure 2: An Example On-Command Data Collection

3.2. On-Demand Data Collection
On-demand data collection is executed when an event

(e.g., oil spill) occurs. It pairs an event specification and a
corresponding event handler to respond to the event. List-
ing 2 shows an example STOP program that specifies an
on-demand data collection. This program is visualized in
Figure 3. Listing 2 is called when an event occurs. It in-
vestigates the event area for last 30 minutes in a low spatio-
temporal resolution and monitors an area around the event
area during the next one hour in a high spatio-temporal res-
olution.

This program is designed as an event handler of
GLOBALSPACE. GLOBALSPACE is a special type of space, which
represents a whole monitoring area, and it takes closures
which implement an event handler and a condition to call
the event handler. In Listing 2, when fluorescence spectrum
data exceeds 300nm in some area (select()method in Line
2), it activates a closure of on_event() method (from Line
3 to 22). Parameters of a closure of on_event() represent
features of an event (e.g., event area and time). Then, the

program (an event handler) creates a spacetime, sp1, con-
sisting of event_space in which an event is found and a
period during the last 30 minutes (Line 6). Then, a list
of spaces at every six minutes (past_spaces) is extracted
from sp1 (Line 7), and from Line 8 to 10 counts the number
of nodes that ’f-spectrum’ data exceeds 280nm on each
space in past_spaces. This example also creates a space-
time in the future, sp2, consisting of the space s2 during
the next one hour (Figure 3). Line 18 collects the maximum
’f-spectrum’ data and executes a corresponding event han-
dler (a closure) at every three minutes.

Listing 2: An Example STOP Program for an On-Demand
Data Collection

1 GLOBALSPACE
2 .select{|s| s.get_data(’f-spectrum’, MAX) > 300 }
3 .on_event{ |event_type ,value,event_space ,event_time|
4
5 # query for the past
6 sp1 = Spacetime.new(event_space ,event_time ,Min -30)
7 past_spaces = sp1.get_spaces_every(Min 6,Sec 20,50)
8 num_of_nodes =
9 past_spaces.get_nodes.select{|node|

10 node.get_data(’f-spectrum’,Min 3) > 280}.length
11
12 # query for the future
13 s2 = Circle.new(
14 event_area.centroid, event_area.radius * 2)
15 sp2 = Spacetime.new(s2, event_time , Hr 1)
16 future_spaces =
17 sp2.get_spaces_every(Min 3, Sec 10, 80)
18 future_spaces.get_data(’f-spectrum’, MAX, Min 1){
19 | event_type , value, space, time |
20 # event handler
21 }
22 }

event_time X

Time

Min -30

Spacetime(sp2)
Min 6

Hr 1

Y
Min 3

Spacetime (sp1)
Space(event_space)

Space (s2)Future

Past
Figure 3: An Example On-Demand Data Collection

4. STOP Implementation
This section describes the details of a STOP implemen-

tation.

4.1. STOP Runtime Environment and GUI
Tool

Implementation of STOP consists of a runtime environ-
ment and a supporting GUI tool as illustrated in Figure 4.

JRuby Interpreter

GUI on
Google maps STOP

program

PostgreSQL+ PostGIS

Sensor LocationsSensorID Location
Sensor ReadingsSensorID Time Value

OpenGIS
(WKT)

visualize interpret

generate

query configure

QA code

deploy

STOPClass Library

Sensor DataSensor DataSensor Data

STOP Runtime EnvironmentSTOP Runtime Environment

QAs

dispatch to
certain nodes

EAs / QAs

Code DispatcherData Receiver
store

notify

AgentRepository

GatewayGateway

STOP ServerSTOP Server

Figure 4: An Architecture of a STOP Implementation

STOP programs run on a STOP runtime environment, and a
GUI tool helps developing STOP programs.

STOP provides a GUI leveraging google maps11 to show
sensors’ locations as icons and allow application developers
to specify a space where attracts the attention in a graphi-
cal manner (Figure 5). Since a space (e.g., a set of vertex)
in a STOP program is identified in longitude and latitude,
it is not easy to write a program without a support of a ge-
ographic information system. The STOP GUI generates a
skeleton code of a STOP program which contains a set of
coordinates constructing an area specified in the GUI. In
Figure 5, a pentagonal shape is drawn at the mouth of the
Charles River, Boston. It generates a skeleton code as in
Listing 3. Application developers can start implementing
their own code based on this skeleton code.

Figure 5: A Google Maps based GUI

11maps.google.com/

Listing 3: A Skeleton Code

1 points = [
2 # (Latitude, Longitude)
3 Point.new(42.35042512243457, -70.99880218505860),
4 Point.new(42.34661907621049, -71.01253509521484),
5 Point.new(42.33342299848599, -71.01905822753906),
6 Point.new(42.32631627110434, -70.99983215332031),
7 Point.new(42.34205151655285, -70.98129272460938)]
8 s = Polygon.new(points)

After application developers write a STOP program,
the program is deployed on the STOP server and inter-
preted by a JRuby interpreter. STOP runtime environment
has a STDB which stores pushed/pulled sensor data (in
SensorRedings table) received through a gateway and loca-
tions of sensors (in SensorLocations table). When a STOP
program has a query for the future, received sensor data is
notified to an appropriate event handler in the program as
well. Locations of sensors are represented in OpenGIS’s
Well-Known Text (WKT) format12 in a STDB, and a STOP
program uses geographic functions defined by OpenGIS to
retrieve a list of sensor nodes in a certain space specified
in a query. Listing 4 is an example SQL retrieving data
from a STDB. This SQL query collects ids, locations and
sensor data from sensors which located in a certain space
(space in Line 6). Contains() is one of standard geographic
functions defined by OpenGIS which examines if a geome-
try object (e.g., points, lines and two dimensional surfaces)
contains another geometry object. Also, this query restricts
time at when sensor data generated according to a STOP
program (in Line 5 and 6). The result of this query is trans-
formed into a Ruby object, and passed to a corresponding
event handler in a STOP program.

Listing 4: An Example SQL

1 SELECT SensorLocations.id, SensorLocations.location ,
2 SensorReadings.value
3 FROM SensorLocations , SensorReadings
4 WHERE SensorLodations.id = SensorReadings.id AND
5 Contains(
6 space, SensorLocations.location) = true AND
7 SensorReadings.time >= time - timeband AND
8 SensorReadings.time <= time + timeband;

If a STDB can provide enough sensor data to satisfy a
query’s spatio-temporal resolution, a program constructs a
SQL query automatically and obtains data from a STDB. If
a STDB can not provide enough sensor data, a STOP pro-
gram automatically dispatch QAs to certain sensor nodes
to "pull" sensor data in order to satisfy a spatio-temporal
resolution through a gateway. STOP assumes each sensor
node has a Bombilla VM [11] and QAs can migrate to sen-
sor nodes to collect sensor data. Before dispatching QAs to
a sensor network, a STOP program retrieves a QA code in
TinyScript from an agent repository and configures it, e.g.,
specifying nodes to visit and data to collect (Section 4.3).
Collected (pulled) data is also received through a gateway,

12www.opengeospatial.org

and stored in a STDB. The notion of spatio-temporal reso-
lution hides the details of a push-pull hybrid WSN architec-
ture. Data collections are automatically performed accord-
ing to required spatio-temporal resolutions. Application de-
velopers do not need to collect (pull) sensor data explicitly
in their STOP programs.
get_data() can specify a data processing operator as its

parameter (Section 3.1). Data processing is performed at
a central server or in a network depending on data queries.
When a data query collects sensor data in the past and a
STDB can provide enough data, collected data is processed
on a base station. Otherwise, QAs visit sensor nodes, col-
lect and process sensor data in a network, and return the
result to a STOP program which dispatched the QAs (Sec-
tion 4.3). This in-network data processing reduces power
consumption in a sensor network by reducing the amount
of data to exchange between nodes. In either case, applica-
tion developers do not need to know such details, i.e., how
to collect data, and when and who to process data.

4.2. A Thread Model in STOP
STOP language allows a STOP program to have multi-

ple data queries and data processing. This design strategy
makes easy to write queries and data processing which de-
pend on results of precede data queries and data process-
ing. However, without an appropriate threading model, i.e.,
if STOP programs follow single thread model, they suffer
from their low performance because data queries may take
long time and block other data queries and data processing
continually. To maximize the performance of STOP pro-
grams, STOP programs automatically create new threads so
that multiple data queries and data processing perform in a
parallel manner.

Before running, STOP programs are transformed into
servlets so that they can run on a STOP server. STOP pro-
grams which deployed on a STOP server can be invoked via
SOAP13. As illustrated in Figure 6, a STOP program (STOP
Program) starts when its run method is called. (run method
is automatically generated during a transformation from a
STOP program to a servlet, and the original STOP program
is containded in the method.) Then, a new thread (Data
Collection Thread) is created when a STOP program calls
get_data() so that it can perform a data collection in paral-
lel with program’s main thread. Each get_data() creates its
own thread automatically. A data collection thread checks
if a STDB provides enough data, and collects data from a
STDB or dispatches QAs (Section 4.1). When a data col-
lection thread dispatches QAs, it registers a corresponding
event handler to a STOP program. Once a gateway receives
a returning QA, it retrieves collected sensor data from the
QA and send it to a STOP server via SOAP (Figure 4). A

13A XML-based protocol [12]

STOP server notifies it to a STOP program, and a STOP
program invokes the registered event handler.

Since a program’s main thread and data collection
threads run in parallel manner, get_data() may not be able
to return a result to a program’s main thread immediately.
For example, in Listing 1, a variable max_values may not
contain results of get_data() (Line 15) when a main thread
calls draw_graph() (Line 21). In STOP, a main thread and
a data collection thread are synchronized when a variable
which contains a result of get_data() is accessed by a main
thread. In Listing 1, a main thread automatically waits
for completions of a data collection thread which returns
max_values and calls draw_graph() (Line 21).

Local DBLocal DB
STOP Program

Data CollectionThread<<create>>get_data Handler(closure)
ST DB

Enough data?

Dispatch QAs

[enough]

STOP Server
run

Register an event handler

Return a result
Invoke anevent hander

Collect data

Invoke anevent hander

Alt

Receive a QA notify

Figure 6: Threading Model in STOP

4.3. Design of Agents
As illustrated in Figure 4, a code of a QA is stored in

an agent repository, and a STOP server configures and dis-
patches it to certain sensor nodes to collect sensor data.
STOP extends a Bombilla VM and TinyScript to support
mobile agents as one of messages which can move among
sensor nodes with data, e.g., sensor readings. Listing 5 is a
fragment of QA code.

Listing 5: A Fragment of QA Code

1 Once:
2 agent qa;
3 buffer path;
4 qa = create_query_agent();
5 path[]=1; path[]=3; path[]=11; path[]=9; path[]=15;
6 set_agent_path(qa, path);
7 set_start_collecting(qa, 2);
8 set_operator(qa, 1) ! AVG
9 migrate(qa);

Listing 5 is deployed on only a base station and ex-
ecuted once. In this example, a QA collects data from

node of which IDs are 9, 11 and 15, i.e., nodes in a cer-
tain space, and calculates an average at each node. Af-
ter visiting every node, a QA returns to a base station.
set_agent_path sets a path, i.e., a sequence of nodes to
visit. set_start_collecting sets when to start collecting
data by specifying an index of a node. In this example,
a QA start collecting data from node 11 (path[2] = 11).
set_operator sets an operator for in-network processing.
(1 is a constant value representing SUM operator.) A STOP
server sets a path (Line 5) and an operator (Line 8) accord-
ing to a STOP program before deploying a code.

Listing 6 is a fragment of code deployed on each node.
It is executed when a node receives a broadcast message.
(QAs are transmitted via broadcast.) It checks whether a
QA collects data from the current node (Line 9), and per-
forms in-network processing according to an operator a QA
specifies (Line 10 to 18). Then, if the current node is the
last one to visit, a QA returns to a base station (Line 21 and
22). If not, a QA migrates to the next node (Line 24).

Listing 6: A Fragment of Code to Accept QAs

1 Broadcast:
2 agent qa;
3 private id;
4 private tmp;
5
6 qa = migratebuf(); ! retrieves a QA from a buffer
7 node_id = id(); ! get the current node id
8
9 if (do_collecting(qa, node_id)) then ! collect data?

10 if (get_operator(qa) = 0) then ! SUM
11 set_result(qa, get_result(qa) + get_sensor_data());
12 end if
13 if (get_operator(qa) = 1) then ! AVG
14 tmp = get_result(qa) * (get_num_nodes_visited(qa)-1);
15 tmp = tmp + get_sensor_data();
16 set_result(qa, tmp / get_num_nodes_visited(qa));
17 end if
18 ...
19 end if
20
21 if (is_end(qa, node_id)) then ! the last node to visit
22 return_to_basestation(qa);
23 else
24 migrate(qa); ! move to the next node
25 end if

Unlike QAs, EAs are deployed on each node beforehand.
As well as QAs, EAs are designed as messages and a code
to decide whether to send a EA is written in TinyScript.
Listing 7 is a fragment of EA code which sends a EA to a
base station when a sensor reading exceeds 280. A EA code
is executed periodically, and the period can be specified by
calling settimer() function in TinyScript.

Listing 7: A Fragment of EA Code

1 agent ea;
2 private data = get_sensor_data();
3 if (get_sensor_data() > 280) then
4 ea = create_event_agent();
5 set_source(ea, id());
6 set_sensor_data(ea, data);
7 return_to_basestation(ea);
8 end if

5. Related Work
This work is an extension to the authors’ previous work

[13]. In this work, STOP is extended to operate on a push-
pull hybrid WSN architecture using EAs and QAs, while
the previous work focused on operating STOP on a pull-
based WSN architecture only with QAs. Moreover, this
work newly investigates in-network data processing (Sec-
tion 4.3), which was beyond the scope of the previous work.
(The previous work focused on data collection that does not
require in-network processing.) In addition, this work adds
new facilities and mechanisms to the STOP server, such as a
visual programming frontend and concurrency in the STOP
server (Section 4.1).

Kairos [14] and SNLong [15] provide programming ab-
stractions to describe spatial relationships and data aggre-
gation operations across nodes. Data collection can be ex-
pressed without specifying the details of node-to-node com-
munication and data aggregation. However, these languages
require application developers to explicitly write programs
to individual nodes. In contrast, STOP allows developers
to program data collection and processing to spacetime as
a global behavior of a WSN application. Also, Kairos and
SNLong cannot deal with a temporal aspect of sensor data;
data is always handled only at the current time frame.

TinyDB [16] extends SQL to support in-network data
processing as well as spatio-temporal data collection. It al-
lows application developers to program data collection for
the future, but not for the past. Moreover, since TinyDB
is an extension to SQL, its expressiveness is too limited to
specify event handlers although it is well applicable to spec-
ify data queries. Therefore, developers need to learn and use
an extra language to implement event handlers. In contrast,
STOP supports spatio-temporal data collection for both the
future and past. Its expressiveness is high enough to provide
an integrated programming abstraction for data queries and
event handlers. Also, by leveraging closures, STOP allows
developers to concisely associate a data query and a corre-
sponding event handler. These language features increase
the ease of programming and understanding the overall de-
sign of an WSN application.

Regiment [17] is another WSN macroprogramming lan-
guage supporting in-network data processing and spatial-
temporal data collection. It allows developers to specify
data collection for the future, but not for the past. Also,
Regiment does not support pull-based data collection and
the notion of spatial and temporal resolutions. Unlike Regi-
ment, STOP supports data collection for both the future and
past in arbitrary spatio-temporal resolutions.

This work is the first attempt to investigate a push-
pull hybrid WSN architecture that performs spatio-temporal
data collection and processing. Most of existing push-pull
hybrid WSNs do not address spatio-temporal aspects of sen-
sor data, and they assume statically-assigned specific net-

work structures and topologies (e.g., star and grid topol-
ogy) [18–20]. Therefore, data collection can be fragile
against node/link failures. In contrast, STOP can operate
in arbitrary network structures and topologies. It can imple-
ment failure-resilient queries by having the STOP server dy-
namically adjust the migration route that each QA follows.
PRESTO [21] can perform push-pull hybrid data collection
in arbitrary network structures and topologies. It also con-
siders the temporal aspect in queries. However, it does not
consider the spatial aspect in queries, and does not support
queries for the future.

6. Conclusion
This paper proposes a new macroprogramming paradigm

for push-pull hybrid WSNs, called SpaceTime Oriented
Programming (STOP). Leveraging the notion of spacetime,
STOP is designed to reduce the complexity of WSN pro-
gramming to specify spatio-temporal data collection and
processing. This paper describes how the STOP language
is designed and how the STOP runtime environment is im-
plemented.

Several extensions are planned as future work. In addi-
tion to pre-defined data processing operators such as AVG
and MAX, STOP will be extended to allow application de-
velopers to define their own operators. This way, STOP can
be more generic and customizable for various types of WSN
applications.

The current GUI programming frontend supports the
spatial aspect in data queries, but not the temporal aspect.
It will be extended to allow developers to specify both the
spatial and temporal aspects in data queries as shown in
Figures 2 and 3. This will make it much easier to spec-
ify spatio-temporal queries so that even non-programmers
(e.g., emergency responders and ocean scientists) can intu-
itively exploit WSNs without extensive learning process.

References

[1] M. Welsh and G. Mainland. Programming Sensor Networks
Using Abstract Regions. USENIX/ACM Symposium on Net-
worked Systems Design and Implementation, March 2004.

[2] US Coast Guard. Polluting Incident Compendium: Cumula-
tive Data and Graphics for Oil Spills 1973-2004. Technical
report, September 2006.

[3] L. Siegel. Navy Oil Spills. Webpage, November 1998.
[4] J. M. Andrews and S. H. Lieberman. Multispectral Fluo-

rometric Sensor for Real Time in-situ Detection of Marine
Petroleum Spills. In The Oil and Hydrocarbon Spills, Mod-
eling, Analysis and Control Conference, July 1998.

[5] C. E. Brown, M. F. Fingas, and J. An. Laser Fluorosen-
sors: A Survey of Applications and Developments. In The
Twenty-forth Arctic and Marine Oil Spill Program Technical
Seminar, June 2001.

[6] US Environmental Protection Agency. Understanding Oil
Spills and Oil Spill Response. Technical report, 1999.

[7] M. F. Fingas and C. E. Brown. Review of Oil Spill Remote
Sensors. Spill Science & Technology Bulletin Journal, 4(4),
1997.

[8] E. Meijer and P. Drayton. Static Typing Where Possible,
Dynamic Typing When Needed: The End of the Cold War
Between Programming Languages. ACM OOPSLA Work-
shop on Revival of Dynamic Languages, October 2004.

[9] G. Booch. Object-Oriented Analysis and Design with Appli-
cations. Addison-Wesley, second edition, 1993.

[10] M. Mernik, J. Heering, and A. M. Sloane. When and how to
develop domain-specific languages. ACM Computing Sur-
veys, December 2005.

[11] P. Levis and D. Culler. Mate: A Tiny Virtual Machine for
Sensor Networks. Int’l Conference on Architectural Support
for Programming Languages and Operating Systems, Octo-
ber 2002.

[12] World Wide Web Consortium. SOAP Version 1.2, June
2003.

[13] H. Wada, P. Boonma, and J. Suzuki. SpaceTime Oriented
Macro Programming for Data Collection Sensor Networks.
Conference on Coastal Environmental Sensing Networks,
April 2007.

[14] R. Gummadi, O. Gnawali, and R. Govindan. Macro-
programming Wireless Sensor Networks using Kairos. IEEE
Int’l Conference on Distributed Computing in Sensor Sys-
tems, June 2005.

[15] D. Chu, A. Tavakoli, L. Popa, and J. Hellerstein. Entirely
Declarative Sensor Network Systems. Int’l Conference on
Very Large Data Bases, September 2006.

[16] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong.
TinyDB: An Acqusitional Query Processing System for
Sensor Networks. ACM Transactions on Database Systems,
March 2005.

[17] R. Newton, G. Morrisett, and M. Welsh. The Regiment
Macroprogramming System. Int’l Conference on Informa-
tion Processing in Sensor Networks, April 2007.

[18] W. Liu, Y. Zhang, W. Lou, and Y. Fang. Managing Wireless
Sensor Networks with Supply Chain Strategy. Int’l Confer-
ence on Quality of Service in Heterogeneous Wired/Wireless
Networks, October 2004.

[19] W. C. Lee, M. Wu, J. Xu, and X. Tang. Monitoring Top-k
Query in Wireless Sensor Networks. IEEE Int’l Conference
on Data Engineering, April 2006.

[20] S. Kapadia and B. Krishnamachari. Comparative Analy-
sis of Push-Pull Query Strategies for Wireless Sensor Net-
works. Int’l Conference on Distributed Computing in Sensor
Systems, June 2006.

[21] D. Ganesan M. Li and P. Shenoy. PRESTO: Feedback-
Driven Data Management in Sensor Networks.
ACM/USENIX Symposium on Networked Systems De-
sign and Implementation, May 2006.

