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Abstract—This paper studies an evolutionary algorithm to
solve a new multiobjective optimization problem, the Pickup
and Delivery Problem with Time Windows and Demands (PDP-
TW-D), which extends PDP and PDP-TW. With respect to
multiple optimization objectives, PDP-TW-D is to find a set
of Pareto-optimal routes for a fleet of vehicles in order to
serve given transportation requests. The proposed algorithm
uses a population of individuals, each of which represents a
solution candidate, and evolves them through generations to
seek the Pareto-optimal solutions with respect to given multiple
objectives. In addition to evolution, the proposed algorithm allows
individuals to learn and improve themselves in each generation
with a local search algorithm. Experimental results demonstrate
that the evolutionary and learning processes complement with
each other in the proposed algorithm and can effectively obtain
quality solutions to PDP-TW-D.

Index Terms—Evolutionary multiobjective optimization algo-
rithms, Memetic algorithms, Pickup and Delivery Problem with
Time Windows

I. INTRODUCTION

This paper formulates a new multiobjective optimization
problem, the Pickup and Delivery Problem with Time Win-
dows and Demands (PDP-TW-D). PDP-TW-D is a combina-
torial optimization problem of finding a set of optimal routes
for a fleet of vehicles in order to serve given transportation
requests. Each transportation request is defined by a pickup
location, a delivery location, goods to be transported, a pickup
time window and a delivery time window. Each of pickup and
delivery locations is required to be visited within a certain time
window by a vehicle. Each vehicle has a given capacity and
follows an assigned route (i.e., a sequence of pickup/delivery
locations) by loading goods at a pickup location and unloading
them at a delivery location. PDP-TW-D is to find the optimal
routes for vehicles with respect to multiple optimization ob-
jectives: the number of vehicles used to fulfill transportation
requests, the total distance that vehicles travel, and the total
amount of goods that vehicles transport.

In PDP-TW-D, all vehicles are required to satisfy time win-
dow constraints, precedence constraints, pairing constraints
and capacity constraints. Time window constraints enforce ve-
hicles to visit pickup and delivery locations within given time

windows. Precedence constraints deal with the restriction that
each pickup location has to be visited prior to its corresponding
delivery location. Pairing constraints restrict that one vehicle
has to do both the pickup and delivery of goods specified
in a one transportation request. Capacity constraints enforce
vehicles not to exceed its capacity by overloading goods.

PDP-TW-D extends two existing optimization problems,
the Pickup and Delivery Problem (PDP) and the PDP with
Time Windows (PDP-TW), which in turn extend the Vehicle
Routing Problem (VRP). As a variant of PDP and PDP-TW,
PDP-TW-D represents a number of logistics and transporta-
tion applications in airlift and sealift environments [1]–[7].
Other applications include parcel services, taxi dispatching [8],
shared taxi services, school bus routing, dial-a-ride services
(e.g., the transport of the elderly and handicapped among
their homes, hospitals and other locations) [9]–[12], larvicide
control program [13] and the transport of medical samples
from medical offices to laboratories.

Given the facts that PDP and PDP-TW are NP-hard [14],
PDP-TW-D is NP-hard as well. In the presence of time
windows and other constraints, it is NP-complete to even
examine the problem’s feasibility. This means that it can take
a significant amount of time, labor and costs to find the
optimal solution(s) from a huge number of possible solution
candidates. In fact, early studies in the area of PDP-TW, which
used dynamic programming [9], [10], suffered from local
optima and could solve only small-scale problem instances
where less than 10 pickup and delivery locations are involved.
Since then, various heuristic algorithms have been investigated
to solve PDP and PDP-TW; however, the majority of them
targeted small-scale problem instances as well. Currently, it is
widely known that metaheuristic algorithms are more effective
to solve larger-scale PDP and PDP-TW instances [15], [16].

This paper proposes and evaluates an evolutionary multi-
objective optimization algorithm (EMOA) as a metaheuristic
algorithm to solve PDP-TW-D. The proposed EMOA uses a
population of individuals, each of which represents a solution
candidate, and evolves them through generations to seek the
Pareto-optimal solutions with respect to given multiple ob-



jectives. In addition to evolution, the proposed EMOA allows
individuals to learn and improve themselves in each generation
with a local search algorithm. Experimental results demon-
strate that the evolutionary and learning processes complement
with each other in the proposed EMOA and can effectively
obtain quality solutions to PDP-TW-D in a relatively large-
scale problem instances that have 100 pickup and delivery
locations

II. PROBLEM STATEMENT

This paper uses the following notations to state the pickup
and delivery problem with time windows and demands (PDP-
TW-D).
• P = {1, 2, 3, ..., n} is the set of pickup nodes. D =
{n+ 1, n+ 2, n+ 3, ..., 2n} is the set of delivery nodes.
{0} denotes the depot.

• N = {1, 2, 3, ..., n} is the set of requests. A request i is
represented by a pickup node i, a delivery node i + n
and a demand qi. qi denotes the amount of goods that
are available at i to be picked up and delivered to i+ n.

• K is the set of vehicles. |K| = m. Each vehicle has its
capacity Q.

• For all nodes i, j ∈ P ∪D, dij denotes the travel distance
from i to j. tij denotes the travel time from i to j.

• Each node i ∈ P ∪ D has an associated time window
[ei, li], during which a vehicle is required to visit i to
load or unload goods. Service time si is also associated
with i. It is the time required to load/unload goods to/from
a vehicle at i. A vehicle is allowed to arrive at i before
ei; however, it needs to wait for starting to load/unload
goods until ei.

• A pickup and delivery (PD) route for a vehicle k, Rk,
is a sequence of nodes that k visits, starting and ending
with the depot. Every PD route is required to satisfy three
types of constraints: (1) capacity constraints (The amount
of goods loaded on each vehicle should not exceed the
capacity of the vehicle.), (2) time window constraints
(Each vehicle should arrive at a node before the end of its
time window.), and (3) precedence constraints (A pickup
node i should be visited before its corresponding delivery
node i+ n).

• A pickup and delivery (PD) plan is a set of PD routes,
R = {Rk|k ∈ K}. A PD plan may not fulfill all the n
requests. No redundant nodes exist in R except the depot.
(A non-depot node is not visited more than once.)

PDP-TW-D is to find the Pareto-optimal PD plans with
respect to the following three objectives.
• The number of vehicles used in a PD plan (i.e., the

number of routes in a PD plan). This objective is to be
minimized. It is computed as follows:

fvehicle = |R| (1)

• The total travel distance. This objective is to be mini-
mized. It is computed as follows:

fdistance =
∑
k∈K

∑
i∈P∪D

∑
j∈P∪D

dijxijk (2)

xijk is true (1) iff the vehicle k travels from the node i
to the node j; otherwise, xijk is false (0).

• The total demands. This objective is to be maximized. It
represents the total amount of goods that are transported
in a PD plan. It is computed as:

fdemand =
∑
k∈K

∑
i∈N

qizik (3)

zik is true (1) iff the vehicle k fulfills the request i;
otherwise, zik is true (0).

Objectives conflict with each other in PDP-TW-D. For
example, the first two objectives conflict with the third one. A
smaller number of vehicles and a shorter travel distance yields
lower total demands. On the contrary, higher total demand
yield a larger number of vehicles and a longer travel distance.

Constraint violations are computed as follows:
• Capacity violation of a vehicle k in a PD route Rk

gc(Rk) =
∑
i∈Rk

∆i (4)

∆i denotes the amount of overloaded goods on k at i.
• Time window violation of a vehicle k in a PD route Rk

gtw(Rk) =
∑
i∈Rk

|tik − li|Iik (5)

tik denotes the time when k arrives at i. Iik = 1 if tik >
li, otherwise Iik = 0.

III. RELATED WORK

Nanry and Barnes [17] is one of the first to present a
meta-heuristic for PDPTW. The metaheuristic is based on a
reactive tabu search. First, a feasible solution is constructed
using greedy insertion method. Next, tabu search is used
to improve the initial solution. Three neighborhood moves
are proposed in this paper. They are: Single Pair Insertion
(SPI), Swapping Pairs Between Route (SBR) and Within
Route Insertion (WRI). In order to evaluate their work, the
authors created PDPTW test instances from standard VRPTW
problems proposed by Solomon [18].

Li and Lim [15] propose a tabu-embedded simulated anneal-
ing approach to solve PDPTW. The authors modify Solomon’s
insertion heuristic [18] by initializing each route with a pickup
and delivery pair which satisfies some criteria (e.g. early time
window interval, far distance from depot). Three different
neighborhood moves (i.e. PD-Shift, PD-Swap, PD-Rearrange)
are presented. The authors extend local search method to a
descent local search (DLS) which tries to improve the current
solution for a number of iterations. After a given number of
iterations without improvement, the search is restarted from
current best solution. To avoid cycling, a tabu list is used to
keep track of the recently investigated solutions. Additionally,
the authors generated 56 test instances for PDPTW problem
based on all 56 Solomon VRPTW instances. The generated
data set became the standard benchmark test data for PDPTW.
Another tabu search based approach is presented by Lau and
Liang [19] . Several construction heuristics (i.e.. insertion



heuristic, sweep heuristic, portioned insertion heuristic) are
investigated in this paper

Bent and Van Hentenryck [20] propose a two-stage hybrid
algorithm for MV-PDPTW. At the first stage, a simple simu-
lated annealing algorithm is applied to minimize the number
of vehicles. A Large Neighborhood Search (LNS) is used to
minimize the total travel cost of the solution at second stage.
An extension of LNS, called adaptive LNS is also presented
in [14]. The adaptive LNS uses several removal and insertion
heuristics are used during the same search while normal
LNS uses only one method for removal and one method for
insertions. In each iteration, a removal or insertion heuristic
is chosen based on its adaptive weight value. The experiment
results on benchmark data [15] show the effectiveness the LNS
based approaches since they were able to produce many new
best solutions.

Besides Simulated Annealing, Tabu Search and LNS, ge-
netic algorithm has also been applied to solve PDPTW in some
studies. Crput et al [21] present an evolutionary algorithm
to solve PDPTW. The individual is represented by a list of
vehicles routes, where each route consists a sequence of pickup
and delivery pairs. The fitness function is to minimize the
number of vehicles and travel cost. Two crossover operators
are investigated. The first one exchanges fragments of routes
between parents, while the other exchanges complete routes.
The mutation operators are designed to reduce the number
of routes by merging two routes and improve a route by
rearranging its nodes.

Pankratz [22] applies a Grouping Genetic Algorithm (GGA)
to PDPTW. In this study, individual is represented as a set
of genes, each gene represents a group of requests that are
assigned to one vehicles. The crossover operator removes
vehicles from one parent and inserts into the other parent.
Then, a cleaning up procedure is executed to remove duplicate
vehicles and the repeated requests. Ding et al [23] also uses
GGA with three different routing adjustment strategies.

Recently, there are some studies that consider vehicle
routing problem with time window (VRPTW) as a multi
objectives optimization problem. Tan et al [24] consider both
number of vehicles and total travelling time as 2 objectives
in VRPTW. The authors propose a crossover called route-
exchange crossover and a multi-mode mutation which contains
swapping, splitting and merging of routes. Dominance ranking
is used to assign fitness for individuals. After every 50
generations, one out of three local search heuristics is applied
to improve quality of individuals. Ombuki et al [25] consider
the same problem of VRPTW. The authors proposes best cost
route crossover (BCRC) which is an improvement of uniform
order crossover (UOC) and constrained route reversal mutation
which is an adaption of well-known inversion mutation. Najera
and Bullinaria [26] propose a method to measure route sim-
ilarity and incorporate it into evolutionary algorithm to solve
bi-objective VRPTW. The similarity measure, which is based
on Jaccard’s similarity coefficient is applied to select parents
for the recombination process.
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IV. THE PROPOSED EVOLUTIONARY MULTIOBJECTIVE
OPTIMIZATION ALGORITHM FOR PDP-TW-D

A. Individual Representation

In this paper’s EMOA, each individual is a variable-length
representation of routes . It encodes the number of routes and
the order of nodes visited by each vehicle. Each individual
also has a set of unassigned nodes. Figure 1 shows an example
individual. There are 6 requests in this example. The pickup-
delivery (PD) pairs are: (1,7), (2,8), (3,9), (4,10), (5,11) and
(6,12). The individual forms a routing plan which has three
routes, starting and ending at the depot 0. There are two pairs
(4,10), (6,12) are not served in this routing plan.

B. Algorithmic Structure

Algorithm 1 shows the algorithmic structure of evolutionary
optimization in the proposed EMOA. It follows the optimiza-
tion process in NSGA-II, a well-known existing EMOA [27].

At the 0-th generation, N individuals are randomly gen-
erated as the initial population P0 (Line 2). Each of them
has a random number of routes. Each routes in the individ-
ual contains a randomly-selected pickup-delivery pairs in a
random order. A correction procedure is executed to swap the
potions of pickup node and delivery node if the delivery nodes
is visited before its corresponding pickup node is.

At each generation (g), two parent individuals (p1 and
p2) are selected from the current population Pg with binary
tournaments (Lines 6 and 7). A binary tournament randomly
takes two individuals from Pg , compares them based on
α-dominance relationship, and chooses a superior one as a
parent.

With the crossover rate Pc, two parents reproduce two
offspring with a crossover operator (Lines 8 to 10). Each
offspring performs mutation with the mutation rate Pm (Lines
11 to 16). After that, local search is applied for both offspring
to improve their quality. The binary tournament, crossover,
mutation and local search operators are executed repeatedly on



Algorithm 1 Optimization Process in the Proposed EMOA
1: g = 0;
2: Pg = Randomly generated N individuals;
3: while g < MAX-GENERATION do
4: Og = ∅;
5: while |Og| < N do
6: p1 = tournament(Pg)
7: p2 = tournament(Pg)
8: if random() ≤ Pc then
9: {o1 , o2} = crossover(p1 , p2 )

10: end if
11: if (random() ≤ Pm) then
12: o1 = mutation(o1 )
13: end if
14: if random() ≤ Pm then
15: o2 = mutation(o2 )
16: end if
17: doLocalSearch(o1 )
18: doLocalSearch(o2 )
19: Og = {o1 , o2} ∪ Og

20: end while
21: Rg = Pg ∪ Og

22: F = sortByDominationRanking(Rg)
23: Pg+1 = {∅}
24: i = 1
25: while |Pg+1|+ |Fi| ≤ N do
26: Pg+1 = Pg+1 ∪ Fi

27: i = i+ 1
28: end while
29: sortByCrowdingDistance(Fi)
30: Pg+1 = Pg+1 ∪ Fi[1 : (N − |Pg+1|)]
31: g = g + 1

32: end while

Pg to reproduce N offspring. The offspring (Og) are combined
with the parent population Pg to form Rg (Line 19).

The environmental selection process follows the reproduc-
tion process. N individuals are selected from 2N individuals
in Rg as the next generation’s population (Pg+1). First, the
individuals in Rg are ranked based on their constrained-
dominance relationships. Non-dominated individuals are on
the first rank. The i-th rank consists of the individuals domi-
nated only by the individuals on the (i − 1)-th rank. Ranked
individuals are stored in F (Line 20). Fi contains the i-th rank
individuals.

Then, the individuals in F move to Pg+1 on a rank by
rank basis, starting with F1 (Lines 23 to 26). If the number
of individuals in Pg+1 ∪ Fi is less than N , Fi moves to
Pg+1. Otherwise, a subset of Fi moves to Pg+1. The subset
is selected based on the crowding distance metric, which
measures the distribution (or diversity) of individuals in the
objective space [27] (Lines 27 and 28). The metric computes
the distance between two closest neighbors of an individual
in each objective and sums up the distances associated with
all objectives. A higher crowding distance means that an
individual in question is more distant from its neighboring
individuals in the objective space. In Line 27, the individuals in
Fi are sorted from the one with the highest crowding distance
to the one with the lowest crowding distance. The individuals
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Fig. 2: An Example of Crossover Process

with higher crowding distance measures have higher chances
to be selected to Pg+1 (Line 28).

In this paper, the constrained dominance concept is defined
as same as in [28]. An individual i is said to constrained-
dominate an individual j, if any of the following three condi-
tions is true:
• individual i is feasible an j is not
• individual i and j are both feasible and individual i

dominates individual j in objective function
• Both i and j are infeasible, but i dominates j in constraint

space

C. Crossover

This paper adopts the group-oriented crossover operator
proposed in [22] as its crossover operator. The crossover
operator is illustrated in Figure 2.

The operator first selects two crossing points in each of the
two parent individual at random. In the example in Figure 2,
parent 1’s crossing section is {R12,R13} and parent 2’s is
{R21,R22}. Next, the routes in the crossing section of the
second parent are inserted in the parent 1 at the first crossing
point. In figure 2, the routes {R22, R23} in parent 2 are
inserted into parent 1 right before R12 of parent 1. As a result
of this operation, a number PD pairs are duplicated in the
proto-offspring (PD pairs: (3, 9), (4, 10)). In order to solve
this problem, all parent 1’s routes which contain duplicated
PD pairs are removed ( route R12). If duplicated PD pairs
are found in unassigned set of parent 1, they will be deleted
from the unassigned set. Note that, at this step all routes
imported from parent 2 are left unchanged. Finally, the PD
pairs which are belonged to the removed routes of parent 1 but
are not contained in the imported routes (PD pair: (1, 7)) are
reinserted in random order into existing routes (R11, R21, R22,
R13). The reinsertion process can be described as follows:
For each PD pair to be reinserted, two random positions at a
random existing route are examined. If the insertion does not
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make any increment in time window violation, the insertion
is accepted. Otherwise, other positions are examined. If all
possible insertions make increment in time window violation,
a new route is created for the current PD pair. In figure 2, the
PD pair (1,7) is inserted into the R13 of parent 1.

D. Mutation

The proposed EMOA uses the following seven mutation
operators. (See Fig. 3 for four of them.):
• Add: randomly chooses a PD pair from the unassigned

set and inserts its pickup-node and delivery node to a
randomly-selected positions in a randomly-selected route.
This operator ensures that the pickup node is visited
before the delivery node.

• Delete: removes a randomly-selected PD pair from a
randomly-selected route and put it into the unassigned
set.

• Exchange: randomly chooses a PD pair in a randomly-
selected route and replaces it with a pair selected from
the unassigned set randomly.

• Swap: exchanges the positions of two randomly-selected
PD pairs in a route which is also selected randomly.

• Move: randomly removes a PD pair from a route and
reinsert it into a randomly-selected routes at random
positions.

• Merge the shortest routes: identifies the two shortest
routes and appends one of them to the other.

• Split the longest route: identifies the longest route and
splits it to two routes at a randomly-chosen point. If there
are PD pairs of which pick up node and delivery node
are contained in different routes, the delivery node will
be moved to the route which contains its corresponding
pickup node.

The proposed EMOA classifies these seven mutation op-
erators to two categories. The first category consists of Add,
Delete and Exchange. They exhibit the interactions between

one route and the unassigned set. The remaining three opera-
tors are in the second category. They exhibit the interactions
between two routes in the individual. These two categories
have the same probably to be used. In each category, mutation
operators are selected randomly.

E. Local Search

The local search is designed to improve the routes in the
individual by swapping the positions of nodes within their
respective route. The swapping has to ensure the precedence
constraints of PD pairs. Algorithm 2, 3 show how local search
improve an individual.

Algorithm 2 Pseudocode of Local Search
1: function doLocalSearch(o)
2: c = true
3: while c=true do
4: for each route r ∈ o do
5: c = improveRoute(r)
6: end for
7: end while
8: end function

Algorithm 3 improveRoute
1: function improveRoute(r)
2: N = a set of all nodes in r sorted in random order
3: d = fdistance(r)
4: v = gtw(r)
5: for each n ∈ N do
6: for each node m, m is visited after n in r do
7: Generate a route r′ by swapping the positions of n

and m
8: if r’ does not violate precedence constraint then
9: d′ = fdistance(r

′)
10: v′ = gtw(r

′)
11: if d′ < d and v 6 v′ then
12: r = r′

13: return true
14: end if
15: end if
16: end for
17: end for
18: return false
19: end function

V. EXPERIMENTAL EVALUATION

This section evaluate proposed EMOA through experiments
with well-known Li and Lim’s 100 nodes PDPTW bench-
marks [15]. The data set consists of 60 instances and it is
classified into two classes (class1 and 2). In class 1, vehicle
have smaller capacity and nodes’ time window intervals are
shorter. Thus, class 1 instances are harder and require more
vehicles than class 2.

Table I shows a set of parameter values used in experi-
ments . All experiments were conducted with jMetal [29].
Every experimental result is obtained and shown based on 10
independent runs.



Parameter Value
Population size 500

Max Generations 600
Crossover rate 0.9
Mutation rate 0.3

TABLE I: Parameter Configurations

A. Diversity Analysis

Tables II and III show the min, max and median values
of three objectives at the last generation (600th generation)
for class 1 and class 2 respectively. The values in parentheses
show the standard deviations over 10 runs for each problem
instance. The wide spread of objective values indicate the
goodness of the proposed EMOA in diversity.

Figure 4 shows the distribution of objective values for lc101,
lc201, lr101, lr201, lrc101, lrc201 by using box plot. The box
plots show the distributions of the points graphically. The box
in the box plot contains the middle 50% of the data. The upper
edge of the box indicates the 75th percentile of the data, and
the lower edge indicates the 25th percentile. The middle line
in the box indicates the median value of the data. The ends of
vertical lines (whiskers) indicate the maximum and minimum
data values. If any whisker is more than 1.5 times as long as
the length of the box, it is considered as an outlier.

B. Optimality Analysis

In order to illustrate the optimality of proposed EMOA,
the best non-dominated solutions in which all requests are
served are compared with the best known-solutions of PDPTW
benchmark problems. The best-known solutions are available
at http://www.sintef.no/projectweb/top/. Table IV, V present
the best number of vehicles and total travel distances from
proposed EMOA and the best known results for all instances
of class 1 and class 2 problems respectively. Bold number
represents the best result. The results from two tables indicate
that the solutions obtained by the proposed EMOA are com-
petitive with the best-known solution, especially in the class
1 (includes harder problems). In many cases, the proposed
EMOA can find the solutions which are as good as the best-
known solution. Moreover, it has a better solution in problem
instance lrc107 and provides two non-dominated solutions in
lc103, lc104 and lc109. In some cases, it has worst results
than best-known results. However the differences are small.

C. More options for Decision Maker

The key point of the proposed EMOA is multi-objectives
optimization. The interaction among different objective in the
algorithm give a set of compromised solutions, i.e. trade-off
non-dominated solutions. Therefore, consideration of multiple
objectives provide more appropriate options for the planing
and decision-making processes.

Figure 5 show non-dominated solutions that a decision
maker can achieve when he/she uses the proposed algorithm
with different preferences in problem instance lc103. A deci-
sion maker might have a fix number of vehicles and he/she
want to use all vehicles to fulfill the requests in PDPTW

problem. This case is illustrated in figure 5 (a), (b) in which the
numbers of vehicles are 9, 6 respectively. It is easy to observe
that the result of proposed EMOA is a set of non-dominated
solutions with two objective: total demand and total travel
distance. Other scenario is, the decision maker has flexible
number of vehicles. What he/she considers is: the routing plan
has to server at least 95% of total demand ( figure 5 (c)). In this
scenario, the algorithm can find two non-dominated solutions.
The result also indicate that number of vehicles and total travel
distance are conflicting in lc103. Lastly, the decision maker
might want to restrict the total travel distance between 500 and
600. As shown in figure 5 (d), there are four non-dominated
solutions for this scenario in lc103.

VI. CONCLUSIONS

This paper formulates a new multiobjective optimization
problem, the Pickup and Delivery Problem with Time Win-
dows and Demands (PDP-TW-D), which extends PDP and
PDP-TW. With respect to multiple optimization objectives,
PDP-TW-D is to find a set of Pareto-optimal routes for a fleet
of vehicles in order to serve given transportation requests. This
paper proposes and evaluates an evolutionary multiobjective
optimization algorithm (EMOA) as a metaheuristic algorithm
to solve PDP-TW-D. The proposed EMOA uses a population
of individuals, each of which represents a solution candidate,
and evolves them through generations to seek the Pareto-
optimal solutions with respect to given multiple objectives. In
addition to evolution, the proposed EMOA allows individuals
to learn and improve themselves in each generation with a
local search algorithm. Experimental results demonstrate that
the evolutionary and learning processes complement with each
other in the proposed EMOA and can effectively obtain quality
solutions to PDP-TW-D in a relatively large-scale problem
instances that have 100 nodes.

Several future extensions are planned for the proposed
EMOA. First, its crossover and mutation operators will be
examined further so that the the operators can be better fit to
PDP-TW-D. Its local search algorithm will be enhanced too.
Second, the proposed EMOA will be evaluated in larger-scale
problem instances.

REFERENCES

[1] S. F. Baker, D. P. Morton, R. E. Rosenthal, and L. M. Williams,
“Optimizing military airlift,” Operations Research, vol. 50, no. 4, pp.
582–602, 2002.

[2] R. S. Solanki and F. Shouthworth, “An execution planning algorithm for
military airlift,” Interfaces, vol. 21, pp. 121–131, 1991.

[3] H. K. Rappoport, L. S. Levy, B. L. Golden, and K. Toussaint, “A
planning heuristic for military airlift,” Interfaces, vol. 22, pp. 73–87,
1992.

[4] H. K. Rappoport, L. S. Levy, K. Toussaint, and B. L. Golden, “A
transportation problem formulation for the mac airlift planning problem,”
Annals of Operations Research, vol. 50, pp. 505–523, 1994.

[5] M. Christiansen, “Decomposition of a combined inventory routing and
time constrained ship routing problem,” Transportation Science, vol. 33,
pp. 3–16, 1999.

[6] M. L. Fisher and M. B. Rosenwein, “An interactive optimization system
for bulk-cargo ship scheduling,” Naval Research Logistics Quarterly,
vol. 35, pp. 27–42, 1989.



TABLE II: Objective Values of Class1 Problems
Problems # of Vehicles Total Demand Total travel distance

Min Median Max Min Median Max Min Median Max

lc101 1.9 (1.449) 5.7 (0.823) 10 (0) 107 (119.355) 576 (85.042) 990 (0) 107.4 (113.921) 413.78 (85.023) 828.94 (0)
lc102 1.9 (1.853) 5.6 (0.966) 10 (0) 128 (194.182) 659.5 (84.737) 1070 (0) 109.91 (157.896) 460.44 (88.541) 952.22 (41.496)
lc103 1.5 (1.269) 5.3 (0.675) 10 (0) 68 (105.071) 583 (38.384) 940 (0) 70.81 (108.656) 468.79 (53.722) 1083.36 (21.471)
lc104 1.6 (1.35) 4.65 (1.055) 10 (0.471) 75 (147.742) 555 (73.106) 880 (0) 82.11 (118.399) 453.17 (83.14) 968.23 (39.915)
lc105 2.1 (1.524) 5.6 (1.075) 10 (0) 126 (148.937) 623.5 (102.769) 1030 (0) 113.68 (121.632) 412.63 (108.424) 836.75 (17.189)
lc106 1.1 (0.316) 4.4 (0.699) 10 (0) 23 (13.375) 510.5 (26.082) 970 (0) 31.19 (18.821) 378.19 (25.707) 855.39 (56.199)
lc107 1.5 (0.85) 5.35 (0.747) 10 (0) 84 (109.057) 605 (48.132) 1010 (0) 82.07 (89.041) 432.64 (53.379) 858.03 (38.948)
lc108 1.7 (1.567) 5.1 (1.287) 10 (0) 119 (191.512) 655.5 (92.329) 1100 (0) 105.46 (150.884) 410.14 (108.946) 917.22 (102.083)
lc109 1.9 (1.729) 5.3 (1.337) 10.1 (0.316) 133 (199.836) 607 (103.204) 970 (0) 112.71 (142.662) 461.97 (105.274) 1038.96 (77.962)

lr101 2.2 (1.687) 10.05 (1.423) 19 (0) 83.2 (97.607) 510.65 (48.112) 748 (0) 111.88 (145.846) 828.75 (104.505) 1650.8 (0)
lr102 1.8 (1.229) 7.95 (0.956) 17 (0) 124.9 (130.852) 638.15 (50.573) 892 (0) 119.29 (136.407) 758.8 (95.675) 1527.93 (8.479)
lr103 1.8 (1.476) 6.75 (1.034) 13.1 (0.316) 80.6 (93.599) 523.25 (51.355) 741 (0) 100.92 (131.084) 685.36 (110.478) 1305.03 (11.881)
lr104 1.8 (1.476) 5.4 (0.966) 9.6 (0.516) 92.3 (120.129) 486.4 (54.29) 701 (0) 107.84 (159.919) 528.13 (96.804) 1058.91 (46.166)
lr105 1.6 (1.578) 7.2 (1.135) 14 (0) 70.2 (141.833) 554.1 (53.507) 834 (0) 77.92 (158.727) 644.04 (103.606) 1377.11 (0)
lr106 2.1 (1.449) 6.8 (0.919) 12 (0) 123 (120.167) 572.1 (71.808) 823 (0) 138.7 (148.546) 647.18 (111.11) 1256.65 (8.5)
lr107 1.6 (1.075) 5.8 (1.033) 10 (0) 87.3 (115.588) 493.8 (53.776) 709 (0) 108.81 (129.232) 583.05 (107.032) 1117.03 (12.864)
lr108 1.7 (1.494) 5.4 (0.843) 9 (0) 79.7 (116.171) 472.95 (47.762) 714 (0) 107.91 (144.021) 535.78 (74.316) 971.38 (7.618)
lr109 2.7 (3.164) 7.2 (1.751) 11.1 (0.316) 151.2 (237.675) 575.05 (98.315) 806 (0) 214.34 (351.61) 724.26 (198.127) 1227.05 (36.639)
lr110 1.2 (0.632) 5.9 (0.568) 11.4 (0.699) 29.1 (64.495) 518.85 (38.171) 770 (0) 59.83 (81.914) 590.48 (67.803) 1207.97 (36.139)
lr111 2.3 (1.889) 6.65 (1.001) 10 (0) 116.9 (144.732) 527.35 (48.739) 696 (0) 152.53 (199.112) 638.82 (108.996) 1110.23 (2.77)
lr112 1.5 (0.85) 5.1 (0.876) 10.2 (0.422) 86.8 (108.227) 524.75 (54.699) 794 (0) 90.45 (102.798) 479.58 (88.767) 1088.17 (54.279)

lrc101 2.2 (1.687) 8.2 (1.033) 14.1 (0.316) 129.7 (135.277) 642.65 (58.084) 881 (0) 206.78 (195.893) 916.02 (123.272) 1708.8 (0)
lrc102 2.2 (1.687) 7 (1.054) 12 (0) 144.6 (173.915) 674.65 (74.13) 934 (0) 205.92 (219.412) 844.09 (136.629) 1561.9 (4.563)
lrc103 2 (1.333) 6.3 (0.949) 11.1 (0.316) 130.2 (121.493) 591.21 (62.797) 909 (0) 175.55 (161.836) 697.94 (85.824) 1276.51 (19.938)
lrc104 1.9 (1.912) 5.6 (1.265) 10 (0) 93.3 (176.709) 515.45 (93.776) 837 (0) 135.16 (236.197) 588.36 (142.394) 1146.2 (13.95)
lrc105 1.6 (1.578) 7.1 (1.287) 13 (0) 88.5 (146.088) 657.5 (65.733) 923 (0) 120.58 (214.633) 811.79 (139.311) 1638.42 (1.295)
lrc106 3 (2.449) 7 (1.054) 12 (0) 174.8 (175.182) 612.9 (85.656) 862 (0) 272.3 (279.412) 794.9 (143.026) 1424.73 (0)
lrc107 1.7 (1.16) 6.4 (0.699) 11 (0) 104.2 (150.851) 659.05 (52.185) 939 (0) 118.83 (157.619) 666.93 (85.744) 1235.22 (16.074)
lrc108 2.5 (2.461) 6.7 (1.059) 10.8 (0.422) 150.6 (188.93) 611.25 (80.599) 875 (0) 214.24 (267.391) 701.48 (127.139) 1174.97 (15.851)
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Fig. 4: Boxplots for three objectives

[7] H. N. Psaraftis, J. B. Orlin, D. Bienstock, and P. M. Thompson, “Analysis
and solution algorithms of sealift routing and scheduling problems,”
Massachusetts Institute of Technology, Sloan School of Management,
Tech. Rep. 1700-85, 1985.

[8] H. Wang, D-H-Lee, and R. Cheu, “Pdptw based taxi dispatch modeling
for booking service,” in Proc. of Int’l Conference on Natural Computa-
tion, 2009.

[9] H. N. Psaraftis, “A dynamic programming solution to the single-vehicle
many-to-many dial-a-ride problem with time windows,” Transportation
Science, vol. 14, pp. 130–154, 1980.

[10] ——, “An exact algorithm for the single-vehicle many-to-many dial-a-
ride problem with time windows,” Transportation Science, vol. 17, pp.
351–357, 1983.

[11] O. B. G. Madsen, H. F. Ravn, and J. M. Rygaard, “A heuristic algorithm

for a dial-a-ride problem with time windows, multiple capacities and
multiple objectives,” Annals of Operations Research, vol. 60, pp. 193–
208, 1995.

[12] P. Toth and D. Vigo, “Heuristic algorithms for the handicapped persons
transportation problem,” Transportation Science, vol. 31, pp. 60–71,
1997.

[13] M. M. Solomon, A. Chalifour, J. Desrosiers, and J. Boisvert, “An
application of vehicle routing methodology to large-scale larvicide
control programs,” Interfaces, vol. 22, pp. 88–99, 1992.

[14] S. Ropke and D. Pisinger, “An adaptive large neighborhood search
heuristic for the pickup and delivery problem with time windows,”
Transportation Science, vol. 40, no. 4, pp. 455–472, 2006.

[15] H. Li and A. Lim, “A metaheuristic for the pickup and delivery problem
with time windows,” in Proc. of IEEE Int’l Conference on Tools with



TABLE III: Objective Values of Class 2 Problems
Problems # of Vehicles Total Demand Total travel distance

Min Median Max Min Median Max Min Median Max

lc201 1 (0) 3 (0) 4 (0) 36 (43.022) 568.7 (34.998) 871 (0) 74.32 (65.936) 756.61 (70.759) 1500.72 (65.477)
lc202 1 (0) 2 (0) 3 (0) 38 (19.322) 557 (12.293) 990 (0) 42.52 (31.575) 324.5 (13.909) 601.21 (18.351)
lc203 1.1 (0.316) 2.1 (0.316) 3 (0) 102 (148.159) 512 (71.655) 870 (0) 92.08 (108.137) 347.8 (45.043) 594.38 (10.141)
lc204 1 (0) 2 (0) 3.1 (0.316) 19 (3.162) 560.5 (19.784) 1020 (0) 29.7 (1.744) 315.29 (9.682) 635.15 (51.018)
lc205 1.2 (0.422) 2.2 (0.422) 3 (0) 85 (122.043) 505 (67.412) 880 (0) 90.34 (91.774) 329.92 (54.474) 593.18 (13.598)
lc206 1 (0) 2 (0) 3 (0) 58 (80.939) 498.5 (39.161) 890 (0) 46.95 (46.659) 312.63 (20.821) 590.8 (7.308)
lc207 1.5 (0.85) 2.3 (0.483) 3 (0) 210 (337.738) 573.5 (177.029) 890 (0) 160.69 (219.969) 374.26 (124.552) 592.06 (11.915)
lc208 1.3 (0.675) 2.2 (0.422) 3 (0) 124 (278.855) 522.5 (137.503) 890 (0) 107.22 (175.844) 342.46 (93.59) 621.94 (68.642)

lr201 1.6 (0.966) 3.2 (0.422) 4.2 (0.422) 163.6 (188.085) 590.85 (97.186) 837 (0) 237.65 (287.238) 734.93 (190.836) 1309.7 (66.298)
lr202 1 (0) 2 (0) 3.7 (0.675) 29.4 (9.082) 562.3 (27.629) 791 (0) 33.82 (8.109) 623.51 (53.149) 1314.08 (103.884)
lr203 1 (0) 2 (0) 3.2 (0.422) 44.3 (82.472) 480.7 (57.162) 754 (0) 78.6 (90.839) 513.46 (73.064) 1109.53 (97.304)
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TABLE IV: Comparison with best known results in class1
problems

Problems Best known proposed EMOA
# of Veh. Total dist. # of Veh. Total dist.

lc101 10 828.94 10 828.94
lc102 10 828.94 10 828.94
lc103 9 1035.35 9 10 1038.35, 827.86
lc104 9 860.01 9,10 917.7, 818.6
lc105 10 828.94 10 828.94
lc106 10 828.94 10 828.94
lc107 10 828.94 10 828.94
lc108 10 826.44 10 826.44
lc109 9 1000.6 9,10 1068.59, 827.82

lr101 19 1650.8 19 1650.8
lr102 17 1487.57 17 1489.69
lr103 13 1292.68 13 1292.68
lr104 9 1013.39 9 1013.99
lr105 14 1377.11 14 1377.11
lr106 12 1252.62 12 1252.62
lr107 10 1111.31 10 1111.31
lr108 9 968.97 9 968.97
lr109 11 1208.96 11 1208.96
lr110 10 1159.35 10 1159.35
lr111 10 1108.9 10 1108.9
lr112 9 1003.77 10 1035.52

lrc101 14 1708.8 14 1708.8
lrc102 12 1558.07 12 1558.07
lrc103 11 1258.74 11 1258.74
lrc104 10 1128.4 10 1128.4
lrc105 13 1637.62 13 1637.62
lrc106 11 1424.73 11 1424.73
lrc107 11 1230.15 11 1230.14
lrc108 10 1147.43 10 1147.43

TABLE V: Comparison with best known results in class 2
problems

Problems Best known proposed EMOA
# of Veh. Total dist. # of Veh. Total dist.

lc201 3 591.56 3 591.56
lc202 3 591.56 3 591.56
lc203 3 585.56 3 591.17
lc204 3 590.6 3 590.6
lc205 3 588.88 3 588.88
lc206 3 588.49 3 588.49
lc207 3 588.29 3 588.29
lc208 3 588.32 3 588.32

lr201 4 1253.23 4 1253.23
lr202 3 1197.67 3 1206.56
lr203 3 949.4 3 1003.17
lr204 2 849.05 3 962.87
lr205 3 1054.02 3 1055.9
lr206 3 931.63 3 939.7
lr207 2 903.06 3 989.98
lr208 2 734.85 2 787.27
lr209 3 930.59 4 1016.72
lr210 3 964.22 3 1028.68
lr211 2 911.52 3 958.25

lrc201 4 1406.94 4 1406.94
lrc202 3 1374.27 4 1385.25
lrc203 3 1089.07 3 1092.23
lrc204 3 818.66 3 828.49
lrc205 4 1302.2 4 1302.2
lrc206 3 1159.03 3 1159.03
lrc207 3 1062.05 3 1062.05
lrc208 3 852.76 3 861.31


