
1782
IEICE TRANS. INF. & SYST., VOL.E84–D, NO.12 DECEMBER 2001

PAPER

Biologically-Inspired Autonomous Adaptability in a

Communication Endsystem: An Approach Using an

Artificial Immune Network∗

Junichi SUZUKI†, Nonmember and Yoshikazu YAMAMOTO††, Regular Member

SUMMARY This paper describes the adaptability of com-
munication software through a biologically-inspired policy coor-
dination. Many research efforts have developed adaptable sys-
tems that allow various users or applications to meet their spe-
cific requirements by configuring different design and optimiza-
tion policies. Navigating through many policies manually, how-
ever, is tedious and error-prone. Developers face the significant
manual and ad-hoc work of engineering an system. In contrast,
we propose to provide autonomous adaptability in communica-
tion endsystem with OpenWebServer/iNexus, which is both a
web server and an object-oriented framework to tailer various
web services and applications. The OpenWebServer’s modular
architecture allows to abstract and maintain a wide range of as-
pects in a HTTP server, and reconfigure the system by adding,
deleting, changing, or replacing their policies. iNexus is a tool
for automated policy-based management of OpenWebServer. Its
design is inspired by the natural immune system, particularly
immune network, a truly autonomous decentralized system. iN-
exus inspects the current system condition of OpenWebServer
periodically, measures the delivered quality of service, and se-
lects suitable set of policies to reconfigure the system dynamically
by relaxing constraints between them. The policy coordination
process is performed through decentralized interactions among
policies without a single point of control, as the natural immune
system does. This paper discusses communication software can
evolve continuously in the piecemeal way with biological concepts
and mechanisms, adapting itself to ever-changing environment.
key words: system adaptability, self-configuring system, reflec-
tive system, artificial immune system, Internet server

1. Introduction

The communication system like web servers and mid-
dleware has emerged as an important architectural
component in building electronic commerce. However,
the design, optimization and deployment of communi-
cation system are still hard while computing power and
network bandwidth have increased dramatically. It has
a remarkably rich set of options, or policies, and no sin-
gle policy fits all applications or environments. For ex-

Manuscript received December 6, 2000.
Manuscript revised July 3, 2001.

†The author is with the Department of Information and
Computer Science, University of California, Irvine, CA,
92697–3425, USA.

††The author is with the Department of Information and
Computer Science, Keio University, Yokohama-shi, 223–
8522 Japan.

∗This work has been supported in part by the Japan
Society for the Promotion of Science (Fundamental research
(C)(2) 12680359).

ample, available policies for concurrency and I/O event
dispatching depend on the type of underlying OS and
networking facility, and their optimal policies vary with
system’s current workload. A system’s preferred set of
policies also varies with its goal, current system condi-
tion and application requirements. For instance, differ-
ent set of policies for request processing, caching, log-
ging and data transfer should be chosen depending on
whether deploying a high performance server on a pow-
erful workstation or an embedded server on a network
appliance with limited available resources.

Therefore, it is essential for communication system
to have an open-ended framework that allows configur-
ing its optimal setting out of feasible policies. The ex-
istence of all the feasible policies ensures that systems
can be tailored to meet their users’ or applications’ re-
quirements. It is tedious, error-prone and economically
expensive, however, to understand the tradeoffs among
alternative policies and navigate through them man-
ually. Developers face the significant manual efforts
of engineering a system, resulting in ad-hoc solutions.
Such systems are often hard to maintain, customize and
tune, since much of the engineering tasks are spent just
for trying to get the system operational.

A key observation to the current and near future
communication systems is that autonomous adaptabil-
ity is a unifying theme on which networking facilities
and applications can be constructed. Communication
endsystems should autonomously facilitate both static
adaptability (e.g. bindings of common operations to
high performance mechanisms of the native OS) and
dynamic adaptability (e.g. altering runtime behavior
on the fly based on present load condition). The au-
tonomous adaptability can increase system’s scalability
and availability as well as frees developers from manual
reconfiguration work.

This paper describes OpenWebServer/iNexus,
which is our research vehicle for investigating and
demonstrating autonomous adaptability in communi-
cation endsystem. OpenWebServer is both an adaptive
web server and an object-oriented framework for build-
ing optimally configured Internet servers [1]–[3] (see
Fig. 1). It abstracts a series of aspects, e.g. concurrency,
I/O event dispatching, protocol parsing, connection
management, caching, logging, service redundancy, etc,



SUZUKI and YAMAMOTO: BIOLOGICALLY-INSPIRED AUTONOMOUS ADAPTABILITY IN A COMMUNICATION ENDSYSTEM
1783

Fig. 1 OpenWebServer/iNexus architecture.

and maintains various policies for them. iNexus is an
autonomous policy coordination facility embedded in
OpenWebServer (Fig. 1). It allows OpenWebServer to
continuously adapt itself to a changing environment by
determining which policy should be changed and how
policies are re-combined so that it can keep performing
well [4], [5]. iNexus is designed as a self-organising facil-
ity inspired by a biological system, because the biolog-
ical system is truly adaptive and scalable. We believe
that communication system should have the adaptabil-
ity feature through autonomous system reconfiguration
as a built-in mechanism, and that the self-adaptation
can be overcome by adopting key biological principles
and mechanisms. The structure and behavior of iN-
exus are modeled with the principles and mechanisms
in the natural immune system. In iNexus, the policy
coordination process is performed through decentral-
ized interactions among policies without a single point
of control, as the natural immune system does. Our
goal is to demonstrate that a communication endsys-
tem augmented by an artificial immune system can ef-
fectively evolve in an ever-changing environment in the
autonomous manner.

The remainder of this paper is organized as follows;
Section 2 compares with existing related work. Sec-
tion 3 overviews the natural immune system. Section 4
describes the architecture and mechanism of OpenWeb-
Server/iNexus. Section 5 illustrates some experiment
results. In Sects. 6 and 7, we conclude with a note on
the current status of our project and future work.

2. Related Work

Software adaptation has been studied by various re-
search efforts such as computational reflection [6], open
implementation [7], adaptive programming [8], aspect-
oriented programming [9], component composition [10],
and collaboration-based design [11]. In every approach,
there is an entity representing each policy. For example,
it is called metaobject in the context of reflection, con-
cern in the principle of separation of concern [12], com-
ponent or plug-in in component composition, and as-

pect in aspect-oriented programming. Applications can
adapt to a given requirement by adding, customizing or
replacing the entities. In OpenWebServer/iNexus, such
an entity is called metaobject. In terms of reflection and
aspect-oriented programming, this paper addresses the
process to determine a strategy composing metaobjects
and weaving aspects, respectively.

Policies tend to become fine-grained in highly
adaptable systems; thereby the number of them in-
creases. However, the greater the number of policies,
the more complexity and difficulty in maintaining and
coordinating them. Fine-grained policies are often not
orthogonal with each other, but have complex con-
straints. Most of the above research efforts have not
addressed the autonomous policy coordination, i.e. the
process for inspecting the dependencies between poli-
cies and then resolving co-use/conflict constraints to
produce an better combination of feasible policies. The
simplest and dominant coordination strategy is writing
a long sequence of hard-written if/case statements in
a program. Another strategy is using the multiple in-
heritance in an object oriented language. Both suffer
from combination explosion of policies, and cost lots of
labor for configuring if/case statements or inheritance
relationships. They are also fragile for changing pol-
icy specifications. In existing work, it is often ad-hoc
and has not been addressed at large how to coordinate
policies consistently throughout the system’s lifetime.
OpenWebServer/iNexus provides a flexible way to man-
age a wide range of policies so that adding and deleting
policies do not affect the other policies. It also deter-
mines the most appropriate set of policies suited to a
given situation in the dynamic and autonomous fashion
by relaxing constraints between them.

Compared with quality of service (QoS) manage-
ment in the field of computer network [13], our work
focuses on the application-level QoS policy coordina-
tion within a communication endsystem. We do not
address QoS in the transport/network level.

As for the adaptability of HTTP server, JAWS [14]
allows developers to choose policies in order to deploy
high performance servers. However, JAWS cannot co-
ordinate different competitive policies autonomously;
it is the responsibility for developers to do that man-
ually. In contrast, OpenWebServer/iNexus eliminates
the chaotic manual reconfiguration work from develop-
ers through autonomous adaptation.

Researchers in the fields of artificial life [15], [16]
and complexity [17] have studied large scale biologi-
cal systems and the behaviors of simple entities within
those systems. The work has been concentrated on im-
itating life in a computer and understanding the basic
processes. OpenWebServer/iNexus applies the findings
of those research efforts, particularly in artificial im-
mune system, to a new domain: the design of commu-
nication endsystem that enables the construction and
deployment of adaptive, scalable and available network



1784
IEICE TRANS. INF. & SYST., VOL.E84–D, NO.12 DECEMBER 2001

applications. Our work is not the first to use metaphors
in the immune system. [18] and [19] used the immune
system as a model for network security and intrusion
detection. While their efforts parallel ours, OpenWeb-
Server/iNexus focuses on policy coordination to control
the endsystem’s configuration.

3. Overview of Natural Immune System

The immune system is a subject of great research in-
terests because it provides powerful and flexible infor-
mation processing capabilities as a decentralized intel-
ligent system. It has some important computational
aspects such as self/non-self discrimination, learning,
memory, retrieval and pattern matching. There ex-
ists several theoretical and software models to explain
immunological phenomena. They have been used for
machine learning, computer security, fault detection,
change management, image processing, searching and
robot navigation [20].

The immune system can discriminate between for-
eign molecules (i.e. non-self) and the body’s own cells
and proteins (i.e. self). Once non-self is recognized, the
immune system enlists the participation of a variety of
cells and molecules to mount an appropriate response
in order to eliminate or neutralize it. The immune
response involves antigen-presenting cells, lymphocytes
and antibodies. Lymphocytes are one of many types of
white blood cells, and two major population of lympho-
cytes are B lymphocytes (or B cells) and T lymphocytes
(or T cells). B cells have receptors on their surface,
which can recognize antigens invading a human body,
e.g. viruses, and then produce antibodies specific to the
recognized antigen. The key portion of antigen that is
recognized by the antibody is called epitope, which is
the antigen determinant (see Fig. 2). Paratope is the
portion of antibody that corresponds to a specific type
of antigens. Once an antibody combines an antigen via
their epitope and paratope, the antibody start to elim-
inate the antigen. Each type of antibody has its own
antigenic determinant, called idiotope. This means an
antibody is recognized as an antigen by another anti-
bodies.

Based on this fact, Jerne proposed the concept of
the immune network, or idiotypic network [21], which
states that antibodies and lymphocytes are not iso-
lated, but they are communicating with each other
(Fig. 2). The idiotope of an antibody is recognized
by another antibody as an antigen. This network is
formed on the basis of idiotope recognition with the
stimulation and suppression chains among antibodies.
Thus, the immune response eliminating foreign anti-
gens is offered by the entire immune system (or, at
least, more than one antibody) in a collective manner,
although the dominant role may be played by a sin-
gle antibody whose paratope fits best with the epitope
of the specific invading antigen. The immune network

Fig. 2 Interactions in the immune network.

also helps to keep the quantitative balance of antibod-
ies. Through stimulation/suppression interactions, the
populations of specific antibodies increase very rapidly
following the recognition of any foreign antigen and, af-
ter eliminating the antigen, decrease again. Performed
based on this self-regulating mechanism, the immune
response has an emergent property through many lo-
cal interactions. The structure of immune network is
not fixed, but varies continuously according to dynamic
changes of environment. The immune system maintains
an appropriate set of cells so that the system can adapt
to environmental changes in the piecemeal way.

4. OpenWebServer/iNexus

This section describes the design of OpenWebServer
kernel and iNexus artificial immune network. Both
OpenWebServer and iNexus are developed with Java.

4.1 OpenWebServer Kernel Architecture

OpenWebServer is an object-oriented framework to tai-
lor Internet services or applications, which employs
a reflective meta-architecture [6]. It contains a met-
alevel(s) that specifies a wide range of aspects, i.e.
structure and/or behavior, of web servers using fine-
grained metaobjects. The system’s configuration and
behavior can be altered by adding, deleting, changing
or replacing metaobjects. The kernel components are
organized as shown in Fig. 3.

SysController starts the system by creating ap-
propriate metalevels and metaobjects. This object is
also responsible for stopping and resuming the sys-
tem. MetaSpace represents a metalevel. It refer-
ences every metaobject. Baseobject is the root object
that all the components implementing a service logic
or application derives from. Baseobjects can access
MetaSpace when communicating with their metalevel.
MetaObject specifies the interfaces for every metaob-
ject. MetaObjectImpl and its subclasses provide the
implementations of a metaobject. Each metaobject
has one or more implementations that perform the
same functions but provide different computational al-
gorithms, or policies (Fig. 4). To specify metaobjects,



SUZUKI and YAMAMOTO: BIOLOGICALLY-INSPIRED AUTONOMOUS ADAPTABILITY IN A COMMUNICATION ENDSYSTEM
1785

Fig. 3 OpenWebServer kernel components.

Fig. 4 Metaobjects and their implementations.

we identified services and entities by looking for typ-
ical events or constructs found during the execution
of web servers. Abstracting these events and con-
structs, OpenWebServer provides the following metaob-
jects and their implementations by default:

• Initializer initializes and reconfigures the sys-
tem. Its implementations include Static-
Initializer, which configures the system when
it starts, and DynamicInitializer, which can re-
configure the system at runtime.

• IO defines the I/O dispatching policy. Its imple-
mentations include SyncIO and AsynchIO.

• Acceptor waits for and accepts incoming re-
quests. After accepted, a request is processed by
RequestHandler. ThreadPerRequestAcceptor,
ThreadPerConnectionAcceptor, and Reactive-
Acceptor are its implementations (Fig. 4). They
vary concurrency policy.

• RequestHandler encapsulates the different poli-
cies for interpreting a request. Its implemen-
tations include StandAloneRequestHandler and
ReverseProxyRrequestHandler, which redirects
incoming requests to the appropriate back-end
replicated server by rewriting the original URL and
HTTP headers (Fig. 4).

• Protocol defines protocol specific information and

provides operations to parse its header and con-
tents. HTTP10, HTTP11, HTTP11Mux, and SOAP are
the default set of implementations.

• ContentFinder finds and obtains a target re-
source. Its implementations are HTMLContentFin-
der and XMLContentFinder.

• Cache defines caching policy. Its implementations
include LRUCache and FIFOCache (Fig. 4).

• Logger defines logging policy. Its implementations
include OnDemandLogger, which performs a log-
ging operation whenever a request is processed,
and OnCommandLogger, which performs it in every
certain period.

• Connection defines the connection retention pol-
icy. Its implementations include Transient-
Connection and PersistentConnection, which is
a long-lived session allowing multiple requests to
be sent over the same connection.

• Redirector defines the policy for redirect-
ing requests to a back-end replicated server(s).
Its implementations include RandomRedirector,
PriorityDrivenRedirector , and LatencyDri-
venRedirector.

• ExecManager provides interfaces to execute ex-
ternal entities like CGI scripts, Servlet and Java
Server Pages.

As depicted in Fig. 4, MetaSpace aggregates all
the metaobject implementations so that it can change
the metaobject’s behavior dynamically. For example,
the concurrency policy can be changed by replacing
Accepter’s implementation. Each metaobject knows
only MetaSpace, not any other metaobject, thereby re-
ducing the number of interconnections. This means
that both a metaobject and its implementations should
be independently extensible; changes in an implemen-
tation does not have no impact on clients of its in-
terface. MetaSpace facilitates loose coupling among
metaobjects by acting as an intermediary. The mod-
ular architecture allows OpenWebServer to maintain a
wide range of fine-grained metaobjects and to change
their implementations dynamically. The detail design
of OpenWebServer is described in [1].

4.2 iNexus Design

iNexus is a tool for automated policy-based manage-
ment of Web services and applications. It collects per-
formance and resource usage data of OpenWebServer
in every certain period, measures the delivered qual-
ity of service, and selects suitable set of policies to
reconfigure the system dynamically. In the selection
process, iNexus coordinates a series of policies, each
of which is represented by a metaobject implementa-
tion object, by relaxing the constraints among them.
As described earlier, iNexus applies the self-adaptation
and self-regulation mechanisms in the natural immune



1786
IEICE TRANS. INF. & SYST., VOL.E84–D, NO.12 DECEMBER 2001

Fig. 5 Antibody structure in the iNexus immune network.

Fig. 6 A sample iNexus immune network.

system. Every policy and relationship between policies
are specified in the iNexus artificial immune network.
Our artificial immune network is modeled based on the
work by Farmer et al. [22] and Ishiguro et al. [23]. iN-
exus is developed with iNet, which is an object-oriented
reusable framework for building artificial immune net-
works (see Fig. 1). [24] describes how to design iNexus
with iNet.

iNexus specifies each system’s conditions as an
antigen, e.g. the number of simultaneous network con-
nections, average size of requested files, types of oper-
ating systems, the number of available processors, and
supported types of protocols. Each policy are mod-
eled as an antibody, e.g. concurrency policies (thread-
per-request, active/passive thread pool, thread-per-
connection, etc.) and I/O event dispatching policies
(synchronous and asynchronous). Figure 5 shows the
antibody structure. The policy specification compart-
ment contains a policy ID and reference to a metaob-
ject implementation object that provides the policy.
The paratope represents a precondition under which
a certain policy is selected. The iNexus immune net-
work begins immune response when an antigen and an
antibody’s paratope are matched. The idiotope rep-
resents the references to other stimulating antibodies
with degrees of the stimuli (or affinities). iNexus sup-
ports a series of paratopes and policies shown in Ta-
ble 1 in order to create antigens and antibodies. Ma-
jor IDs of paratope and policy represents categories of
system condition and policy respectively. Minor IDs
of paratope and policy represents specific system con-
dition and policy. We can produce high-throughput,
highly available, fault tolerant or minimum footprint
servers by tuning the combination of these antibodies
(i.e. policies) dynamically or statically. Antibodies are
linked with each other based on the stimulation and
suppression relationships. The relationship is weighted
according to constraints between policies. When two
policies must not be used together, there should not be

Fig. 7 A generalized view of iNexus immune networks.

a relationship between them. For example, the stan-
dalone request handling policy does not have a rela-
tionship with any redundancy policies.

Figure 6 shows a sample immune network. This
network is used to determine a suitable concurrency
policy according to a current system condition. It con-
tains four antibodies representing three kinds of poli-
cies; single-threaded reactive, thread-per-request and
thread-per-connection. Antibody 1 represents that the
single-threaded reactive policy is activated when the av-
erage size of requested files is relatively small. However,
the thread-per-request policy is activated if the number
of simultaneous connections grows, because antibody 1
stimulates antibody 3. Inversely, the reactive policy
is suppressed by the thread-per-request policy, if the
server has to handle many connections even when the
average file size is small. Now, suppose that Open-
WebServer (1) transfers relatively small size of files,
(2) handles relatively many connections, and (3) sup-
ports the HTTP version 1.1. In this situation, these
three antigens stimulate antibodies 1, 2 and 4 simul-
taneously. The populations of the antibodies increase.
However, each population varies through the stimulat-
ing/suppressing interactions indicated by arrows be-
tween antibodies. As a result, the population of the
antibody 2, i.e. thread-per-connection policy, would in-
crease, and then it would be selected by the immune
network. In the case where OpenWebServer (1) trans-
fers relatively small size of files, (2) does not have to
handle many connections, and (3) supports the HTTP
version 1.1, antibody 1, i.e. the reactive policy, would
be selected in the same way.

Figure 7 shows a generalized view of an antibody
within an immune network. The antibody i stimulates
M antibodies and suppressesN antibodies. mji and mik

denote affinities between antibody j and i, and between
antibody i and k, respectively. The affinity means the
degree of stimulation or suppression. mi is an affin-
ity between an antigen and antibody i. The antibody
population is represented by the concept of concentra-
tion. The concentration of antibody i, denoted by ai,
is calculated with the following equations.



SUZUKI and YAMAMOTO: BIOLOGICALLY-INSPIRED AUTONOMOUS ADAPTABILITY IN A COMMUNICATION ENDSYSTEM
1787

Table 1 Supported types of antibodies in OpenWebServer/iNexus.

Paratope major ID Paratope minor ID Policy major ID Policy minor ID
FILE SIZE L, M, S CONCURRENCY REACTIVE

NO OF CONNECTIONS M, A, F THREAD PER REQUEST
NO OF CPU M, S ACTIVE THREAD POOL

OS THREAD SUPPORT T, F PASSIVE THREAD POOL
AVAILABLE THREADS M, A, F THREAD PER CONNECTION

SUPPORTED PROTOCOL HTTP10, HTTP11 IO SYNCH
SLAVE HOSTS AVAILABLE T, F ASYNCH

NO OF THREADS M, A, F CACHING LRU
FIFO

LOGGING ON DEMAND
ON COMMAND

CONNECTION TRANSIENT
PERSISTENT

PROTOCOL HTTP10
HTTP11

REQUEST HANDLING STANDALONE
REDIRECT

REDUNDANCY RANDOM
PRIORITY DRIVEN
LATENCY DRIVEN

Ai(t) = Ai(t − 1) +

(∑N
j=1(mjiaj(t − 1))

N

−
∑M

k=1(mikak(t−1))
M

+mi−d

)
ai(t−1)∆t

(1)

ai(t) =
1

1 + exp(0.5− Ai(t))
(2)

In Eq. (1), the first and second terms in a big
bracket of the right hand side denote the stimulation
and suppression from other antibodies. mji and mik

are positive values between 0 and 1. mi is 1 when anti-
body i is stimulated directly by an antigen, otherwise 0.
d denotes the dissipation factor representing the anti-
body’s natural death. This value is 0.1. The initial con-
centration value for every antibody, i.e. ai(0), is 0.01.
Equation (2) is the function that is used to squash the
parameter Ai(t) calculated by the first equation, be-
tween 0 and 1.

Every antibody’s concentration is calculated 30
times repeatedly. This times are adopted from exist-
ing simulation experiences [23]. If no antibody exceeds
the predefined threshold (0.7) during the 30 calcula-
tion steps, the antibody of the highest concentration
is selected, i.e. winner-tales-all selection. If an anti-
body’s concentration exceeds the threshold, an anti-
body is selected based on the probability proportional
to the current concentrations, i.e. roulette-wheel selec-
tion. An antibody whose concentration is below 0.1 is
never selected.

For OpenWebServer to evolve effectively in an
ever-changing environment, iNexus can re-arrange the
immune network structure at run-time by changing
affinity values. They are modified with the reward and
penalty reinforcement signals as shown in the Eq. (3),

either when concentrations of two arbitrary antibodies
exceed the predefined threshold (0.7) during the 30 cal-
culation steps described earlier, or when one or more
antigens stimulate two antibodies simultaneously. In
these equations, T

Abi
p and T

Abi
r denotes the number of

times of receiving penalty and reward signals when Abi

is selected. T
Abi

Abj
denotes the number of times when

both Abi and Abj have stimulated by specific antigens.
This mechanism allows an iNexus artificial immune net-
work to learn from results of OpenWebServer’s behav-
ior. Note that this learning mechanism can even work
under the situation where the immune network is not
structured, i.e. the idiotope of every antibody is initially
blank.

mij =
T

Abi
p + T

Abj
r

T
Abi

Abj

(3)

5. Results of Adaptation Experiments

We have conducted some experiments to vali-
date our policy coordination method in OpenWeb-
Server/iNexus. We built an artificial immune network
incorporating 20 paratopes and 20 policies listed in
Table 1. It defines 76 antibodies and 146 stimula-
tion/suppression relationships. In this setting, we con-
ducted three kinds of experiments: static adaptability
test, benchmarking test of different configurations, and
dynamic adaptability test. The initial conditions in
all the experiments were same. Every relationship was
manually configured with initial affinity (mij) of 0.5.

In our first experiment, we evaluated the system’s
static adaptability by observing which antibodies iN-
exus selects according to an underlying system plat-
form when OpenWebServer starts up. For example,
when OpenWebServer is executed on a uni-processor



1788
IEICE TRANS. INF. & SYST., VOL.E84–D, NO.12 DECEMBER 2001

Fig. 8 Comparative performance for OpenWebServer.

platform running an operating system that supports
threads and asynchronous I/O, iNexus chose the single-
threaded reactive policy with synchronous I/O at first,
instead of an multi-threaded policy with asynchronous
I/O. Our artificial immune network is configured to se-
lect policies conservatively, and scale to more sophisti-
cated ones once the current policies are not appropri-
ate. In a multi-processor platform, the multi-threaded
concurrency policies had higher priorities than a single-
threaded concurrency model. In the situation that the
system runs on an operating system that does not sup-
port threading, the single-threaded reactive policy was
selected independently of the underlying CPU architec-
ture. With several experiments in addition to the above
ones, iNexus demonstrated it can select reasonable an-
tibodies statically at the system’s startup time.

In the second experiment, we conducted a compar-
ative performance benchmarking experiment using dif-
ferent set of configurations. Figure 8 depicts how Open-
WebServer performs well in terms of server throughput
as the number of simultaneous connections increases
from 1 to 50. We conducted systematic benchmark-
ing of different configurations of OpenWebServer un-
der different server load conditions. Then, we selected
the combination of features that yielded the best over-
all performance. This result shows how flexible nature
of OpenWebServer/iNexus enables it to adapt from its
baseline performance to stable high-throughput perfor-
mance. It demonstrates it is possible to improve server
performance through superior server design. A flexible
server framework like OpenWebServer need necessar-
ily not perform poorly, while a hard-coded server can
provide excellent performance. Our benchmark is con-
ducted with the standard setting of WebStone 2.5, run-
ning a Java 1.2.3 VM (from Sun Microsystems, Inc.) on
a Microsoft Windows NT Server 4.0 SP5 (Intel Pentium
II 400MHz MMX, 256MB RAM) with idle 10Mbps
Ethernet connection. This testbed configuration was
also used for the third experiment.

Fig. 9 OpenWebServer/iNexus performance transition.

The third experiment examines system’s au-
tonomous adaptability by observing how iNexus
changes antibodies (i.e. policies) dynamically during
the system’s execution. Figure 9 shows a continuous
performance transition of OpenWebServer/iNexus us-
ing an artificial immune network. The server started
running in a default configuration (see Fig. 8). Open-
WebServer/iNexus reconfigured its own policies in ev-
ery 5 minutes; reconfiguration occurred 12 times. It re-
ceives HTTP requests through 30 simultaneous connec-
tions during the first 30 minutes, and then through 60
connections during the last 30 minutes. Figure 9 shows
OpenWebServer/iNexus dynamically reconfigured itself
to adapt the change of system environment. The au-
tonomous policy coordination allows the server to in-
crease its throughput from 30% to 90%. The average er-
ror rate (errors/sec) was stable after the number of con-
nections increased (0.008 in 30 connections and 0.012
in 60 connections). Note that the coordination process
is not performed by a single coordinator, but through
decentralized interactions among antibodies.

6. Current and Future Work

OpenWebServer/iNexus has been used as foundation
in a web content personalization service [25] and dis-
tributed collaborative environment [26]. We plan fur-
ther experiments using real world applications.

This paper focuses on the policy coordination
for critical determinants to HTTP server performance
in order to configure OpenWebServer to be a high-
throughput server. We plan to prepare different kinds
of paratopes and policies so that we can tune Open-
WebServer as a embedded thin server.

As for a mathematical model to simulate the phe-
nomena of the natural immune network, there exist
several models such as liner networks, cyclic networks,
Cayley-tree-like network and generalized shape-space
model, which are proposed by theoretical immunolo-



SUZUKI and YAMAMOTO: BIOLOGICALLY-INSPIRED AUTONOMOUS ADAPTABILITY IN A COMMUNICATION ENDSYSTEM
1789

gists. iNexus currently uses a cyclic network model.
We are now evaluating other network models in detail.
Also, we plan to incorporate some additional immuno-
logical concept, e.g. tolerance and immune memory.

7. Conclusion

This paper describes our biologically-inspired ap-
proach to design communication system that can au-
tonomously adapt to a changing environment in the
piecemeal manner. OpenWebServer/iNexus supports
autonomous policy coordination and system reconfigu-
ration as built-in mechanisms. Augmented by an artifi-
cial immune network, it can select a suitable set of poli-
cies through decentralized interactions among them.
We believe our work provides a blue print showing an
autonomous adaptation mechanism as a next logical
extension to existing adaptable systems.

References

[1] J. Suzuki and Y. Yamamoto, “OpenWebServer: An adap-
tive web server using software patterns,” IEEE Communi-
cations, vol.37, no.4, pp.46–52, April 1999.

[2] J. Suzuki and Y. Yamamoto, “Dynamic adaptation in the
web server design space using OpenWebServer,” Proc. 2nd
JSSST Systems for Programming and Applications, March
1999.

[3] J. Suzuki and Y. Yamamoto, “Building an adaptive web
server with a meta-architecture: AISF approach,” Proc. 1st
JSSST Systems for Programming and Applications, March
1998.

[4] J. Suzuki and Y. Yamamoto, “A decentralized policy co-
ordination facility in OpenWebServer,” Proc. 3rd JSSST
Systems for Programming and Applications, 2000.

[5] J. Suzuki and Y. Yamamoto, “Building an artificial immune
network for decentralized policy negotiation in a communi-
cation endsystem: OpenWebServer/iNexus study,” Proc.
4th World Multiconferences on Systemics, Cybernetics and
Informatics, July 2000.

[6] G. Kiczales, J. Rivieres, and D.G. Bobrow, The Art of the
Metaobject Protocol, MIT Press, Cambridge, MA, 1991.

[7] G. Kiczales, “Beyond the black box: Open implementa-
tion,” IEEE Software, vol.13, no.1, pp.8–11, 1996.

[8] K.J. Lieberherr, The Art of Growing Adaptive Object-
Oriented Software, PWS Publishing Company, 1995.

[9] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda C.
Lopes, J.-M. Loingtier, and J. Irwin, “Aspect-oriented pro-
gramming,” Proc. ECOOP’97, 1997.

[10] M. Aksit, K. Wakita, J. Bosch, L. Bergmans, and A.
Yonezawa, “Abstracting object-interactions using compo-
sition filters,” in Object-based Distributed Processing, ed.
R. Guerraoui, et al., 1993.

[11] M. Mezini and K. Lieberherr, “Adaptive plug-and-play
components for evolutionary software development,” Proc.
Object-Oriented Programming, Systems and Languages,
Oct. 1998.

[12] W.L. Hursch and C.V. Lopes, Separation of Concerns, TR-
NU-CCS-95-03, Northeastern University, 1995.

[13] T.A. Campbell, “QoS architectures,” in Multimedia Com-
munications Networks, Chapter 3, ed. M. Tatipamula and
B. Khasnabish, Artech House, 1998.

[14] D.C. Schmidt and J. Hu, “Developing flexible and high-
performance web servers with frameworks and patterns,”

ACM Computing Surveys, May 1998.
[15] R. Collins and D. Jeffereson, “AntFarm: Towards simulated

evolution,” Proc. Artificial Life II, 1992.
[16] M. Millonas, “Swarms, phase transitions, and collective in-

telligence,” Proc. Artificial Life III, 1994.
[17] S. Kauffman, At Home in the Universe, Oxford University

Press, 1995.
[18] J. Kephart, “A biologically inspired immune system for

computers,” Proc. Artificial Life IV, 1994.
[19] P. D’haeseller, S. Forrest, and P. Helman, “An immunologi-

cal approach to change detection,” Proc. IEEE Symposium
on Security and Privacy, 1996.

[20] D. Dasgupta, ed., Artificial Immune Systems and Their Ap-
plications, Springer, 1999.

[21] N.K. Jerne, “Idiotypic networks and other preconceived
ideas,” Immunological Review, vol.79, no.5, 1984.

[22] J.D. Farmer, N.H. Packard, and A.S. Perelson, “The im-
mune system, adaptation, and machine learning,” Physica,
D 22, vol.184, no.204, 1986.

[23] A. Ishiguro, T. Kondo, Y. Watanabe, and Y. Uchikawa,
“An immunological approach to behavior arbitration for au-
tonomous mobile robots,” Proc. International Symposium
on Artificial Life and Robotics, 1996.

[24] J. Suzuki and Y. Yamamoto, “iNet: An extensible frame-
work for simulating immune,” Proc. IEEE International
Conference on Systems, Man. & Cybern. 2000, Oct. 2000.

[25] J. Suzuki and Y. Yamamoto, “Document brokering with
agents: Persona approach,” Proc. 1998 Workshop on Inter-
active System and Software, Dec. 1998.

[26] J. Suzuki and Y. Yamamoto, “Leveraging distributed soft-
ware development,” IEEE Computer, vol.32, no.9, pp.59–
65, 1999.

Junichi Suzuki received B.S., M.S.
and Ph.D. degrees in computer science
from Keio University, Japan. He is cur-
rently a post doctoral researcher at Uni-
versity of California, Irvine. His research
interests include highly distributed sys-
tems, adaptive communication systems,
autonomous decentralized agent comput-
ing, and biologically-inspired software ar-
chitecture. He is a member of ACM,
IEEE-CS, IPSJ and JSSST.

Yoshikazu Yamamoto received B.S.,
M.S. and Ph.D. degrees in administra-
tion engineering from Keio University, To-
kyo. He is currently an associate pro-
fessor of Department of Computer and
Information Science at Keio University.
He worked at Linkoping University, Swe-
den as a visiting professor from 1981 to
1983. His current research interests in-
clude distributed discrete event simula-
tion and modeling, OOP, agent program-

ming, intelligent interface and documentation. He is a member
of ACM, IEEE-CS, IPSJ and also councilor board of JSSST.


