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Abstract
This paper studies an evolutionary multiobjective op-

timization algorithm, called EVOLT, which heuristically
optimizes QoS (quality of service) in communication net-
works for electric power utilities. EVOLT uses a popu-
lation of individuals, each of which represents a set of
QoS parameters, and evolves them via genetic operators
such as crossover and mutation for satisfying given QoS
requirements. Simulation results show that EVOLT out-
performs a well-known existing evolutionary algorithm for
multiobjective optimization and efficiently obtains quality
QoS parameters with acceptable computational costs.

I. Introduction
This paper focuses on QoS (Quality of Service) adapta-

tion in communication networks for electric power utilities.
Power utilities use communication networks to control and
monitor power delivery from power stations to consumers
through a number of substations. Recently, the commu-
nication networks are increasingly required to adapt their
QoS to frequent changes in their configuration and deploy-
ment, which can be caused by organizational restructuring,
deregulation, new power delivery policies (e.g., distributed
generation) and new software/hardware technologies.

This requirement brings a challenge in tuning QoS pa-
rameters. (They include the parameters for packet priority
control, flow control and data transmission reliability.) QoS
parameter tuning is a process to find a right set of QoS
parameters for each power utility application to satisfy
its QoS requirements such as a requirement for packet
transmission latency. The challenge in QoS parameter
tuning is attributed mainly to its NP-hard complexity [1].
The granularity of QoS parameters tends to be fine so that
applications can be highly configurable and adaptive for
various QoS requirements. This increases the number of

QoS parameters and the number of parameter combina-
tions. Moreover, different applications have different QoS
requirements. For example, a SCADA (Supervisory Con-
trol and Data Access) application and other applications
often have very different QoS requirements. It is often
time-consuming, error-prone and even chaotic to manually
tune QoS parameters for multiple applications.

In order to address the above challenge, this paper pro-
poses and evaluates a constraint-based evolutionary mul-
tiobjective optimization algorithm, called EVOLT, which
heuristically seeks the Pareto-optimal QoS parameters for
each application to satisfy given QoS requirements. EVOLT
uses a population of individuals, each of which represents
a set of QoS parameters, and evolves them via genetic
operators (e.g., crossover and mutation) for optimizing
them. In EVOLT’s evolutionary optimization process, QoS
metrics (e.g. transmission latency) and QoS requirements
are considered as optimization objectives and constraints,
respectively. A QoS requirement is defined as a tolerable
QoS bound; for example, the highest allowable latency.

This paper describes the design of EVOLT and evaluates
its performance through simulations. Simulation results
show that EVOLT outperforms a well-known existing
evolutionary algorithm for multiobjective optimization and
efficiently obtains quality QoS parameters with acceptable
computational costs.

II. Power Utility Communication Networks
A power delivery system is intended to transmit gen-

erated electricity from power stations to consumers [2]
(Figure 1). Electricity is transmitted in high voltage (e.g.,
110 KV) from a power station in order to reduce energy
loss in transmission, and distributed toward consumers
through a chain of substations. Each substation is re-
sponsible for a certain physical region; for example, one
for a state, one for a city in the state, and one for a



town in the city. It reduces incoming voltage with a
transformer(s) based on the electricity load in a region that
it is responsible for. (The load in a region is determined by,
for example, the number of consumers in the region. The
higher load is required, the higher voltage a substation uses
to deliver electricity.) This way, the voltage of generated
power gradually reduces (e.g., to 1 KV) through a number
of substations toward consumers.

Power Stations

Substation Substation

Substation Substation

Communication Network Link

Power Transmission Line

Control Center
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Fig. 1: An Example Power Utility Comm. Network

Since most of substations and some of power stations
are unmanned, power utilities remotely monitor and con-
trol them with communication networks [3]. Figure 1
shows an example network that consists of a control center,
a power station and substations. Each of substations and
power stations periodically monitors its operations and
equipment (e.g., every few seconds), and transmits the
monitored state information to a control center. A control
center receives periodic updates on the states of substations
and power stations and allows human operators to control
their operations according to their current states.

A power utility communication network is often config-
ured as a tree structure in which a control center serves as
the root node (Figure 1). This paper assumes an IP network
of 34 nodes: a control center, 30 substations and 3 power
stations. There are two types of data communication routes
between nodes: the primary and secondary routes The
primary routes are normally used for data transmission.
The secondary routes are used when data is duplicated
and transmitted redundantly through two different routes.
(This is called two route data transmission in this paper.)
When a source node sends data to a destination node, the
source node uses the topologically shortest path.

This paper also assumes two types of applications:
SCADA (Supervisory Control and Data Access) applica-
tion and maintenance application. Both applications are
deployed on each node. In a SCADA application, each
substation and power station periodically collects data on
its operational status (e.g., a status of a substation’s circuit
switching operation) and transmits it to a control center.

In exchange, the control center periodically transmits data
to substations and power stations for controlling their
operations (e.g., on/off control for a substation’s circuit
switching operation). In a maintenance application, each
substation and power station periodically collects data on
its equipment state and transmits it to a control center. A
SCADA application has higher QoS requirements than a
maintenance application.

Each node has two queues for data transmission: a
policing queue and a shaping queue. A policing queue
is used to receive incoming packets from remote nodes,
queue them and pass them to the local node. A shaping
queue is used to receive outgoing packets from the local
node, queue them and transmit them to their destinations.

III. EVOLT: The Proposed Algorithm
This section presents QoS parameters (Section III-A)

and QoS optimization objectives (Section III-B) that
EVOLT considers. Sections III-C to III-H describe
EVOLT’s algorithm structure and its operators.

A. QoS Parameters

EVOLT considers 13 QoS parameters described below.
It optimizes them on each node so that both SCADA and
maintenance applications satisfy given QoS requirements.

Maximum size of a shaping queue (MSQ): The
maximum number of packets that can be queued in a
shaping queue. Its value range is [0, 10] as an integer. If it
is 0, traffic shaping is disabled. A shaping queue overflows
if the number of queued packets exceeds this number.

Flush interval of a shaping queue (FSQ): The interval
to flush packets from a shaping queue and transmit them to
their destinations. Its value range is [0, 100] as an integer.
(Its unit is millisecond.) If it is 0, traffic shaping is disabled.

Maximum size of a policing queue (MPQ): The
maximum number of packets that can be queued in a
policing queue. Its value range is [0, 10] as an integer.
If MPQ=0, traffic policing is disabled. A policing queue
overflows if the number of queued packets exceeds MPQ.

Flush interval of a policing queue (FPQ): The interval
to flush packets from a policing queue and pass them to
the local node. Its value range is [0, 100] as an integer. (Its
unit is millisecond.) If it is 0, traffic policing is disabled.

Aggregation size (AS): The number of packets that can
be aggregated at a time in a shaping/policing queue. This
number is used for both policing and shaping queues in
the same node. When a queue contains more packets than
this number, it aggregates those packets and transmits an
aggregated packet to its destination even if its aggregation
interval (AI; see below) has not expired yet. Packets are
aggregated only when their application types (SCADA or
maintenance) are same and their destinations are same. The



range of this value is [0, 10] as an integer. When this value
is 0, packet aggregation is not performed.

Aggregation interval (AI): The time interval to aggre-
gate packets in a shaping/policing queue. This number is
used for both policing and shaping queues in the same
node. When this number expires, queued packets are
aggregated if their application types and their destinations
are same. Its value range is [0, 100] as an integer. (Its unit
is millisecond.) If it is 0, packet aggregation is disabled.

Packet ordering (PO): When a node generates multiple
packets at a time, it orders them in its shaping queue based
on their size. The smaller the size of a packet is, the earlier
it is dequeued and transmitted to its destination. This value
is 0 or 1. 0 indicates packet ordering is disabled, and 1
indicates it is enabled. If it is disabled, a node injects
generated packets to its shaping queue in a random order.

SCADA data duplication (SD): The number of dupli-
cated SCADA data that a node transmits with the same
route to their destination. Its value range is [1, 5] as an
integer. If it is 1, data duplication is disabled.

SCADA data duplication interval (SDI): The time
interval to transmit duplicated SCADA data one by one
with the same route to their destination. Its value range is
[0, 100] as an integer. (Its unit is millisecond.) When it is
0, data duplication is disabled.

SCADA multiple routes (SMR): The number of routes
used to transmit duplicated SCADA data. Its value range
is [1, 2] as a integer. If it is 1, the primary route is used.
If it is 2, both the primary and secondary routes are used.

Maintenance data duplication (MD): The number of
duplicated maintenance data that a node transmits with the
same route to their destination. Its value range is [1, 5] as
an integer. If this number is 1, data duplication is disabled.

Maintenance data duplication interval (MDI): The
time interval to transmit duplicated maintenance data one
by one with the same route to their destination. Its value
range is [0, 100] as an integer. (Its unit is millisecond.)
When this value is 0, data duplication is not performed.

Maintenance multiple routes (MMR): The number
of routes used to transmit duplicated maintenance data. Its
value is 1 or 2. If it is 1, the primary route is used. If it
is 2, both the primary and secondary routes are used.

B. Optimization Objectives

EVOLT considers the following three objectives in QoS
optimization. Each of two (SCADA and maintenance)
applications has those three objectives; EVOLT optimizes
QoS parameters with respect to six objectives in total. A
QoS requirement is assigned to each of these objectives. It
serves as a constraint in optimization process in EVOLT.

Success Rate (FS ): The average success rate of data
transmissions from a source node to a destination node.
This objective is to be maximized:

FS =
R
T

(1)

R denotes the number of data received at a destination
node. T denotes the number of data transmitted from a
source node. The expected arrival time of each transmitted
data is calculated by dividing the data’s size by network
bandwidth. If a destination node does not receive the data
within a tolerable time bound after the expected arrival
time, the data is assumed to be lost. (The data is ignored
to calculate success rate, even if it arrives at the destination
after this tolerable time bound.) If a destination node
receives more than one duplicated data, only one of them
is counted for the numerator of Equation 1.

Latency (FL): The average latency in packet trans-
missions from a source node to a destination node. This
objective is to be minimized:

FL =

∑Np
p=1 Lp

Np
(2)

Lp denotes the transmission latency of packet p, which
is the interval between the time when a source node sends
out p and the time when a destination node receives it.
Np denotes the total number of packets that arrive at a
destination node.

Jitter (FJ): The average jitter in data transmissions
from a source node to a destination node. This objective
is to be minimized:

FJ =

∑Nd
p=1 Jd

Nd
(3)

Nd denotes the total number of data types. Jd denotes
the temporal average jitter of transmitting the same type
of data d. It is calculated as the exponentially weighted
moving average (EWMA) of the current and past jitter
values:

Jd = EWMA jitter(t)
= α∗ |Ad −Ed |+ (1−α)∗EWMA jitter(t−1) (4)

Ad and Ed denote the actual and estimated arrival times
of data d.

C. Individuals
In EVOLT, each individual represents a set of QoS

parameters. It consists of multiple segments, each of which
represent a node in the network. Therefore, the number of
segments in each individual is equal to the total number
of nodes in the network. Figure 2 visualizes the structure
of an individual. SS1 to SSn represent the first to n-th
substations. PS1 to PSm represent the first to m-th power
stations. CC represents a control center. Figure 2 shows 13
QoS parameters for the second substation.
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Fig. 2: The Structure of an Individual

D. Evolutionary Optimization Process
EVOLT runs on a control center. Every time a packet

arrives at its destination node, the node measures QoS
and reports QoS measures to the control center. Using
the reported QoS measures as objective values, EVOLT
performs its evolutionary optimization process to to adjust
QoS parameters. The adjusted QoS parameters are trans-
mitted from the control center to individual nodes so that
the nodes use them in the next data transmission.

Figure 3 shows the algorithmic structure of evolution-
ary optimization in EVOLT. The initial population (P0)
consists of µ individuals that contain randomly-generated
QoS parameters. In each generation (g), a pair of indi-
viduals, called parents (p1 and p2), are chosen from the
current population Pg using a binary tournament operator
(BTounament()). A binary tournament randomly takes
two individuals from Pg, compares them based on their
fitness values, and chooses a superior one (i.e., the one
whose fitness is higher) as a parent.

Two parents reproduce two offspring (q1
c and q2

c) with
a crossover operator (crossover()). Each offspring is
mutated with a mutation operator (mutation()); its QoS
parameters are altered. The binary tournament, crossover
and mutation operators are performed repeatedly until the
number of offspring (|Qg|) reaches the population size (µ).

Once µ offspring are reproduced, they are combined
with the parent population Pg. Then, a selection operator
(selection()) selects the top µ individuals from 2µ
individuals in Pg∪Qg as the next generation’s population
(Pg+1). This selection is driven based on fitness values of
individuals. For all segments of each individual in Pg+1, an
aging operator (aging()) determines their age. The notion
of age is used to indicate which segments are superior to
the others in an individual. (The higher it is, the more
superior its corresponding segment is to the others.)

EVOLT terminates its evolutionary optimization process
when the number of the generations (g) reaches its maxi-
mum limit (gmax).

E. Dominance-based Fitness Calculation
As described in Section III-D, the notion of fitness is

used in several operators in EVOLT. It quantifies how
an individual is superior or inferior to the others. It
is determined with constraint-based dominance relation-

main
g← 0
P0← Randomly generated µ individuals
Q0← ∅
repeat

repeat

p1← BT(Pg)
p2← BT(Pg)
q1

c ,q
2
c ← C(p1, p2)

q1
m←M(q1

c )
q2

m←M(q2
c )

if q1
m < Qg

then Qg← Qg ∪q1
m

if q2
m < Qg

then Qg← Qg ∪q2
m

until |Qg | = µ
Pg+1← S(Pg ∪Qg)
A(Pg+1)
g← g + 1

until g = gmax

Fig. 3: Evolutionary Optimization Process in EVOLT

ships among individuals. The relationships rank individuals
based on the QoS measures (or objective values) and
constraint violation that they yield. Individual Xi is said
to constraint-dominate X j if:
• Xi does not violate any constraints but X j does,
• both Xi and X j violate at least one constraints, but Xi

dominates X j with respect to constraint violation, or
• both Xi and X j do not violate any constraints, but Xi

dominates X j with respect to objective values.
Xi is said to dominate X j with respect to constraint

violation if:
• Vk(Xi) ≤ Vk(X j) for all k = 1,2, ...,m, and
• Vk(Xi) < Vk(X j) at least one k ∈ 1,2, ...m
Vk(Xi) denotes the violation that Xi yields in the k-th

constraint. A constraint violation is the difference between
a constraint and an objective value.

Xi is said to dominate X j with respect to objective
values if:
• Fk(Xi) ≤ Fk(X j) for all k = 1,2, ...,m, and
• Fk(Xi) < Fk(X j) at least one k ∈ 1,2, ...m
Fk(Xi) denotes the objective value that Xi yields in the

k-th objective.
Figure 4 shows an example two-dimensional constraint

space that illustrates constraint violation relationships
among four individuals (A to D). A and D violate two
constraints. B and C violate the first constraint. Figure 5
shows an example objective space that illustrates domi-
nance relationships among individuals with two objectives
to be minimized. A is the best in both objectives; it is non-
dominated. B dominates C and D. C and D do not dominate
each other because one of them does not outperform the
other in both objectives, and vise versa. Given Figures 4
and 5, B is non-constraint-dominated because its constraint
violation is minimum in both of two constraints. A and
C do not constraint-dominate each other because one of
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them does not yield lower violation than the other in both
constraints, and vice versa. D is constraint-dominated by
A and C.

Fitness is calculated for each individual (Xi) as follows.

Fitness(Xi) = µ−d′ (5)

µ denotes the population size, and d′ denotes the num-
ber of individuals that constraint-dominate Xi. Thus, non-
constraint-dominated individuals have the highest fitness.
In an example of Figures 4 and 5, B’s fitness is four
because it is non-constraint-dominated and the population
size is four. Fitness of A and C is three because they are
dominated by a single individual: B. D’s fitness is one.

F. Aging Operator

Since there are multiple nodes in power utility com-
munication networks and nodes share the same links,
the fluctuation happens when a node changes its QoS
parameters. This makes evolutionary algorithms hard to
find a good set of QoS parameters. In order to reduce
the degree of fluctuation and improve the speed of QoS
parameters finding process, the aging operator is proposed.

In EVOLT, each segment (i.e., a set of the QoS param-
eters for a node) maintains age value which is the number
of generations that this node meets the constraints. Age is
incremented when packets that are transmitted from the
node meet the QoS constraints. Age is reset to 0 when
packets violate at least one constraint. Age is used to
preserve the segments that satisfy the QoS constraints.

Age value is used when genetic operators (crossover and
mutation operators) are performed. s denotes the number
of segments (i.e., the number of node). When two parents
perform crossover, the age values of the parents’ segments
are compared. The fitness-based crossover operator (Sec-
tion III-G) only performs when the ages of two individual
segments are the same. When the age values are different,
the parent’s segment that has higher age is copied to the

two offspring. Then, the two offspring are mutated using
aged-based mutation operator (Section III-H).

G. Fitness-based Crossover Operator

Fitness-based adaptive crossover is designed to elimi-
nate the crossover operator parameters (e.g., crossover rate,
the number of cross sections) and improve convergence
speed. The offspring’s gene values are assigned in pro-
portion of two parents’ fitness values. As the result, the
two offspring are generated close to the better parent (the
parent that has higher fitness value).

Figure 6 shows the pseudo code of the fitness-
based crossover operator. Two parents (p1 and p2) per-
form crossover. n denotes the number of gene elements
(the number of QoS parameters). Assume that the sec-
ond parent’s gene value i is higher than that of the
first parent(p2[i] > p1[i]). The offspring’s gene values
(c1[i],c2[i]) are calculated by using the Euclidean distances
(d1[i], d2[i]) from the average (center[i]) of two parents’
gene values. The distance is calculated in proportion of
two parents’ fitness values. For instance the distance d1
is calculated in proportion of the first parent’s fitness
value to the summation of two parents’ fitness values.
The first offspring’s gene value is generated toward the
first parent’s gene value using the distance (d1[i]) from
the center. Figure 7 shows an example how the offspring
gene value are calculated. This example assumes that the
second parent fitness value is higher than that of parent
1 ( f itness(p2) > f itness(p1)). Thus, the average distances
from two offspring’s gene values to the second parent gene
value is shorter than to parent 1’s gene value. As the
results, these two offspring are placed closer to the better
parent.

procedure CO(p1, p2)
for i← 1 to n

do



center[i]← (p1[i] + p2[i])/2
d1[i]← (F(p1))

F(p1)+F(p2)
∗
|p2[i]−p1[i]|

2

d2[i]← (F(p2))
F(p1)+F(p2)

∗
|p2[i]−p1[i]|

2
if U(0,1) > 0.5

then
{

q1
c [i]← center[i]−d1[i]

q2
c [i]← center[i] + d2[i]

else
q1

c [i]← (p1[i]− |p2[i]−p1[i]|
2 ) + d1[i]

q2
c [i]← (p2[i] +

|p2[i]−p1[i]|
2 )−d2[i]

return (q1
c ,q

2
c )

Fig. 6: Fitness-based Adaptive Crossover

The fitness-based adaptive crossover operator is de-
signed following a property in Holland’s schema theo-
rem [4], [6], which proves that single-point crossover on
binary strings contributes to improve the average fitness
values of individuals through generations. The property
is that offspring’s gene values are placed either inside or



outside the region bounded by the parents’ gene values.
The fitness-based adaptive crossover operator simulates
this property as shown in Fig. 7; the values of the off-
spring’s behavior policy parameters are placed as either
p1[i] < q1

c[i] < q2
c[i] < p2[i] or q1

c[i]′ < p1[i] < p2[i] < q2
c[i]′.).

In the pseudo code (figure 6), random(0,1) generates
a uniform random number between 0 and 1. With a
probability of 0.5, the offspring’s gene values are enclosed
by the parents’ gene values. Otherwise, the offspring’s
gene values enclose the parent’s gene values. Therefore,
this operator is guaranteed to improve the average fitness
values of the agents through generations.

p1[i]

qc
1[i]

d2[i]d1[i]

qc
2[i] qc

2[i]’qc
1[i]’

p2[i]

Fig. 7: Fitness-based Adaptive Crossover

H. Age-based Mutation Operator

The proposed age-based mutation operator is designed
to avoid local optimal results by dynamically adjusting the
degree of mutation. In general, if the degree of mutation
is too low, evolutionary algorithms (EAs) may return local
optimal solutions. If degree of mutation is too high, EAs
focus on global search and the results may not be con-
verged. In EVOLT, no degree of mutation setting requires.

Figure 8 describes how the offspring QoS parameter is
mutated. One of decision variables in each gene segment
is randomly selected to mutate. s denotes the number of
QoS parameters at each node. The value of the mutated
gene is obtained from the random number following the
normal distribution N(η,σ). The average(η) is the parent
QoS parameter and the standard deviation (σ) (i.e., the
degree of mutation) is dynamically adjusted on the run
time.

procedure M(qc)
for i← 1 to s

do
{

if U(0,1) ≤ 1/n
then qm[i]← N(qc[i],σ)

return (qm)

Fig. 8: Adaptive Mutation

The degree of mutation (σ) is dynamically adjusted
to avoid local optimal results. The σ is increased when
the individuals are in the local optimal regions (i.e.,
the individuals cannot improve their fitness values after
generations). The σ is decreased when the individuals are
not in the local optimal regions in order to improve the
local search.

The degree of mutation at generation g (σg) is adjusted
by considering the parents’ age values. The the parent
segment that has higher age value are copied to the
offspring. When the difference of two parents age values is
large, the degree of mutation (σg) is decreased in order to
increase the degree of local search. When the individuals
cannot improve their fitness values after generations, the
parents’ age values are the same. The degree of mutation
(σg) is reset to its initial value to increase the degree of
global search. The degree of mutation (λg+1) is calculated
as Equation 6.

σg+1 =
1

|AGEp1 −AGEp2 |+ 1
σg (6)

IV. Simulation Evaluation
This section shows a set of simulation results to evaluate

how EVOLT contributes to search for appropriate QoS
parameters that satisfy QoS requirements.

A. Simulation Configurations
All simulations were carried out on the modified Java

Network Simulator (JNS)1 , a java implementation of the
ns-2 simulator2.

A simulated utility communication network consists of
34 nodes: a control center (CC), 30 substations (SS1-SS30)
and 3 hydro power stations (HS1-HS3). These nodes are
connected with a simple tree topology shown in Figure 1.
The network bandwidth is 10 Mbps at each link. Link
loss rate is 10−10. The hydro power station is the special
type of substation; it can generate electric power and
transmits a special type of SCADA packets. Hydro power
stations are randomly placed in the simulated network. The
CC monitors and controls substations and hydro power
stations. It periodically receives data from each SS and
HS so that it can examine the SS/HS’s operational status
. The CC also periodically transmits control data to each
SS to supervise its operation.

A SCADA application and a maintenance application
are deployed on each node. Table I shows a set of packet
types of the two applications. There are 16 packet types:
8 SCADA packet types (S1 to S8) and 8 maintenance
packet types (M1 to M8) . All of these 16 packet types
are periodically transmitted from each source node. This
simulation assumes different packet types have the same
data transmission frequency/interval and are transmitted at
the same time. Tolerable time bound for SCADA packets
(S1-S4) is 1 second; and for SCADA packets (S5-S8) is
0.25 second. There is no tolerable time bound setting for
Maintenance packet.

1http://jns.sourceforge.net/
2http://www.isi.edu/nsnam/ns/



TABLE I: Simulated Data
Data Type Source Destination Data Size

S1 SS CC 1 bytes
S2 SS CC 6 bytes
S3 HS CC 1 bytes
S4 HS CC 6 bytes
S5 CC SS 2 bytes
S6 CC SS 6 bytes
S7 CC HS 2 bytes
S8 CC HS 6 bytes
M1 SS CC 450 bytes
M2 SS CC 3600 bytes
M3 SS CC 200 bytes
M4 SS CC 400 bytes
M5 SS CC 50 bytes
M6 SS CC 50 bytes
M7 SS CC 200 bytes
M8 SS CC 300 bytes

The QoS requirements of transmission latency, jitter,
success rate for SCADA packets are 1, 0.3, and 0.99 re-
spectively. The QoS requirements of transmission latency,
jitter, and success rate for maintenance packets are 2, 0.7,
and 0.95 respectively.

Table II shows the simulation configurations in EVOLT
and NSGA-II. The results show the average from the 10
independent runs of each algorithm.

TABLE II: The Simulation Configurations
Configuration NSGA-II EVOLT

EWMA coefficient (Equation 4) 0.8 0.8
gmax 100 100
µ 100 100

mutation rate 1/n 1/n
crossover rate 0.9 x

degree of SBX crossover 15 x
degree of polynomial mutation 20 x

B. Simulation Results

The simulation results are discussed in this section.
Table III shows the comparison of the QoS measures

from EVOLT and NSGA-II at the last generation in dis-
tribution, span, and convergence. Distribution and span
equations are modified from spread metric equation in [7]
in order to measured the metrics without the knowledge
true optimal solutions (Pareto front). Distribution indicator
is a diversity metric that measures how the individuals
are uniformly distributed. Distribution is measured as the
standard deviation of the Euclidean distances between an
individuals to its two adjacent neighbors. It is calculated
as Equation 7. di is the Euclidean distance between con-
secutive individuals on objective space. d̄ is the mean of
these distances. This metric takes a zero value for an ideal
distribution. Before applying this metric, the objective
function values are normalized.

D =

√∑N−1
i=1 (di− d̄)2

N −1
(7)

Span indicates how the algorithm can find the differ-
ent extreme solutions. It is calculated as the maximum
Euclidean distance between two individuals (Equation 8).
n denotes the number of objectives. xi[o] denotes the
objective k value of individual i. The higher span, the
bigger the non-dominated frontier is.

S = max
i, j∈µ

(

√√ n∑
k=1

(xi[k]− x j[k])2) (8)

Violation indicates how many individuals violate con-
straint at the last generation. The upper line shows the
average and the lower line shows the standard deviation of
ten independent runs. The better value is marked in bold.
The results show that the EVOLT contributes to better span
and violation than that of NSGA-II. This happens because
the proposed mechanisms (i.e., adaptive-fitness crossover,
gene age mechanism, and adaptive mutation) contribute
to improve the individuals (sets of QoS parameters). The
distributions of EVOLT and NSGA-II are close. This
happens because the proposed mechanism, EVOLT, uses
the same diversity mechanism as NSGA-II (i.e., crowding
distance).

TABLE III: The Comparison of EVOLT and NSGA-II
Algorithm Distribution Span Violation

EVOLT Avg. 0.003 0.118 17.12
SD 0.002 0.070 35.94

NSGA-II Avg. 0.003 0.061 23.7
SD 0.004 0.075 41.67

Tables IV and V show the comparison of EVOLT
and NSGA-II at the last generation in average of QoS
objectives (i.e., latency, jitter and success rate) of the
SCADA application and Maintenance application respec-
tively. The results show that the EVOLT contributes to
better QoS measures than that of NSGA-II. The novel
genetic operations in EVOLT contribute to find appropriate
sets of QoS parameters.

TABLE IV: The Comparison of QoS results in SCADA
application

Algorithm Latency Jitter Success Rate
(sec) (sec) (%)

EVOLT Avg. 0.757 0.361 1
SD 0.272 0.158 0

NSGA-II Avg. 0.749 0.401 1
SD 0.282 0.216 0

C-metric [8] represents how the individuals of an algo-
rithm outperform the individuals of the other algorithm. It



TABLE V: The Comparison of QoS results in Mainte-
nance application

Algorithm Latency Jitter Success Rate
(sec) (sec) (%)

EVOLT Ave. 1.60 0.604 1
SD 0.602 0.200 0

NSGA-II Ave. 1.80 0.671 1
SD 0.604 0.342 0

is calculated as Equation 9. C-metric of algorithm A to B
is represented as C(A,B). � operator denotes constraint-
dominate (i.e., x � y represent individual x constraint-
dominates individual y . C(A,B) is calculated as the
fraction of B’s individuals that at least one individual
of A constraint-dominates. Thus, if C(A,B) = 1, all of
B’s individuals are constraint-dominated by at least one
of A’s individuals. In average of 10 independent runs,
C(EVOLT,NSGA-II) is 0.13 and C(NSGA-II,EVOLT) is
0.08. This result shows that the novel genetic operations
in EVOLT contribute to better non-dominated frontier than
that of NSGA-II.

C(A,B) = |{b ∈ B | ∃a ∈ A : a � b}|/|B| (9)

Generation distance(GD) is measured as in Equation 10.
This generation distance metric represents how fast an
algorithm can optimized the solutions. It is calculated the
minimum of Euclidean distance from the non-dominated
individuals to the Utopian point in objective space (U)
at the end of each generation. Since the success rate is
a maximized objective, it is converted to a minimized
objective by using the value of (1− successrate) instead.
Before applying this metric, the objective function values
are normalized.

GD = min
i∈µ

√√ n∑
k=1

(xi[k])2 (10)

Figure 9 shows the generation distance at the end of
each generation. The result shows that,in average of 10
independent runs, the proposed novel genetic operations in
EVOLT contribute to reduce the generation distance faster
than the NSGA-II does.

Table VI shows the number of generations of each
algorithm to achieve the desired GD. This table concludes
that EVOLT always achieve the desired generation distance
before NSGA-II does. The speed up ratio is calculated as
the number of required generations to meet the desired
generation distance in NSGA-II over the number of re-
quired generations in EVOLT. The average of speed up
ratio is 1.98. This result show that the proposed novel
genetic operations in EVOLT contribute to converges ap-
proximately two times faster than NSGA-II does.
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Fig. 9: The Generation Distance

TABLE VI: Generation Distance Achievement
GD EVOLT NSGA-II Speed Up Ratio
3 0 0 0

1.8 1 3 3
1.6 3 5 1.67
1.4 5 5 1
1.2 5 8 1.6

1.05 18 54 3
1.03 52 85 1.63

The search ratio which is calculated as the num-
ber of individuals evaluated through generations over
the total number of combinations of QoS parameters
is (100∗100)

(10∗100∗10∗100∗10∗100∗2∗5∗100∗2∗5∗100∗2)33 = 1
6.4716∗1034 . This

information shows that using evolutionary algorithm can
reduce the search space enormously.

V. Related Work
There are several researches apply genetic algorithms

to tune parameter settings in power electric systems [9]–
[11]. The results show that genetic algorithms can find
suitable parameters and sufficiently close to the global
optima values. However, they focus on parameter tuning
of controllers in substation/control center. The proposed
genetic algorithm, EVOLT, is newly designed and focus
on the power utility communication networks.

[12] applies genetic algorithms for network topology
reconfiguration. Each gene is considered as a list of recon-
figurable link allocations. The objectives are transmission
latency, the number of dropped packets, and the cost of
reconfiguring the network. These three objective values are
combined in to a single fitness function using a weighted
sum. These weight values are carefully designed. The
obtained results may not be in non-dominated rank. In
contrast, EVOLT does not require any weighted sum values
in objective functions. The obtained solutions are always
in non-constraint dominated ranking.

[13] proposed a GA-based multi-purpose optimization



algorithm for QoS routing. There are multiple routes
between source node and destination node. The proposed
algorithm searches for the optimal routes that satisfy
objectives (i.e., transmission latency and communication
cost).There is no concept of constraints. Thus, the obtained
results can be infeasible. Searching time to find optimal
solutions will be very long since it alters the genes by per-
forming genetic operations in each objective one by one.
In contrast, EVOLT considers large number of objectives
by using domination ranking. Novel genetic operations are
also proposed to meet QoS requirements in a short time.

Algorithms [14], [15] are focusing on reducing the
genetic operation parameters. However, there are some
parameters that left to be tuned in their proposed algo-
rithms. Parameter-Less GA [14] adjusts population size
dynamically. There are some parameters ( e.g.,crossover
rate, mutation rate) left to be tuned. Moreover, the period to
add new population need to be carefully designed. In Meta-
GA [15], the upper level genetic algorithm is added to find
the parameters. However, the parameters of the upper level
genetic algorithm itself need to be tuned. In EVOLT, there
is no genetic operation parameters. The population size is
the desired number of the sets of QoS parameters from the
administrators.

VI. Conclusion

This paper investigates the proposed evolutionary al-
gorithm to find appropriate sets of QoS parameters to
satisfy QoS requirements in power utility communication
networks. Simulation results show that the proposed ge-
netic operations in emphEVOLT work properly and is
able to find appropriate sets of QoS parameters. EVOLT
is designed to operate at the same overhead as regular
evolutionary algorithm while reducing the number of non-
trivial parameter setting burdens. The simulation results
show that the EVOLT finds sets of QoS parameters that
satisfy the QoS requirements faster than NSGA-II does.
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