
IEEE Communications Magazine • April 199946

OpenWebServer: An Adaptive Web
Server Using Software Patterns

0163-6804/99/$10.00 © 1999 IEEE

s the Internet becomes more ubiquitous, the Web
is increasingly used for many purposes. The explo-

sive growth of the Web places larger and more challenging
demands on servers. An effective design for Internet-based
servers is required. This article describes our experience in
designing a Web server that addresses many of the current
challenges facing Web servers.

CHALLENGES FACING WEB SERVERS
Current Web servers must:
• Connect with various systems such as groupware,

database management systems, mobile agent engines,
and transaction processing monitors.

• Integrate generic communication environments including
Common Object Request Broker Architecture (CORBA)
and Distributed Component Object Model (DCOM)

• Extend server functionality by introducing additional net-
work protocols or content data types

• Change server execution policies; for example, optimizing
concurrency, connection management, request handling,
and cache management.

• Adapt to execution environments such as ATM networks
and electronic devices such as network routers, printers,
or copiers
Every user may not require the same functionality in a

Web server. Therefore, a Web server should be flexible
enough to meet a wide range of requirements on demand.
Most Web servers, unfortunately, are monolithic. They pro-
vide a fixed and limited set of capabilities. When additional
functionality is required, the usual solution involves shutting
down the system, modifying one or more components, inte-
grating them with existing components, and restarting the sys-
tem. This solution is often difficult or expensive to maintain,
and does not allow the server to be used during the upgrade.
Therefore, it is typical to take the “scrap-and-build” approach
for a given requirement, where the software is rewritten from
scratch because it may be more economically feasible. A
dynamically adaptable Web server architecture based on
reusable components is an attractive alternative for extensive
and intrusive changes.

ADAPTABILITY OF WEB SERVERS
Most Web servers lack the adaptability to enable the system’s
evolution. Designers cannot know or predict all possible uses

of the system. A service or configura-
tion that is appropriate at one point
may not be useful later, and the system

may not evolve transparently.
The Reflection architectural pattern enables the system to

maintain information about itself and use this information to
remain changeable and extensible [1]. This article addresses
the problem of adaptability and describes our use of patterns
to build an adaptive Web server. We consider the use of
Reflection for specifying various aspects (e.g., structure and/or
behavior) of an open-ended system that can be dynamically
adapted. OpenWebServer is developed on top of the Adaptive
Internet Server Framework (AISF) [2]. This article presents a
Java version of OpenWebServer.

The remainder of this article is organized as follows. The
next section introduces the concept and benefits of Reflection.
We then present the advantage of developing a Web server
based on design patterns. The article goes on to present some
applications of the adaptability of OpenWebServer. We
describe design patterns used in the implementation phase,
and conclude with a note on the current status of the project
and future work.

THE REFLECTION ARCHITECTURAL PATTERN
In general, the meta-architecture that Reflection embodies
introduces the notion of object/metaobject separation. A
metaobject or metalevel object contains information about the
internal structure and/or behavior of one or more baselevel
objects or baseobjects, which includes the application logic. In
other words, metaobjects can track and control certain aspects
(e.g., structure and/or behavior) of baseobjects. A set of
metaobjects is called a metaspace or metalevel. A set of
baseobjects is called a baselevel.

Reflection is the ability of a program to manipulate as data
something that represents the state of the program to adjust
to changing requirements. The goal of reflection is to allow a
baseobject to reflect on its own execution state and eventually
alter it to change its meaning during execution. In contrast to
reflection, reification is the process of making something
accessible that is normally unavailable in the baselevel (e.g.,
programming environment) or hidden from the programmer.
For the execution of a baseobject to be supervised, it must
first be reified into the corresponding metalevel. The inter-
faces a baseobject uses to access its metalevel are called
metaobject protocols (MOPs). The relationships are illustrated
in Fig. 1.

Junichi Suzuki and Yoshikazu Yamamoto

Keio University

A

The explosive growth of the Web requires servers to be extensi-
ble and configurable. This article describes our adaptive Web

server, OpenWebServer, which uses the Reflection architectural pattern. The server sup-
ports the dynamic adoption of functionality, such as introducing additional protocols,
modifying execution policies, and tuning system performance. This is achieved by specify-
ing and coordinating metaobjects that represent various aspects within the Web server.
We present a Java version of OpenWebServer, and describe its design using Reflection and
other design patterns: Singleton, Bridge, Mediator, Observer, and Decorator. These pat-
terns provide a better-factored design and allow the Web server to evolve continually
beyond static and monolithic servers.

ABSTRACT

IEEE Communications Magazine • April 1999 47

THE CONCEPTUAL FRAMEWORK AND
ADVANTAGES OF OPENWEBSERVER

OpenWebServer contains a metalevel that supports a wide
range of aspects of Web servers. It provides a set of fine-
grained metaobjects and supplemental utility objects to sup-
port the writing of both the baselevel and metalevel.
OpenWebServer is implemented within the programmable
metalevel and can dynamically adjust itself so that it is execut-
ed in the best-tuned condition for a given requirement.

Although modern Web servers provide some extension
mechanisms such as Common Gateway Interface (CGI), serv-
er-side APIs, and server-side scripting capability, their extensi-
bility is restricted within the application level. In contrast,
OpenWebServer provides a uniform platform where a variety
of requirements can be specified from low-level services, such
as connection management, request handling, and cache man-
agement, into application-level services without breaking the
single framework. In other words, the metalevel in OpenWeb-
Server plays the role of a generic “change absorber” for the
Web server.

The Reflection pattern provides the following advantages:
• Separation of concerns: In conventional Web servers, the

system’s basic mechanisms are complicated by policy
specifications. This makes it difficult to understand and
maintain the system. The separation of the reflective
facilities from the underlying mechanisms allows the
reuse of feasible policies.

• Improved adaptability and configurability: The metalevel
keeps the baselevel open-ended for extension. New
requirements can be implemented with relatively minor
modifications to baseobjects within the original system.
This eliminates the “scrap-and-build” solution in system
development.

• Transparency: Metaobject protocols decouple the meta-
level and baselevel. This indirection reduces the con-
straints on both, so the levels can be developed

independently. This transparency allows the metalevel to
evolve while maintaining backward compatibility with the
baselevel.
OpenWebServer is named after the Open-Closed Principle

(OCP), which was originally proposed by Bertrand Meyer and
states that software entities should be open for extension but
closed for internal modification. This means we should design
systems so that objects can be extensible by adding new
objects via inheritance or composition, not by modifying the
object’s internal working code. OpenWebServer is intended to
apply the Open-Closed Principle so that the system can evolve
by adding new metaobjects or reorganizing them.

THE METALEVEL DESIGN OF OPENWEBSERVER
This section presents an architectural overview of OpenWeb-
Server and describes the design patterns used to construct the
metalevel.

ARCHITECTURAL OVERVIEW
OpenWebServer consists of three packages. The
jp.ac.keio.ows.kernel package contains the foundation
objects to construct and maintain the metalevel. The
jp.ac.keio.ows.meta package contains series of metaobjects
and is controlled by the kernel package. The
jp.ac.keio.ows.utility package contains utility objects to
support the writing of both the baselevel and metalevel. It is used
by kernel and meta packages.

The jp.ac.keio.ows.kernel package is organized as
shown in Fig. 2, and contains the following objects:
• SysController — Starts the system by creating appro-

priate metaspaces and metaobjects with a configuration
file. It also keeps track of system status and configura-
tion. This object is also responsible for stopping and
resuming the system. It is an active object executed on a
root thread in the thread hierarchy.

• MetaSpace — Represents a metalevel or metaspace.
Multiple metalevels can exist within the system, although
it usually has a single metalevel. It references every
metaobject and coordinates the interaction between
them to meet a given requirement. This object is dis-
cussed later.

• MetaObject — Specifies the interfaces for all metaob-
jects. This is a base interface class for them. MetaOb-
jectImpl and its subclasses provide the implementations
of this object. The relationship between MetaObject and
MetaObjectImpl is discussed next.

■ Figure 1. A typical reflective architecture.

Metalevel objects

Reification Reflection

Baselevel objects

Metalevel

Baselevel

■ Figure 2. Classes in the jp.ac.keio.ows.kernel package.

Instance()
SysController()
configure()
createMetaSpace()
createDefaultMetaSpace()
metaSpaces()
status()
run()

reify()
metalevel()

1

1
*

0..*

has

uses

SysController BaseObject

reify()
addImpl()
addImpl()
addImpl()
removelmpl()
impl()
findMetaObj()
findImpl()
currentimplOf()
changeImpl()

MetaSpace

id()
metaspace()

MetaObjectlmpl

id()
metaspace()

<<inferface>>
MetaObject

IEEE Communications Magazine • April 199948

• MetaObjectImpl — Provides an implementation for a
MetaObject. Multiple implementations can be defined
for a single MetaObject.

• BaseObject — Specifies the interfaces needed to all
baseobjects. This is a base class for them.
SysController is a Singleton, since it has exactly one

instance in the system. The Singleton pattern ensures that a
class has just one instance and provides controlled access to it
[3]. The following shows its selected interfaces.

public class SysController implements Runnable {
static protected SysController Instance = null;
protected Thread thread;
public static SysController Instance(String param){

if(Instance == null){
Instance = new SysController(param);

}
return Instance;

}
protected SysController(String param) {

// ...
thread = new Thread(this);
thread.start();

}
}

The static Instance() method is used to instantiate or
return the unique instance. The constructor is protected and
called by Instance() . SysController creates one or more
instances of MetaSpace and holds a set of references to them.

MetaSpace is an entry point from the baselevel to met-
alevel. Baseobjects can access MetaSpace when communicat-
ing with their metalevels. Each baseobject can have zero or
more instances of MetaSpace . In turn, each MetaSpace
aggregates zero or more metaobjects (Fig. 2).

Baseobjects do not have to be attached to a metalevel, but
can be dynamically attached on demand. Attachment on
demand is known as lazy reification. Each baseobject can be
reified with its method reify() , and access its metalevel with
the method metalevel() (Fig. 2). Once a baseobject is rei-
fied, it becomes aware of its metalevel, and the corresponding
metaobjects are then instantiated by the class MetaSpace .
The number and type of created metaobjects depends on what
the users wish to do.

The jp.ac.keio.ows.meta package consists of a collec-
tion of metaobjects (Fig. 3). To specify metaobjects, we identi-

fied services and entities by looking for typical
events or constructs found during the execution of
Web servers. Abstracting these events and con-
structs, OpenWebServer provides the following
metaobjects by default:
• Initializer — Initializes the network facility

along with the current configuration. A typical
task is to create one or more sockets according
to the current communication protocol and
concurrency policy, and then instantiate an
Acceptor .

• Acceptor — Waits for and accepts incoming
requests. It encapsulates the different concur-
rency policies for simultaneous access (dis-
cussed later). Once it obtains a request, it asks
a RequestHandler to process the request
given the current configuration (i.e., protocol
and concurrency policy).

• RequestHandler — Deals with requests from
an Acceptor . It encapsulates the different poli-
cies for interpreting a request, based on the
kind of request and target content. It is created

on a per-request basis when an Acceptor accepts a
request. It is executed on a separate thread or the same
thread on which an Acceptor runs.
Protocol — Defines protocol-specific information on a
per-protocol basis. It is referenced by a
RequestHandler .

• ContentFinder — Finds a target resource (e.g.,
HTML/XML files or data within a back-end repository)
passed by a RequestHandler .

• Logger — Records accesses to the Web server.
RequestHandler typically calls it.

• ExecManager — Executes external entities like CGI
scripts.
These metaobjects represent typical aspects of Web servers.

They are objects that affect the behavior of other objects, and
have the following basic responsibilities [1]:
• Encapsulating system internals that may change
• Providing an interface to facilitate modifications to the

metalevel
• Controlling baselevel behavior

As shown in Fig. 3, all metaobjects are interface classes
derived from MetaObject in the kernel package. We can add
a new metaobject depending on the requirements by deriving
from MetaObject . Implementations of a metaobject are provid-
ed by implementation classes derived from MetaObjectImpl .
Figure 3 shows two implementations attached to Acceptor .
ThreadPerRequestAcceptor and ThreadPer -
SessionAcceptor implement different concurrency policies of
thread per request and thread per session, respectively. Imple-
mentation classes are also contained in the meta package.

OpenWebServer eliminates the explicit level shifting from
baselevel to metalevel, and the explicit reflective function calls
found in the traditional reflective programming languages.
This is similar to the approach introduced by CodA, a
Smalltalk-based meta-architecture [4]. Metaobjects are just
like other objects in the system. Reflective computation is
executed by direct interaction with the desired metaobjects.
Methods of every metaobject within the kernel and meta
packages are considered MOPs.

DESIGN PATTERNS FOR MODELING METAOBJECTS
Bridge: Decoupling an Metaobject and Its Implementa-
tions — The metaobjects described in the previous section
are abstractions of typical aspects of Web servers, and define
their interface and semantics. Their concrete implementations

■ Figure 3. Classes in the jp.ac.keio.ows.meta package.

Http10RequestHandler

Http10

MetaObjectlmpl

ThreadPerSessionAcceptor

ThreadPerRequestAcceptor

implements

<<inferface>>
RequestHandler

<<inferface>>
Protocol

<<inferface>>
MetaObject

<<inferface>>
Acceptor

IEEE Communications Magazine • April 1999 49

are prepared as classes that implement them and
derive from MetaObjectImpl (Fig. 3 and 4). The
relationship between a metaobject and its implemen-
tations is based on Bridge [3]. The pattern explicitly
decouples an interface and its implementation. Per-
manent binding between them should be avoided in
OpenWebServer. The implementation must be
dynamically chosen or changed for system adaptabil-
ity. Also, both the interface and the implementations
should be independently extensible; changes in an
implementation should have no impact on clients of
the interface.

Bridge separates an interface and its implementa-
tion using object composition instead of inheritance,
which is typically used for incremental modifications.
Object composition should be favored over inheri-
tance, since object composition decouples the early
and permanent binding between an object and the
semantics of its behavior, and provides more run-
time flexibility [2, 3].

OpenWebServer uses a variant of Bridge which
includes the interface-implementation relationship, provided
by Java, between the interface and its implementation. Figure
4 depicts a class diagram where this pattern is applied to
Acceptor . ThreadPerRequestAcceptor and ThreadPer -
SessionAcceptor are implementation classes of Acceptor .
These classes implement accept() differently, which contains
an infinite loop to wait for incoming requests and dispatches
them to a RequestHandler along with the current concur-
rency policy.

In our variant of Bridge, MetaSpace aggregates implemen-
tation objects so that it can change the metaobject’s implemen-
tation dynamically. It can inspect the current implementation
with its currentImpl() , and change it using changeImpl() .
The next section describes how MetaSpace maintains a set of
metaobjects and their implementations internally.

Bridge allows changing the metaobject’s implementation at
runtime, depending on the desired execution policy in the
Web server. It allows dynamic adaptation without system shut-
down. Bridge has the following benefits for OpenWebServer:
• Decoupling abstraction and implementations.
• Layered architecture that separates the core mechanism

and its policy explicitly. This leads to a system that is bet-
ter factored and easier to maintain.

• Improved adaptability.

DESIGN PATTERNS FOR COORDINATING METAOBJECTS

OpenWebServer encourages metaobjects to specify aspects
in Web servers and interact with each other to meet design
demands. This often causes multiple associations among
metaobjects. In the worst case, every metaobject should
know all others. Although partitioning a system into well-
defined objects generally enhances reusability, lots of inter-
connections make it less likely that a metaobject can work
without the support of others. As a result, the system behaves
as if it were monolithic. Moreover, it would be difficult to
change system’s behavior transparently due to the spaghetti
associations.

Mediator: Isolating the Associations Between Metaob-
jects — To avoid this situation, we use Mediator [3], which
encapsulates the interaction of a set of objects and facilitates
loose coupling among them by keeping the reference to every
object within a mediator object. In OpenWebServer, Meta-
Space is a mediator object. It controls and coordinates inter-
actions among a set of metaobjects. It acts as an intermediary
among the metaobjects in the metalevel. Each metaobject
knows only MetaSpace , not any other metaobject, thereby
reducing the number of interconnections.

■ Figure 4. Class structure of a metaobject and its implementations.

id():String
metaspace():String

implements

1
*

MetaObjectlmpl

reify()
addlmpl()
addlmpl()
addlmpl()
removelmpl()
impl()
findMetaObj()
findlmpl()
currentlmplOf()
changelmpl()

MetaSpace

accept(s:Socket):void

<<inferface>>
Acceptor

accept(s:Socket):void

ThreadPerSessionAcceptor

accept(s:Socket):void

ThreadPerRequestAcceptor
implements

id():String
metaspace():MetaSpace

<<inferface>>
MetaObject

■ Figure 5. A class structure of MetaSpace , metaobjects, and their implementations based on Mediator. MetaSpace is an intermediary
among metaobjects and encapsulates their interactions, instead of metaobjects being connected to each other directly.

components:Hashtable
controller:SysController

reify():MetaSpace
addlmpl(impl:String):void
addlmpl(impl:Initializer):void
addlmpl(impl:Acceptor):void
removelmpl(mobj:String,impl:String):void
impl(mogj:String,impl:String):MetaObject
findMetaObj(mobj:String):boolean
findlmpl(impl:String):boolean
currentlmplOf(mobj:String):MetaSpace
changelmpl(oldObj:String,newObj:String):void

id:String
metaspace:MetaSpace

MetaSpace <<inferface>>
MetaObject

id:String
metaspace:MetaSpace

MetaObjectlmpl

ThreadPerRequestAcceptor

FileLogger

1

•

<<inferface>>
Logger

<<inferface>>
Acceptor

IEEE Communications Magazine • April 199950

Figure 5 shows how Mediator is applied to the metalevel
of OpenWebServer. In this figure, MetaSpace is an interme-
diary among Acceptor and Logger . Each metaobject has an
attribute metaspace to refer to the metaspace to which it
belongs, and can call curentImplOf() of MetaSpace to get
the current implementation of a desired metaobject. Figure 6
depicts a runtime object structure where three metaobjects
indirectly interconnect with MetaSpace. MetaSpace con-
tains every metaobject and its implementations in the instance
variable components , typed Hashtable . This variable has the
mapping of a string entry (key) and Vector type value. The
former is used to assign the string name of a metaobject, and
the latter is for the sequence of implementation objects. The
current implementation is assigned to the first element of the
vector. The method currentImplOf() returns the first ele-
ment, and changeImpl() changes the order of elements in
the vector. To add an implementation object, the method
addImpl() is used, which is prepared for every type of
metaobject.

Mediator provides the following benefits for OpenWeb-
Server:
• Encapsulation of the interactions between metaobjects

• Loose connections between metaobjects and simplified
protocols between them

• Centralized control for metaobjects

Mediator+Observer: Propagating the Change of Metaob-
jects — Decoupling a metaobject and its implementations caus-
es the changes in each metaobject to be localized when the
metaobject dynamically alters its implementations. Such
changes, however, will occasionally affect other metaobjects
and require the event to be transferred to them. For example,
a change in the implementation of the Protocol metaobject
requires reconfiguration of RequestHandler . Therefore,
MetaSpace must propagate change events to the metaobjects
that are interested in the change. Every metaobject should not
know the metaobjects that depend on its change.

In this situation, Observer [3] can be used for metaobject-
mediator communication. This pattern encapsulates the inter-
actions between objects by using a subject to store the state
information for observer objects. Figure 7 shows that metaob-
jects (and their implementations virtually) are observers of
MetaSpace. Observable is a subject class, and Observer
is an observer interface class. Whenever the configuration of a
metaobject changes, MetaSpace propagates the event to
other metaobjects using its method notifyObservers() .
Metaobjects responds to the event with update(). Mediator
is also an observer for SysController , because SysCon -
troller sends the system status to MetaSpace .

SysController , MetaSpace , and some metaobjects are
usually executed on different threads. Therefore, it is possible
to cause deadlock if an Observable issues a change notifica-
tion in a thread while an Observer is trying to check the
Observable ’s instance variable. To avoid the potential dead-
lock, MTObservable is introduced (Fig. 7). It uses Notifier
to issue the event notification in a new thread. A Notifier is
created for a single notification to an observer. This concur-
rent variant of Observer is borrowed from [5]. Note that

■ Figure 6. The runtime object structure in the Mediator-based
metalevel. Here, three metaobjects interconnect indirectly via
MetaSpace .

aMetaSpaceaLogger aRequestHandler

anAcceptor

■ Figure 7. A refined relationship for event notification between metaobjects and MetaSpace with Observer.

addObserver(o:Observer):void
clearChanged():void
countObservers():int
deleteObserver(o:Observer):void
deleteObservers():void
hasChanged():boolean
notifyObservers():void
notifyObservers(arg:Object):void
setChanged():void

observers:Vector

depends on

uses

1 *

implements

Observable

Notifier(subj:Observable,o:Observer)
run():void

Notifier

update(o:Observable,arg:Object):void

<<inferface>>
Observer

reify()nofityObservers(arg:Object):void

MTObservable

SysController MetaSpace MetaObject

IEEE Communications Magazine • April 1999 51

Observable and Observer are not those in the
java.util package, because the instance variable
observers of Observable in JDK is private instead of
protected; thus, it cannot be used from MTObservable .

Observer provides the following benefits for Open-
WebServer:
• Loose coupling between metaobjects and the mediator
• Centralized control to propagate the change events
• Simplified and more abstract protocol between the

mediator and metaobjects

DESIGN PATTERNS USED FOR UTILITY OBJECTS
OpenWebServer provides supplemental utility objects
that allow the asynchronous I/O capability used by a
concurrency policy called single-threaded with I/O multi-
plexing (described later). These objects are plugged into
a Java package handling I/O streams named java.io .
This package uses Decorator [3]. Figure 8 shows that
AsyncInputStream and NonBlockingStream are
derived from java.io.FilterInputStream . The dif-
ference in these classes is whether the method avail -
able() of java.io.InputStream is used or not. This
method returns the number of bytes that can be read
from the stream without blocking. NonBlockingStream
precedes all read*() methods with a call to avail -
able() to ensure that there are data available. The
method available() , however, does not work well with cer-
tain mechanisms like the network socket, and read() may
not block if available() returns 0 [6]. AsyncInputStream
reports the correct number of bytes that can actually be read
asynchronously without using the derived available() . It
can get available data in a nonblocking manner by spawning a
thread that calls blocking read() exclusively.

APPLICATIONS
Our first application is to support dynamic reconfiguration of
concurrency policy. OpenWebServer provides a series of
implementations for Acceptor , and can tune the policy at
runtime. It supports the following policies:
• Process per request: A simple model to implement, but

resource-intensive and requires too much overhead.
• Process pool: Alleviates the overhead in the above fork-

ing model; requires mutual exclusion.
• Thread-per-request: Much faster than the forking policy.

However, it is not portable for different platforms.
• Thread-per-session: Less resource-intensive than the

thread-per-request policy. However, it requires that end-
points use HTTP 1.1 or that the server detect the loca-
tion of clients for every incoming request.

• Thread pool: Alleviates the overhead of the threading
policy; requires mutual exclusion.

• Single-threaded I/O multiplexing: Conserves resources
and is highly portable; also has less overhead. However,
it is fault-sensitive, and the number of simultaneous con-
nections is limited.
For example, OpenWebServer can start as a single-thread-

ed server with I/O multiplexing, and then change itself into a
threaded server when the workload (i.e., the access rate) of
the server exceeds the predefined threshold.

The second application is dynamic adaptation of communi-
cation protocols. OpenWebServer provides configurations for
HTTP 0.9, 1.0, and 1.1 as implementation classes of Protocol .

OpenWebServer also has application-level components.
We have prepared a CGI capability as an implementation
class for ExecManager .

Also, it has been integrated with a computer-supported

collaborative work (CSCW) environment where the software
design information is shared within the distributed develop-
ment team [7]. OpenWebServer prepares an implementation
for ContentFinder , which finds a requested Extensible
Markup Language (XML) document. It also provides utility
objects that parse Hypertext Markup Language (HTML)/XML
documents, create their syntax trees, and retrieves elements
and attributes in the parsed tree.

The personalization service of HTML/XML documents is
implemented with OpenWebServer [8]. The dynamic genera-
tion of document presentation is performed based on the con-
text of client-side environment, users, and user behaviors. The
implementations for RequestHandler , ContentFinder , and
CacheManager are provided for this purpose.

Our last application is to integrate OpenWebServer with
the Document Object Model (DOM) interface and CORBA
[7]. DOM is a standard of the World Wide Web Consortium,
which provides a series of interfaces for accessing and manip-
ulating XML documents.

DISCUSSION AND RELATED WORK
To evolve the metalevel of OpenWebServer, metaobjects
should be fine-grained and blackbox so that they are plug-
compatible each other. Evolving Framework [9] is a pattern
language, a set of patterns that describes how to start building
a reusable framework, refactor it and support the develop-
ment process with appropriate tools. It includes a pattern,
Three examples, which should be applied to the development
of a framework at first. This pattern enables a developer to
find hidden abstractions and rebuild proper abstractions by
developing at least three applications. We have developed six
applications, as described earlier, and have tried to be sure
the metalevel contains proper abstractions (i.e., metaobjects).
We plan to develop other applications that are even more dif-
ferent from previous ones. Evolving Framework also includes
Hot spots, a pattern to identify hot spots and encapsulate
them with design patterns. Hot spots are the aspects of a
problem domain that must be kept flexible. In OpenWebServ-
er, a series of metaobjects represent hot spots and encapsulate
some types of changes. Developing its subsequent applications

■ Figure 8. AsyncInputStream and NonBlockingStream are used
for the asynchronous I/O capability. They are plugged into the Decora-
tor class structure.

read*()

NonBlockingInputStream

read*()

DataInputStream

FilterInputStream

available():int

InputStream

AsynchInputStream(in:InputStream)
read():void
read(b:byte[]):int
read(b:byte[],off:int,len:int):int
putChar(c:byte):void
getChar():byte
getChars(chars:int):byte[]
skip(n:long):long
available():int
run():void

AsyncInputStream

IEEE Communications Magazine • April 199952

would allow us to find hidden hot spots and refine the meta-
level. Currently, we are applying Fine-grained objects and
Black-box framework.

Despite its flexibility, Reflection has some liabilities [1]:
• Modifications at the metalevel may cause damage: The

robustness of a metalevel is quite important, because
incorrect modifications of the metalevel may cause seri-
ous damage to the system. The current OpenWebServer
cannot detect potential errors that might be caused by
the change specifications. Metalevels that allow the safe
deletion of metaobjects are of particular interest.

• Increased number of components: The greater the num-
ber of aspects defined at the metalevel, the greater the
number of metaobjects. This may add unnecessary com-
plexity for a simple Web server and increase the difficul-
ty of maintaining the metalevel. We are investigating a
mechanism that keeps the metalevel lightweight by allow-
ing the safe deletion of metaobjects.

• Lower efficiency: Reflective systems are slower than non-
reflective systems, because a single task requires interac-
tion between the baselevel and metalevel. Thus,
OpenWebServer is slower than static and monolithic
servers. However, we can adjust the trade-off between
dynamic adaptability and performance with the mecha-
nism of lazy reification.

CURRENT PROJECT STATUS AND FUTURE WORK
The current OpenWebServer includes eight metaobjects, 29
implementation objects, and 30 utility objects. It was initially
implemented with the Python programming language and
later with Java. We are investigating other languages to illus-
trate that the architectural design of OpenWebServer does
not depend on a specific language.

As for the metalevel in OpenWebServer, we are aggres-
sively making metaobjects fine-grained. At present, we are
dividing Acceptor into different metaobjects that deal with
concurrency and I/O, as described in [10], because the current
Acceptor is somewhat coarse. Also, we are experimenting
with an alternative mechanism to coordinate metaobjects. As
described earlier, OpenWebServer incorporates some design
patterns to achieve system evolution. However, composing
and coordinating metaobjects to introduce new system behav-
ior requires precise knowledge of the interfaces and imple-
mentations of all the metaobjects. Few methodologies have
been proposed for metaobject composition. We are develop-
ing a framework that enables the relationships between base-
level and metalevel as well as among metaobjects to be more
configurable, and to hide the details of the coordination pro-
cess. We are particularly interested in the deletion of metaob-
jects from the metalevel. The deletion of metaobjects often
brings unexpected fatal errors, while the addition of metaob-
jects can be handled seamlessly. Our goal is to provide a high-
ly scalable metalevel.

We are also developing applications for OpenWebServer
to demonstrate the power of its metalevel and improve it. We
plan to introduce additional communication protocols such as
Lightweight Directory Access Protocol and Simple Network
Management Protocol. We also plan to provide real-time

streaming functionality for continuous media using Real-time
Transport Protocol or Real-Time Streaming Protocol. New
underlying environments of OpenWebServer are also planned
including CORBA, embedded environments, and real-time
operating systems.

CONCLUSION
This article addresses how Web servers can meet diverse
requirements and describes the advantage of using software
patterns that make them adaptable and configurable. We use
Reflection, Singleton, Bridge, Mediator, Observer, and Decorator
to achieve it. With these patterns, OpenWebServer makes its
aspects open-ended for extension, and allows itself to continu-
ally evolve beyond the static and monolithic servers of today.
The information on our project is maintained at www.yy.
cs.keio.ac.jp/~suzuki/project/aisf/. The original version of this
article can be also found at this URL, which does not remove
some sentences, figures, and references due to editorial limits.

ACKNOWLEDGMENTS
We would like to thank Linda Rising, Haruo Akimaru, and
Shigeki Yamada for their invitation to this special issue. We are
also grateful to Mike Duell, Jeff Garland, and John Goodsen
for their helpful comments and suggestions for earlier drafts.

REFERENCES
[1] F. Buschmann et al., A System of Patterns: Pattern-Oriented Software

Architecture, Wiley, 1996.
[2] J. Suzuki and Y. Yamamoto, “Building an Adaptive Web Server with a

Meta-Architecture: AISF approach,” Proc. SPA ’98, Mar. 1998.
[3] E. Gamma et al., Design Patterns: Elements of Reusable Object-Oriented

Software, Addison-Wesley, 1995.
[4] J. McAffer, “Engineering the Meta Level,” Proc. Reflection ’96, 1996.
[5] D. Lea, Concurrent Programming in Java: Design Principle and Patterns,

Addison-Wesley, 1997.
[6] S. Oaks and H. Wong, Java Threads, O’Reilly, 1997.
[7] J. Suzuki and Y. Yamamoto, “Toward the Interoperable Software Design

Models: Quartet of UML, XML, DOM and CORBA,” submitted to IEEE
ISESS ’99, 1999.

[8] J. Suzuki and Y. Yamamoto, “Document Brokering with Agents: Persona
Approach,” Proc. WISS ’98, Dec. 1998.

[9] D. Roberts and R. Johnson, “Patterns for Evolving Frameworks,” Pattern
Languages of Program Design 3, Addison-Wesley, 1998.

[10] J. C. Hu and D. C. Schmidt, “Developing Flexible and High-Performance Web
Servers with Frameworks and Patterns,” ACM Comp. Surveys, May 1998.

BIOGRAPHIES
JUNICHI SUZUKI [M] (suzuki@yy.cs.keio.ac.jp) received B.S. and M.S. degrees
in computer science from Keio University, Japan. He is currently completing
his Ph.D. degree at the Department of Computer Science at Keio University.
His research interests include object-oriented patterns and frameworks,
reflection, object-oriented development methodology, distributed object
computing, intelligent user interface, agent communication, and computa-
tional biology. He is a member of ACM, IPSJ, and JSSST.

YOSHIKAZU YAMAMOTO [M] (yama@cs.keio.ac.jp) received B.S., M.S., and
Ph.D. degrees in administration engineering from Keio University, Tokyo. He
is currently an associate professor in the Department of Computer and
Information Science at Keio University. He worked at Linkoping University,
Sweden, as a visiting professor from 1981 to 1983. His current research
interests include distributed discrete event simulation and modeling, OOP,
agent programming, intelligent interface, and documentation. He is a
member of ACM and IPSJ, and also the board of directors of JSSST.

