
Boosting Indicator-based Selection Operators for
Evolutionary Multiobjective Optimization Algorithms

Dung H. Phan
Department of Computer Science

University of Massachusetts, Boston
Boston, MA 02125

phdung@cs.umb.edu

Junichi Suzuki
Department of Computer Science

University of Massachusetts, Boston
Boston, MA 02125

jxs@cs.umb.edu

Abstract—Various evolutionary multiobjective optimization
algorithms (EMOAs) have adopted indicator-based selection
operators that augment or replace dominance ranking with
quality indicators. A quality indicator measures the goodness
of each solution candidate. Many quality indicators have been
proposed with the intention to capture different preferences
in optimization. Therefore, indicator-based selection operators
tend to have biased selection pressures that evolve solution
candidates toward particular regions in the objective space.
An open question is whether a set of existing indicator-
based selection operators can create a single operator that
outperforms those existing ones. To address this question,
this paper studies a method to aggregate (or boost) existing
indicator-based selection operators. Experimental results show
that a boosted selection operator outperforms exiting ones in
optimality, diversity and convergence velocity. It also exhibits
robustness against different characteristics in different opti-
mization problems and yields stable performance to solve them.

Keywords-Evolutionary multiobjective optimization algo-
rithms, Quality indicators, Boosting

I. INTRODUCTION

This paper studies a new selection operator for evolution-
ary algorithms to solve multiobjective optimization problems
(MOPs). In general, an MOP is described as follows.

minimize F (~x) = [f1(~x), f2(~x), · · · , fn(~x)]T ∈ O
subject to ~x = [x1, x2, · · · , xm]T ∈ S

}
(1)

S denotes the decision variable space. ~x ∈ S denotes a
solution candidate that consists of m decision variables. It
is called an individual in evolutionary multiobjective opti-
mization algorithms (EMOAs). F consists of n real-value
objective functions, which produce the objective values of ~x
in the objective space O. The goal of an EMOA is to find
an individual(s) that minimize(s) objective values.

In MOPs, there rarely exists a single solution that is op-
timum with respect to all objectives because objective func-
tions conflict with each other. Thus, EMOAs seek the opti-
mal trade-off individuals, or Pareto-optimal individuals, by
considering the trade-offs among conflicting objectives. The
notion of dominance plays an important role to seek Pareto

optimality [1]. An individual ~x ∈ S is said to dominate
another individual ~y ∈ S iif fi(~x) ≤ fi(~y) ∀i = 1, · · · , n
and fi(~x) < fi(~y) ∃i = 1, · · · , n. EMOAs often rank
individuals based on the dominance relationships among
them and exploit their ranks in selection operators [1]. This
process is called dominance ranking.

A research trend in the design space of EMOAs is to
adopt indicator-based selection operators that augment or
replace dominance ranking with quality indicators [2]. A
quality indicator measures the goodness of each individual.
Recent studies (e.g., [3]) show that indicator-based EMOAs
outperform traditional EMOAs that use dominance ranking.

Many quality indicators have been proposed with the in-
tention to capture different preferences in optimization [4]–
[7]. Therefore, indicator-based selection operators tend to
have biased selection pressures that evolve individuals to-
ward particular regions in the objective space. For example,
the hypervolume indicator favors balanced individuals that
equally balance the trade-offs among all objectives, while the
weighted hypervolume indicator favors extreme individuals
that yield superior performance only in a limited number of
objectives [4]. An open question in this context is whether a
set of existing indicator-based selection operators can create
a single operator that outperforms those existing ones.

In order to address this question, this paper proposes
and evaluates a method to aggregate (or boost) existing
indicator-based selection operators1. This boosting process
is carried out with a training problem in which Pareto-
optimal solutions are known. Experimental results show that
a boosted selection operator outperforms exiting ones in
optimality, diversity and convergence velocity. The proposed
boosting process can work with a simple training problem,
and the boosted operator can effectively solve harder prob-
lems. The boosted operator also exhibits robustness against
different characteristics in different problems and yields
stable performance to solve them.

1In this paper, a selection operator means a parent selection operator,
which chooses individuals from the population to reproduce offspring.

II. RELATED WORK

To the best of the authors’ knowledge, this work is the
first attempt to boost selection operators in evolutionary
algorithms (EAs) although boosting has been integrated with
EAs in several other ways.

For example, boosting has been integrated with genetic
algorithms (GAs) to solve classification problems [8]–[10].
The Boosting Genetic Algorithm integrates boosting with
a GA to discover classification rules [8]. A GA is used
as a base classifier in which each individual represents a
classification rule. A boosting algorithm aggregates multiple
base classifiers to build a more accurate classifier than them.

GPBoost [11] and its variants (e.g., [12]) integrate boost-
ing with genetic programming (GP) to solve regression
problems. A GP algorithm is used as a base learner (i.e.,
regression solver), and a boosting algorithm aggregates
multiple base learners.

III. QUALITY INDICATORS

This section describes 15 representative quality indicators
that the proposed boosting method uses.

A. Hypervolume Indicator (IH)

IH measures the volume of a hypercube that an individual
dominates in the objective space [13]. The hypercube is
formed with the individual and the reference point rep-
resenting the highest (or worst) possible objective values
~r = (r1, r2, .., rn) where n denotes the number of objectives.
IH of an individual ~x is calculated as follows where fi(~x)
denotes the ith objective function value of ~x.

IH(~x) =

n∏
i=1

|ri − fi(~x)| (2)

IH is intended to favor balanced individuals in objective
space rather than extreme ones [13].

B. Weighted Hypervolume Indicator (IW1 to IW9)

IW is an extension to IH in that IW places different
weights on different regions in the objective space while
IH places the uniform weight on all regions [4]. IW of an
individual ~x = (x1, x2, ..., xn) is computed as follows.

IW (~x) =

∫ (r1,r2,...,rn)

(x1,x2,...,xn)

w(~a)dz (3)

where w(~a) =

∑n
i=1 e

ki(ri−ai)∑n
i=1 e

ki

w(~a) denotes the weight of a point ~a = (a1, a2, ..., an) in
the objective space. It is calculated by applying a weight dis-
tribution ~k = (k1, k2, .., kn). ki is the weight assigned to the
ith objective. Given a greater ki value, IW favors extreme
individuals that are closer to the fi axis in the objective
space. Note that IW is equal to IH when ~k = (0, 0, .., 0).

As shown in Table I, this paper considers nine variants
of IW (IW1 to IW9) based on nine different combinations
of k1 and k2 values. Note that this papers uses a training
problem whose objective space is two dimensional.

Table I: 9 Variants of the Weighted Hypervolume Indicator
IW variants k1 k2 IW variants k1 k2

IW1 10 10 IW6 0 20
IW2 10 0 IW7 30 30
IW3 0 10 IW8 30 0
IW4 20 20 IW9 0 30
IW5 20 0

C. HypE Indicator (IHypE)

IHypE is also an extension to IH . This indicator places
different weights on different portions in the hypervolume
that an individual dominates. The hypervolume is divided
into multiple portions based on how many other individuals
dominate it as well. IHypE of ~x is computed as follows [5].

IHypE(~x) =

µ∑
i=1

1

i
Hi(~x) (4)

µ denotes the population size (i.e., the number of indi-
viduals in the population). Hi(a) denotes the hypervolume
that is dominated by ~x and other (i − 1) individuals in
the population. H1 is the hypervolume that ~x dominates
exclusively. The highest weight of 1 is given to H1. H2

is the hypervolume that ~x and another individual dominate.
The second highest weight of 1

2 is given to H2. The lowest
weight of 1

µ is given to Hµ, which all individuals in the
population dominate.

D. Binary ε+ Indicator (Iε+1 and Iε+2)

Iε takes two individuals (~x and ~y) and measures the dis-
tance between them on a per-objective basis. It is computed
as follows [6].

Iε+(~x, ~y) = maxi∈{1,..,n}(fi(~x)− fi(~y)) (5)

This paper considers two methods to evaluate the quality
of an individual (~x) against the other individuals in the
population P . The first method is to sum up binary indicator
values.

Iε+1(~x) =
∑

~y∈P\{~x}

Iε+(~y, ~x) (6)

The second method amplifies the influence of dominating
individuals over dominated one.

Iε+2(~x) =
∑

~y∈P\{~x}

−e−Iε+(~y,~x)/l (7)

l is a scaling coefficient. l = 0.05 in this paper, which is
a recommended value in [6].

E. Binary Hypervolume Indicator (IHD1 and IHD2)

IHD takes two individuals (~x and ~y) and measures the
hypervolume dominated by ~x but not by ~y [6].

IHD(~x, ~y) =

{
H(~x)−H(~y) if ~x dominates ~y
H(~x)−H(~x) ∩H(~y) otherwise

(8)
H(~x) denotes the hypervolume that ~x dominates.
Similar to Iε+1 and Iε+2, this paper considers two

variants, IHD1 and IHD2, to evaluate the quality of an
individual (~x) against the other individuals in the population.
IHD1(~x) and IHD2(~y) are computed by replacing Iε+(~y, ~x)
with IHD(~x, ~y) in Equations 6 and 7, respectively.

IV. BOOSTING SELECTION OPERATORS

Algorithm 1 shows the proposed boosting process, which
employs the AdaBoost algorithm [14]. It takes M indicator-
based selection operators S and aggregates top T operators
S∗ (T ≤ M). This paper uses 15 tournament selection
operators that use 15 indicators described in Section III
(M = 15). T aggregated operators have their weights:
W ∗ = {α1, α2, ..., αT }.

The proposed boosting process is carried out through
an offline training with a multiobjective optimization prob-
lem in which Pareto-optimal solutions are known. This
training problem is used to generate N training popula-
tions, {p1, p2, .., pN}, each of which contains µ individuals
(Line 2). Of the µ individuals, Np individuals are Pareto-
optimal and µ − Np individuals are randomly generated.
Those Np Pareto-optimal individuals are selected from a
training problem so that they are equally distributed on the
Pareto-optimal front. Each training population has a weight
wi (1 ≤ i ≤ N). Its initial value is 1/N (Line 3).

The proposed boosting process iteratively executes a loop
(Line 4 to 15) T times and selects one operator in each
iteration. (It selects T operators through T iterations.) In
each iteration, each of M operators selects an individual
Np times (i.e., Np individuals in total) on each training
population (Line 5). The operator’s individual selection is
considered successful if it selects Np × θ or more Pareto-
optimal individuals (θ < 1). Given this condition, the
selection error of each operator is calculated as shown in
Line 7. The error is weighted with each training population’s
weight wi (1 ≤ i ≤ N). Then, the proposed boosting process
chooses the operator s∗t that has the lowest selection error
(Lines 8 and 9) and computes the operator’s weight (Lines
10, 11 and 12). A lower selection error contributes to a
higher weight.

Finally, each training population’s weight is adjusted as
shown in Lines 13 and 14. The weight decreases if s∗t ’s
individual selection is successful; otherwise, it increases.
This way, in subsequent loop iterations, the proposed boost-
ing process focuses on the training populations on which

individual selection failed and favors the operators that
perform successful individual selection on those populations.

Algorithm 1 Boosting Selection Operators

Input: S = {s1, s2, .., sM}, a set of M operators
Output: S∗ = {s∗1, s∗2, .., s∗T }, a set of T aggregated operators
Output: W ∗ = {α1, α2, ..., αT }, Weights of T aggregated oper-

ators
1: S∗ = φ, W ∗ = φ
2: Generate N training populations: {p1, p2, .., pN}
3: Initialize each training population’s weight: wi(1) = 1/N, 1 ≤
i ≤ N

4: for t = 1 to T do
5: Each operator sj performs individual selection Np times on

each training population pi.
6: Calculate the weighted selection error (ej) for sj
7: ej =

∑N
i=1 wiIji where

Iji =

{
0 if sj’s selection is successful on pi
1 otherwise

8: Choose an operator s∗t such that s∗t=argminsj∈S ej
9: Add s∗t to S∗

10: e∗t = the weighted selection error of s∗t
11: Calculate the weight (αt) of s∗t as αt = 1

2
log
(

1−e∗t
e∗t

)
where e∗t denotes the weighted selection error of s∗t

12: Add αt to W ∗

13: Adjust wi as wi(t+ 1) ={
wi(t)e

−αt if st’s selection is successful
wi(t)e

αt otherwise
14: Normalize wi(t+ 1) as wi(t+ 1) = wi(t+1)∑N

q=1 wq(t+1)

15: end for
16: return S∗, W ∗

Algorithm 2 Boosted Selection Operator

Input: S∗ = {s∗1, s∗2, .., s∗T }, T aggregated operators
Input: W ∗ = {α1, α2, ..., αT }, Weights of T aggregated opera-

tors
Input: P , a population of µ individuals
Output: an individual to be used as a parent for crossover

1: Each of T operators selects one individual from the population
P with a v-way tournament. In total, T individuals are selected:
{x1,x2,...,xT }

2: Calculate the weight of each individual xi as
ϕi =

∑T
t=1 αtIti

where Iti =
{

1 if st selects xi
0 otherwise

3: Calculate the selection probability of xi as
δi =

ϕi∑T
i=1 ϕi

4: Select an individual from {x1,x2,...,xT } based on δi.

V. BOOSTED PARENT SELECTION

A boosted selection operator is constructed with T opera-
tors S∗ and their weights W ∗, which Algorithm 1 produces.
Algorithm 2 shows how a boosted operator works. In a
boosted operator, each of T operators first selects one
individual from the population P with a v-way tournament
(Line 1). In a v-way tournament, an operator randomly
draws two individuals from P and chooses a superior one

based on a quality indicator that the operator uses. A weight
ϕi (1 ≤ i ≤ T) is assigned to each of selected T individuals
with a prioritized voting by T operators (Line 2). Priorities
are given to individuals based on the weights of operators
({α1, α2, ..., αT }). Finally, a boosted operator chooses one
of T individuals as a parent by deriving individual selection
probability δi from ϕi (1 ≤ i ≤ T) (Lines 3 and 4).

VI. EXPERIMENTAL EVALUATION

This section evaluates the proposed boosting method
by integrating a boosted selection operator with a well-
known EMOA, called NSGA-II [15]. The proposed boosting
method and NSGA-II are configured as shown in Table II.
Experiments were conducted with jMetal [16]. Every exper-
imental result is obtained with 20 independent experiments.

Table II: Algorithmic Configurations
Parameter Value Parameter Value
M (Algo. 1) 15 v (Algo. 2) 2, 3, 4, 5 or 6

T (Algo. 1 and 2) 6 Max # of generations 200
N (Algo. 1) 5000 Crossover operator SBX

µ (Algo. 1 and 2) 100 Crossover rate 0.9
Np (Algo. 1) 20 Mutation operator Polynomial
θ (Algo. 1) 0.6 Mutation rate 1/ µ

Table III shows the six indicators that the proposed boost-
ing method chosen from 15 indicators in order to construct a
boosted selection opererator. Note that this evaluation study
uses M = 15 and T = 6 in Algorithms 1 and 2.

Table III: Aggregated Indicators
Indicator Weight (α) Indicator Weight (α)
IHD2 0.2435 IW7 0.1163
Iε+1 0.1865 IW1 0.0418
IHypE 0.1420 IW4 0.0250

A. Training and Test Problems

This evaluation study uses ZDT1 as a training problem.
ZDT1 is the simplest problem in the ZDT family prob-
lems [17]. It has a convex Pareto-optimal front in a two
dimensional objective space.

ZDT2, ZDT3 are ZDT4 are used to evaluate a boosted
selection operator that aggregates the indicators shown in
Table III. Each of the problems has a two dimensional
objective space. ZDT2 is essentially same as ZDT1 in terms
of problem design and complexity; however, it has a concave
Pareto-optimal front. ZDT3 and ZDT4 are harder problems
than ZDT1. ZDT3 has five discontiguous Pareto-optimal
fronts. ZDT4 has a large number of (209) local optima.

DTLZ1 and DTLZ7 [18] are also used as test problems.
Both are harder problems than ZDT1. They have three di-
mensional objective spaces. DTLZ1 has a single contiguous
Pareto-optimal front and DTLZ7 has four discontiguous
Pareto-optimal fronts.

B. Optimality and Diversity Analysis

This section evaluates the optimality and diversity of indi-
viduals with hypervolume ratio (HVR) [19]. HVR quantifies
the optimality and diversity of non-dominated individuals.

A higher HVR indicates that non-dominated individuals are
closer to the Pareto-optimal front and more diverse in the
objective space.

Table IV shows the average HVR values that seven
algorithms yield at the last generation in each problem. IB
represents an EMOA that integrates NSGA-II with a boosted
selection operator aggregating the six indicators listed in
Table III. Each of the other six algorithms represents an
EMOA that integrates NSGA-II with a selection operator
based on a single indicator. For example, IHD2 represents
an EMOA that integrates NSGA-II with an IHD2-based
selection operator. v indicates the size of a tournament in
parent selection. In each problem, 2-way to 6-way tourna-
ment selections are examined. A bold number indicates the
best result among seven algorithms on a per-row basis.

Table IV: Average HVR at the last (the 200th) generation
Problem v IB IHD2 Iε+1 IHypE IW7 IW1 IW4

ZDT1

2 0.987292 0.987013 0.987142 0.987981 0.987211 0.987611 0.987187
3 0.98792 0.983065 0.978066 0.987779 0.888314 0.883464 0.891662
4 0.988359 0.957663 0.964091 0.987074 0.717391 0.711519 0.713685
5 0.988414 0.960003 0.955519 0.986026 0.606751 0.57291 0.600777
6 0.988484 0.958924 0.950242 0.985216 0.51941 0.482579 0.492156

ZDT2

2 0.9767 0.97744 0.974778 0.976514 0.969523 0.95584 0.961119
3 0.977363 0.977393 0.935134 0.977289 0.854956 0.850348 0.854738
4 0.977615 0.977671 0.933695 0.975612 0.70477 0.705306 0.722501
5 0.97847 0.977542 0.936609 0.975074 0.672209 0.664869 0.681658
6 0.976969 0.977422 0.924938 0.97114 0.636568 0.619629 0.635382

ZDT3

2 0.991595 0.987221 0.985653 0.989607 0.990329 0.988545 0.988114
3 0.994079 0.99411 0.9426 0.994947 0.851847 0.842669 0.835347
4 0.994872 0.993858 0.910609 0.98264 0.652831 0.682493 0.692975
5 0.99506 0.989828 0.8672 0.991706 0.512317 0.546651 0.533493
6 0.995535 0.984116 0.832858 0.988276 0.486224 0.476092 0.47217

ZDT4

2 0.923535 0.881758 0.915589 0.84696 0.973355 0.974579 0.976871
3 0.969551 0.86502 0.953591 0.903897 0.873296 0.855642 0.869665
4 0.979587 0.885057 0.950269 0.872678 0.656291 0.767591 0.609153
5 0.979602 0.894803 0.941216 0.917018 0.559693 0.586559 0.60671
6 0.979984 0.893172 0.94369 0.92175 0.572723 0.483191 0.481425

DTLZ1

2 0.963187 0.968643 0.8065 0.973117 0.919929 0.92741 0.891426
3 0.946998 0.963644 0.868354 0.958693 0.340036 0.333922 0.373305
4 0.964603 0.976193 0.777159 0.965573 0.23241 0.357037 0.330733
5 0.976716 0.972869 0.760283 0.967659 0.236244 0.375746 0.350181
6 0.930752 0.974245 0.752827 0.966478 0.239547 0.370695 0.274772

DTLZ7

2 0.972382 0.852836 0.989412 0.904304 0.988395 0.943761 0.97001
3 0.990347 0.921616 0.969646 0.968427 0.680902 0.677735 0.716543
4 0.990547 0.869581 0.932087 0.901701 0.585396 0.593865 0.578626
5 0.973147 0.886484 0.87774 0.968013 0.560746 0.556716 0.558532
6 0.989858 0.919655 0.805475 0.901431 0.555464 0.555143 0.568183

In ZDT1, except in the case of v = 2, the proposed
boosted selection operator (IB) outperforms the other op-
erators. This is not surprising because IB is constructed
with ZDT1 as a training problem. However, a very similar
observation can be made in ZDT3, ZDT4 and DTLZ7, which
are harder problems than ZDT1. Table IV demonstrates
that the proposed boosting process can work with a simple
training problem and the boosted selection operator can
effectively solve harder problems.

In ZDT2 and DTLZ1, IHD2 performs slightly better than
IB . (In fact, IB ties IHD2 in ZDT2 if HVR values are
truncated to two decimal places.) An important observation
is that the performance of IHD2 is inconsistent among
different problems. Although IHD2 works well in ZDT2 and
DTLZ1, it’s performance is marginal in ZDT4 and DTLZ7.

In ZDT4, IHD2 never yields the HVR measure of 9.0 or
higher. Other indicators exhibit similar inconsistencies. For
example, Iε+1 performs well in ZDT1 but poorly in DTLZ1.
(It never yields the HVR measure of 0.87 or higher in
DTLZ1.)

In contrast, IB’s performance is much more consistent
among different problems. Its worst HVR is 0.92 in ZDT4
while IHD2’s worst is 0.85, Iε+1’s is 0.75, IHypE’s is
0.84, IW7’s is 0.23, IW7’s is 0.33, and IW4’s is 0.27. This
shows that IB allows different indicator-based operators to
complement with each other well. In summary, Table IV
demonstrates that the proposed IB performs better than, or
equally to, existing indicator-based selection operators in
HVR (i.e., in optimality and diversity) in all test problems
except DTLZ1 and IB is more robust and stable than
existing operators under different characteristics in different
problems.

C. Convergence Velocity Analysis

This section evaluates the convergence velocity of seven
different algorithms with HVR (Tables V to X). Each of
these tables shows the number of generations that each
algorithm requires to achieve a given HVR value. In each
problem, 2-way (i.e., binary) to 6-way tournament selections
are examined. A bold number indicates the best result
among seven algorithms on a per-row basis. For example,
IB requires 114 generations to achieve the HVR value of
0.9 with a three-way tournament in ZDT2 (Table VI). Its
convergence velocity is the fastest among seven algorithms.
A number in parentheses indicates the ratio of convergence
velocity between IB and another algorithm (i.e., how faster
or slower an algorithm’s convergence is against IB). In
Table VI, IHD2’s convergence is 17% slower than IB in
the case of three-way tournament selection. The character
“x” indicates that an algorithm cannot achieve a given HVR
value by the last generation.

Tables V to X show that IB’s convergence velocity is
faster than the others’ in ZDT2, ZDT3, ZDT4 and DTLZ7.
It is not the best but fairly acceptable in ZDT1 and DTLZ1.
The weighted hypervolume indicators (IW7, IW1 and IW4)
possess greater convergence velocity in many problems
to achieve the HVR value of 0.5. However, they often
encounter premature convergence and fail to achieve higher
HVR values when v ≥ 3. IHypE and IHD2 yield the greatest
convergence velocity in ZDT1 and DTLZ1, respectively.
However, their convergence velocities are not consistent
among different problems. IHypE’s convergence velocity is
marginal in other problems than ZDT1. IHD2’s is marginal
in other problems than DTLZ1.

In contrast, IB never encounters premature convergence.
(It never fails to achieve the HVR value of 0.9.) Its conver-
gence velocity is more consistent among different problems.
It is more robust and stable than exiting operators under

different characteristics in different problems by allowing
them to complement with each other.

Table V: HVR in ZDT1
v HVR IB IHD2 Iε+1 IHypE IW7 IW1 IW4

2
0.5 37 37(1.0) 40(1.08) 36(0.97) 37(1.0) 36(0.97) 37(1.0)
0.75 55 56(1.02) 58(1.05) 52(0.95) 55(1.0) 54(0.98) 55(1.0)
0.9 75 79(1.05) 81(1.08) 73(0.97) 77(1.03) 76(1.01) 77(1.03)

3
0.5 34 36(1.06) 40(1.18) 33(0.97) 38(1.12) 36(1.06) 37(1.09)
0.75 51 53(1.04) 58(1.14) 48(0.94) 62(1.22) 61(1.2) 61(1.2)
0.9 70 74(1.06) 87(1.24) 67(0.96) x x x

4

0.5 33 33(1.0) 46(1.39) 34(1.03) 41(1.24) 41(1.24) 42(1.27)
0.75 49 50(1.02) 64(1.31) 49(1.0) x x x
0.9 67 79(1.18) 93(1.39) 69(1.03) x x x

5
0.5 32 35(1.09) 46(1.44) 32(1.0) 47(1.47) 55(1.72) 48(1.5)
0.75 48 51(1.06) 64(1.33) 47(0.98) x x x
0.9 67 77(1.15) 96(1.43) 64(0.96) x x x

6
0.5 34 33(0.97) 45(1.32) 31(0.91) 78(2.29) x x
0.75 49 49(1.0) 66(1.35) 46(0.94) x x x
0.9 68 78(1.15) 93(1.37) 63(0.93) x x x

Table VI: HVR in ZDT2
v HVR IB IHD2 Iε+1 IHypE IW7 IW1 IW4

2
0.5 103 116(1.13) 88(0.85) 110(1.07) 62(0.6) 61(0.59) 64(0.62)

0.75 123 135(1.1) 114(0.93) 126(1.02) 79(0.64) 82(0.67) 85(0.69)
0.9 144 158(1.1) 134(0.93) 144(1.0) 110(0.76) 120(0.83) 119(0.83)

3
0.5 83 99(1.19) 91(1.1) 92(1.11) 55(0.66) 57(0.69) 57(0.69)

0.75 99 117(1.18) 111(1.12) 106(1.07) 82(0.83) 84(0.85) 84(0.85)
0.9 114 133(1.17) 134(1.18) 119(1.04) x x x

4
0.5 76 97(1.28) 100(1.32) 96(1.26) 59(0.78) 59(0.78) 56(0.74)

0.75 90 109(1.21) 125(1.39) 105(1.17) x x x
0.9 108 119(1.1) 143(1.32) 122(1.13) x x x

5
0.5 80 94(1.18) 98(1.23) 94(1.18) 59(0.74) 60(0.75) 59(0.74)

0.75 95 106(1.12) 128(1.35) 109(1.15) x x x
0.9 109 121(1.11) 163(1.5) 128(1.17) x x x

6
0.5 73 91(1.25) 118(1.62) 91(1.25) 61(0.84) 65(0.89) 66(0.9)

0.75 87 105(1.21) 133(1.53) 110(1.26) x x x
0.9 102 116(1.14) 151(1.48) 148(1.45) x x x

Table VII: HVR in ZDT3
v HVR IB IHD2 Iε+1 IHypE IW7 IW1 IW4

2
0.5 103 116(1.13) 88(0.85) 110(1.07) 62(0.6) 61(0.59) 64(0.62)

0.75 123 135(1.1) 114(0.93) 126(1.02) 79(0.64) 82(0.67) 85(0.69)
0.9 144 158(1.1) 134(0.93) 144(1.0) 110(0.76) 120(0.83) 119(0.83)

3
0.5 83 99(1.19) 91(1.1) 92(1.11) 55(0.66) 57(0.69) 57(0.69)

0.75 99 117(1.18) 111(1.12) 106(1.07) 82(0.83) 84(0.85) 84(0.85)
0.9 114 133(1.17) 134(1.18) 119(1.04) x x x

4
0.5 76 97(1.28) 100(1.32) 96(1.26) 59(0.78) 59(0.78) 56(0.74)

0.75 90 109(1.21) 125(1.39) 105(1.17) x x x
0.9 108 119(1.1) 143(1.32) 122(1.13) x x x

5
0.5 80 94(1.18) 98(1.23) 94(1.18) 59(0.74) 60(0.75) 59(0.74)

0.75 95 106(1.12) 128(1.35) 109(1.15) x x x
0.9 109 121(1.11) 163(1.5) 128(1.17) x x x

6
0.5 73 91(1.25) 118(1.62) 91(1.25) 61(0.84) 65(0.89) 66(0.9)

0.75 87 105(1.21) 133(1.53) 110(1.26) x x x
0.9 102 116(1.14) 151(1.48) 148(1.45) x x x

VII. CONCLUSIONS

This paper proposes and evaluates a novel method that
leverages a boosting algorithm to obtain an aggregated selec-
tion operator from various existing indicator-based selection
operators. Experimental results show that a boosted selection
operator outperforms exiting ones in optimality, diversity
and convergence velocity. The proposed boosting process
can work with a simple training problem, and the boosted
operator can effectively solve harder problems. The boosted
operator also exhibits robustness against different character-
istics in different problems and yields stable performance.

Table VIII: HVR in ZDT4
v HVR IB IHD2 Iε+1 IHypE IW7 IW1 IW4

2
0.5 121 129(1.07) 132(1.09) 136(1.12) 98(0.81) 95(0.79) 95(0.79)

0.75 148 152(1.03) 158(1.07) 177(1.2) 119(0.8) 113(0.76) 114(0.77)
0.9 191 210(1.1) 193(1.01) 222(1.16) 144(0.75) 137(0.72) 135(0.71)

3
0.5 106 114(1.08) 111(1.05) 118(1.11) 83(0.78) 81(0.76) 80(0.75)

0.75 129 142(1.1) 146(1.13) 148(1.15) 107(0.83) 104(0.81) 109(0.84)
0.9 158 238(1.51) 178(1.13) 198(1.25) x x x

4
0.5 94 99(1.05) 108(1.15) 107(1.14) 84(0.89) 71(0.76) 94(1.0)

0.75 115 136(1.18) 138(1.2) 153(1.33) x 141(1.23) x
0.9 141 235(1.67) 175(1.24) 225(1.6) x x x

5
0.5 87 96(1.1) 108(1.24) 103(1.18) 92(1.06) 79(0.91) 75(0.86)

0.75 108 131(1.21) 141(1.31) 130(1.2) x x x
0.9 135 217(1.61) 177(1.31) 170(1.26) x x x

6
0.5 84 101(1.2) 100(1.19) 99(1.18) 77(0.92) x x

0.75 99 131(1.32) 137(1.38) 136(1.37) x x x
0.9 129 211(1.64) 184(1.43) 190(1.47) x x x

Table IX: HVR in DTLZ1
v HVR IB IHD2 Iε+1 IHypE IW7 IW1 IW4

2
0.5 129 126(0.98) 132(1.02) 110(0.85) 157(1.22) 142(1.1) 155(1.2)
0.75 153 150(0.98) 169(1.1) 128(0.84) 175(1.14) 163(1.07) 178(1.16)
0.9 175 176(1.01) 224(1.28) 157(0.9) 194(1.11) 187(1.07) 204(1.17)

3
0.5 122 117(0.96) 127(1.04) 111(0.91) x x 245(2.01)
0.75 139 138(0.99) 178(1.28) 140(1.01) x x x
0.9 165 180(1.09) 218(1.32) 172(1.04) x x x

4
0.5 115 105(0.91) 141(1.23) 113(0.98) x x x
0.75 142 133(0.94) 183(1.29) 135(0.95) x x x
0.9 184 154(0.84) x 162(0.88) x x x

5
0.5 114 100(0.88) 148(1.3) 104(0.91) x x x
0.75 144 121(0.84) 195(1.35) 129(0.9) x x x
0.9 158 132(0.84) x 159(1.01) x x x

6
0.5 119 96(0.81) 124(1.04) 103(0.87) x x x
0.75 138 118(0.86) 197(1.43) 126(0.91) x x x
0.9 164 142(0.87) x 136(0.83) x x x

REFERENCES

[1] N. Srinivas and K. Deb, “Multiobjective function optimiza-
tion using nondominated sorting genetic algorithms,” Evol.
Computat., vol. 2, no. 3, 1995.

[2] C. C. Coello, “Evolutionary multi-objective optimization:
Some current research trends and topics that remain to be
explored,” Front. Computat. Sci. China, vol. 3, no. 1, 2009.

[3] T. Wagner, N. Beume, and B. Naujoks, “Pareto-, aggregation-,
and indicator-based methods in many-objective optimization,”
in Proc. Int’l Conf. Evol. Multi-criterion Optimization, 2007.

Table X: HVR in DTLZ7
v HVR IB IHD2 Iε+1 IHypE IW7 IW1 IW4

2
0.5 49 52(1.06) 52(1.06) 49(1.0) 48(0.98) 52(1.06) 49(1.0)

0.75 61 71(1.16) 64(1.05) 64(1.05) 66(1.08) 71(1.16) 66(1.08)
0.9 83 x 84(1.01) 152(1.83) 96(1.16) 130(1.57) 104(1.25)

3
0.5 44 43(0.98) 50(1.14) 42(0.95) 57(1.3) 53(1.2) 52(1.18)

0.75 55 55(1.0) 66(1.2) 54(0.98) x x x
0.9 71 91(1.28) 93(1.31) 75(1.06) x x x

4
0.5 42 43(1.02) 50(1.19) 40(0.95) 60(1.43) 59(1.4) 64(1.52)

0.75 52 57(1.1) 69(1.33) 54(1.04) x x x
0.9 68 x 118(1.74) 179(2.63) x x x

5
0.5 40 38(0.95) 51(1.27) 38(0.95) 70(1.75) 73(1.83) 67(1.68)

0.75 51 52(1.02) 76(1.49) 48(0.94) x x x
0.9 68 x x 69(1.01) x x x

6
0.5 39 38(0.97) 52(1.33) 39(1.0) 74(1.9) 73(1.87) 66(1.69)

0.75 49 51(1.04) 91(1.86) 54(1.1) x x x
0.9 64 82(1.28) x 174(2.72) x x x

[4] E. Zitzler, D. Brockho, and L. Thiele, “The Hypervolume
Indicator Revisited: On the Design of Pareto-compliant Indi-
cators Via Weighted Integration,” in Proc. of Int’l Conference
on Evolutionary Multi-Criterion Optimization, 2007.

[5] J. Bader and E. Zitzler, “HypE: An algorithm for
fast hypervolume-based many-objective optimization,” Evol.
Computat., vol. 19, no. 1, 2011.

[6] E. Zitzler and S. Kuenzli., “Indicator-based selection in mul-
tiobjective search,” in Proc. of Int’l Conference on Parallel
Problem Solving from Nature, 2004.

[7] P. Boonma and J. Suzuki, “Prospect indicator based evolu-
tionary multiobjective optimization algorithm,” in Proc. IEEE
Congress on Evolutionary Computation, 2011.

[8] B. Liu, M. B., and A. H.A., “Improving genetic classifiers
with a boosting algorithm,” in Proc. IEEE Congress on
Evolutionary Computation, 2003.

[9] B. Liu, B. McKay, and H. A. Abbass, “Feature selection
combining genetic algorithm and adaboost classifiers,” in
Proc. Int’l Conference on Pattern Recognition, 2008.

[10] I. Yalabik and T.-V. Fatos, “A pattern classification approach
for boosting with genetic algorithms,” in Proc. Int’l Sympo-
sium on Computer and Information Sciences, 2007.

[11] G. Paris, D. Robilliard, and C. Fonlupt, “Applying boosting
techniques to genetic programming,” in Proc. European Con-
ference on Artificial Evolution, 2002.

[12] L. V. Souza, A. R. T. Pozo, J. C. M. Da Rosa, and C. Neto,
“Technique using correlation coefficient to improve time
series forecasting accuracy,” in Proc. IEEE Congress on
Evolutionary Computation, 2007.

[13] E. Zitzler and L. Thiele, “Multiobjective optimization using
evolutionary algorithms: A comparative study,” in Proc. Int’l
Conference on Parallel Problem Solving from Nature, 1998.

[14] Y. Freund and R. E. Schapire, “A decision-theoretic gener-
alization of on-line learning and an application to boosting,”
Journal of Computer and System Sciences, vol. 55, 1997.

[15] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast
and elitist multiobjective genetic algorithm: NSGA-II,” IEEE
Trans Evol. Computat., vol. 6, no. 2, 2002.

[16] J. Durillo, A. Nebro, and E. Alba, “The jMetal framework
for multi-objective optimization: Design and architecture,” in
Proc. of IEEE Congress on Evolutionary Computation, 2010.

[17] E. Zitzler, K. Deb, and L. Thiele, “Comparison of multi-
objective evolutionary algorithms: Empirical results,” Evol.
Computat., vol. 8, no. 2, 2000.

[18] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, “Scalable
test problems for evolutionary multiobjective optimization,”
in Evolutionary Multiobjective Optimization, A. Abraham,
R. Jain, and R. Goldberg, Eds. Springer, 2005.

[19] D. A. V. Veldhuizen and G. B. Lamont, “Multiobjective
evolutionary algorithm test suites,” in Proc. ACM Symposium
on Applied Computing, 1999.

