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Abstract: This paper focuses on three key issues that the publish/subscribe
(pub/sub) communication scheme faces for event routing in wireless sensor net-
works (WSNs): (1) balancing tradeoffs among conflicting performance objec-
tives such as data yield, data fidelity and power efficiency; (2) satisfying quality
of service (QoS) requirements such as latency; and (3) considering noise in eval-
uating event routing performance. To address these issues, this paper investigates
self-adaptive event routing in TinyDDS, which is pub/sub middleware for WSNs.
With its noise-aware and constraint-based evolutionary multiobjective optimiza-
tion framework, La Niña, TinyDDS autonomously adapts its routing parameters
to dynamic network conditions by reducing the impacts of noise on performance
evaluation and seeking the optimal tradeoffs among performance objectives un-
der given QoS requirements. Simulation results validate this ability of TinyDDS
in large-scale, dynamic and noisy WSNs. TinyDDS is implemented lightweight
enough to operate on resource-limited sensor nodes.

Keywords: Wireless sensor networks, Self-adaptive publish/subscribe middle-
ware, Biologically-inspired networking, Evolutionary multiobjective optimization

1 Introduction

The publish/subscribe (pub/sub) communication scheme can improve scalability and
failure resiliency of event notification in wireless sensor networks (WSNs) by decoupling
space and time among event source nodes (publishers) and sink nodes (subscribers) (Wang
et al., 2008). In the pub/sub scheme, a subscriber has the ability to express its interest in an
event or a pattern of events in order to be notified subsequently. Each interest is subscribed
to a publisher(s), and the publisher(s) notifies an event to a subscriber(s) when the event
matches a subscribed interest. Publishers do not need to know the number and locations of
subscribers, and vice versa. Thus, publishers can indirectly publish events to subscribers,
and subscribers can indirectly subscribe their interests to publishers. Moreover, publishers
do not need to know the availability of subscribers, and vice versa. For example, sub-
scribers may be active, sleeping or dead due to a lack of battery when a publisher publishes
an event to them. Event subscription and publication are performed asynchronously.
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This paper focuses on three key issues that the pub/sub scheme faces for event publi-
cation in WSNs. The first issue is that, in event publication, there exist inherent tradeoffs
among conflicting performance objectives such as data yield, data fidelity and power effi-
ciency. For example, hop-by-hop recovery is often used for packet transmission to improve
data yield (the quantity of event data) from publishers to subscribers. However, this can
degrade data fidelity (the quality of event data; e.g., event data freshness, or latency) and
power efficiency. For improving data fidelity, publishers may transmit event data to sub-
scribers with the shortest paths; however, data yield can degrade because of traffic conges-
tion and packet losses on the paths. For improving power efficiency, publishers may often
sleep for a long time; however, data yield and data fidelity can degrade because of frequent
retransmissions of event data. Thus, in WSNs, the pub/sub scheme is required to balance
the tradeoffs among conflicting performance objectives and find the optimal tradeoffs.

The second issue is that event publication often requires certain quality of service (QoS)
in WSNs; e.g., power consumption and latency. The pub/sub scheme needs to satisfy given
QoS requirements while balancing tradeoffs among conflicting performance objectives.

The third issue is that WSNs are inherently dynamic and noisy; noise always exists in
measuring performance objective values (i.e., event publication performance). It is hard
to predict and model the noise due to dynamics and uncertainty in, for example, routing
structure, duty cycle pattern, packet loss rate and event occurrence pattern. Therefore,
in WSNs, the pub/sub scheme is required to reduce the impacts of noise in measuring
performance objective values in event routing.

In order to address the above three issues, this paper investigates event publication in
TinyDDS, which is pub/sub middleware for WSNs. TinyDDS provides an event routing
protocol that performs self-adaptive event publication. A component in TinyDDS, called
La Niña, implements this protocol. It self-adapts the protocol’s parameters to dynamic net-
work conditions by reducing the impacts of noise on performance evaluation and seeking
the optimal tradeoffs among performance objectives under given QoS requirements.

As an inspiration to design La Niña, the authors of the paper observe that various bi-
ological systems have developed the mechanisms to overcome the three issues described
above. For example, a bee colony self-adapts to balance conflicting objectives simulta-
neously for maintaining its well-being. Those objectives include maximizing the amount
of collected honey, maintaining the temperature in a nest and minimizing the number of
dead drones. If bees focus only on foraging, they fail to ventilate their nest and remove
dead drones. In noisy environments, a bee colony balances these tradeoffs under several
constraints (e.g., the minimum amount of honey stored in a nest). Given this observation,
La Niña applies key biological mechanisms to implement its event routing protocol.

Figure 1 overviews TinyDDS and La Niña. TinyDDS runs atop TinyOS on each sensor
node. Currently, base stations act as subscribers, and individual nodes act as publishers.
Each base station subscribes its interest in a particular event to nodes, and a node publishes
it to a base station when it is detected in sensor reading. La Niña consists of agents,
La Niña runtime and La Niña server. Agents and La Niña runtime are modeled after bees
and flowers, respectively. When an event is detected, an agent (bee) obtains it as honey
on the local La Niña runtime (flower) and carries it to a base station on a hop-by-hop
(flower-to-flower) basis, in turn, to La Niña server, which is modeled after a nest of bees.
Agents perform this event routing by autonomously sensing their local and surrounding
network conditions (e.g., network traffic and node/link failures) and adaptively invoking
their biological behaviors such as pheromone emission, reproduction, migration and death.

La Niña implements a noise-aware and constraint-based evolutionary multiobjective
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Figure 1 An Architectural Overview of TinyDDS and La Niña

optimization algorithm for agents to perform self-adaptive event routing. Each agent has
its own behavior policy, as a set of genes, which defines when to and how to invoke its
behaviors. La Niña allows agents to evolve their behavior policies via genetic operations
(crossover and mutation) and adapt them to performance objectives in event routing. Cur-
rently, La Niña considers six objectives related to data yield, data fidelity and power con-
sumption. To consider noise in measuring performance objective values, La Niña examines
the level of confidence to evaluate each objective value and compare it with others.

La Niña frees WSN application developers from anticipating all possible network con-
ditions and manually tuning protocol parameters to the conditions at design time. Instead,
La Niña autonomously evolves and tunes its parameters (i.e., behavior policies of agents)
at runtime. This can significantly simplify protocol implementation and maintenance.

La Niña also allows agents to adapt their behavior policies based on given constraints.
Each constraint represents a QoS requirement; it is defined as an upper or lower bound of
QoS. For example, a tolerable (upper) bound may be defined as a latency requirement. This
feature allows application developers to flexibly specify their QoS requirements. More-
over, it often improves evolution speed by dedicating agents to satisfy given constraints.

2 Background: TinyDDS

TinyDDS is a lightweight implementation of the Data Distribution Service (DSS) spec-
ification, which Object Management Group (OMG) standardizes for pub/sub middleware (Ob-
ject Management Group, 2007b)a. DDS provides standard middleware interfaces for event
subscription and publication in the OMG Interface Definition Language (IDL) TinyDDS
implements them with nesC, a dialect of the C language (Figure 1). See (Boonma and
Suzuki, 2008b) for the IDL-to-nesC mapping in TinyDDS.

Besides DDS interfaces, the DDS specification standardizes no specific algorithms or
protocols for event subscription and publication; they are left to DDS implementations.
TinyDDS implements La Niña for its event publication. The La Niña runtime assumes B-
MAC in TinyOS and uses a subset of the OMG General Inter-ORB Protocol (GIOP) (Ob-
ject Management Group, 2007a) to transmit data types in DDS interfaces (e.g., events) as
well as data types in La Niña (e.g., agents and pheromones). The La Niña runtime is im-
plemented in nesC, while the La Niña server is implemented in Java. See (Boonma and
Suzuki, 2009) for implementation details of TinyDDS. The current codebase of TinyDDS
contains 2,035 lines of nesC code and 4,060 lines of Java code.

aTinyDDS is freely available at http://dssg.cs.umb.edu.
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3 Agents and La Niña Runtime

An agent is initially deployed with a randomly-generated behavior policy on the La Niña
runtime at each node. Each agent collects sensor data on a node at each duty cycle, and if
it detects an event in its sensor reading, it carries the event data to a base station.

3.1 Agent Behaviors

Each agent implements seven behaviors and performs them in the following order at
each duty cycle.

Step 1: Energy gain. If an event is detected, each agent gains energy. In La Niña,
the concept of energy does not represent the amount of physical battery power in a node.
Instead, it is a logical concept that impacts agent behaviors. Upon an event detection, an
agent updates its energy level with a constant energy intake (EF):

E(t) = E(t−1) + EF (1)

E(t) and E(t−1) denote the energy levels in the current and previous duty cycles.
Step 2: Energy expenditure and death. Each agent consumes a constant amount of

energy to use computing/networking resources available on a node (e.g., CPU and radio
transmitter). It also expends energy to invoke its behaviors. The energy costs to invoke
behaviors are constant for all agents. An agent dies due to energy starvation when it cannot
balance its energy gain and expenditure. The death behavior is intended to eliminate the
agents that have ineffective behavior policies. For example, an agent would die before
arriving at a base station if it follows a too long migration path. When an agent dies, the
local La Niña runtime removes the agent and releases all resources allocated to itb

Step 3: Replication. Each agent makes a copy of itself if an event is detected in Step 1.
A replicated (child) agent is placed on the node that its parent resides on, and it inherits
the parent’s behavior policy (gene). A replicating (parent) agent splits its energy units to
halves, gives a half to its child agent, and keeps the other half. A child agent contains the
event that its parent received, and carries it to a base station on a hop by hop basis, while
the parent stays at the local node to detect further events.

Step 4: Swarming. Each agent may swarm (or merge) with others at intermediate
nodes on its way to a base station. On each intermediate node, it decides whether it mi-
grates to a next-hop node or waits for other agents to arrive at the current node and swarm
with them. This decision is made based on the migration probability (pm). If an agent meets
other agents migrating toward the same base station during a waiting period, it merges with
them and contains the event they carry. It also uses the behavioral policy of the best one in
those aggregating agents in terms of performance objectives. (See Section 4 on how to find
the best-performing agent.) The swarming behavior is intended to save power consumption
by reducing the number of data transmissions. If the size of data an agent carries exceeds
the maximum size of a packet, the agent does not consider the swarming behavior.

Step 5: Pheromone sensing and migration. On each intermediate node toward a
base station, each agent chooses the next-hop node in its migration by sensing three types
of pheromones available on the local node: base station, migration and alert pheromones.

Each base station periodically propagates a base station pheromone to individual nodes
in the network. Their concentration decays on a hop-by-hop basis. Using base station

bIf all agents are dying on a node at the same time, a randomly selected agent will survive.
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pheromones, agents can sense where base stations exist approximately, and move toward
them by climbing a concentration gradient of base station pheromones.

Agents may emit migration pheromones on their local nodes when they migrate to
neighboring nodes. Each migration pheromone references a next-hop node that an agent
has migrated to. Agents may emit alert pheromones when they fail migrations within a
timeout period. Migration failures can occur because of node failures due to depleted bat-
tery and physical damages as well as link failures due to interference and signal noise Each
alert pheromone references a node that an agent could not migrate to. Each of migration
and alert pheromones has its own concentration. The concentration decays by half at each
duty cycle. A pheromone disappears when its concentration becomes zero.

Each agent examines Equation 2 to determine which next-hop node it migrates to.

WS j =

3∑
t=1

wt
Pt, j−Ptmin

Ptmax −Ptmin

(2)

An agent calculates this weighted sum (WS j) for each neighboring node j, and moves
to a node that generates the highest weighted sum. t denotes pheromone type; P1 j, P2 j and
P3 j represent the concentrations of base station, migration and alert pheromones on the
node j, respectively. Ptmax and Ptmin denote the maximum and minimum concentrations of
Pt among all neighboring nodes.

The weight values in Equation 2 (wt,1 ≤ t ≤ 3) govern how agents perform the migra-
tion behavior. For example, if an agent has zero for w2 and w3, the agent ignores migration
and alert pheromones, and moves toward a base station by climbing a concentration gra-
dient of base station pheromones. If an agent has a positive value for w2, it follows a
migration pheromone trace on which many other agents have traveled. The trace can be
the shortest path to a base station. Conversely, a negative w2 value allows an agent to go off

a migration pheromone trace and follow another path to a base station. This avoids sepa-
rating the network into islands. The network can be separated with the migration paths that
too many agents follow, because the nodes on the paths run out of their battery earlier than
the others. If an agent has a negative value for w3, it avoids moving to a node referenced
by an alert pheromone, thereby bypassing failed nodes and links.

Step 6: Pheromone emission. When an agent is migrating to a neighboring node, it
emits a migration pheromone on the local node at the probability of 1− ps. If the agent’s
migration fails, it emits an alert pheromone at the probability of 1− ps. Each pheromone
spreads to one-hop away neighboring nodes. ps indicates selfishness of an agent. If an
agent is selfish with a high ps value, it often emits no pheromones for saving its energy.
(Agents expend energy to perform behaviors, as discussed above.)

Step 7: Reproduction. Two parent agents may produce a child agent. A child agent is
placed on the node that their parents reside on, and it inherits the parents’ behavior policies
(genes). This behavior is intended to evolve agents. (See Section 4 for more details.)

3.2 Agent Behavior Policy

Each behavior policy consists of a set of behavior probability values (pm and ps) and
a set of weight values in Equation 2 (wt,1 ≤ t ≤ 3). Behavior probability values are non-
negative between zero and one. pm is used for each agent to decide whether it performs
the migration behavior or swarming behavior. With a higher migration probability, an
agent has a higher chance to perform the migration behavior. With a higher selfishness
probability (ps), an agent has a higher chance not to emit pheromones.
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3.3 La Niña Runtime

Each La Niña runtime provides a set of middleware services for the agents running
on the local host (Figure 1). For example, they implement agent behaviors as reusable
services, maintain a set of neighboring nodes within the local node’s communication range
and manage the pheromones emitted on the local node. Also, each platform is responsible
of controlling the local node’s duty cycle by turning it on and off based on its sleep period.

4 Evolutionary Noise-aware Multiobjective Optimization with La Niña

The evolutionary optimization process in La Niña consists of elite selection and genetic
operations, which are performed by the La Niña server and each node, respectively. The
elite selection process evaluates the agents that arrive at base stations, based on given
performance objectives, and chooses the best (or elite) ones. The La Niña server propagates
elite agents to individual nodes in the network. Through genetic operations (crossover and
mutation), an agent running on each node performs the reproduction behavior with one of
propagated elite agents. A child agent inherits behavior policies (genes) from its parents
via crossover. In addition, mutation may occur on the child’s behavior policy.

Reproduction is intended to evolve agents so that the agents that fit better to the net-
work environment become more abundant. It retains the agents with high fitness to the
current network conditions (i.e., agents that have effective behavior policies, such as mov-
ing toward a base station in a short latency). It also eliminates the agents with low fitness
(i.e., agents that have ineffective behavior policies, such as consuming too much power to
reach a base station). Through successive generations, effective behavior policies become
abundant in a population of agents while ineffective ones become dormant or extinct. This
allows agents to adapt to dynamic network conditions.

4.1 Performance Objectives and Constraints

Each agent considers six conflicting performance objectives related to data yield, data
fidelity and power consumption: latency, cost, success rate, the degree of data aggregation,
sleep period and selfishness. Success rate and the degree of data aggregation impact data
yield. Latency impacts data fidelity. Cost, sleep period and selfishness impact power
consumption. La Niña strives to minimize latency, cost and sleep period and maximize
success rate, the degree of data aggregation and selfishness. Each performance objective
can have an associated constraint, which represents a QoS requirement. La Niña eliminates
agents who violate given constraints in its optimization process.

(1) Latency (L) represents the time required for an agent to travel to a base station
from a node where the agent is replicated. As depicted below, it is measured as a ratio of
this agent travel time (t) since the agent is replicated until reaching a base station to the
physical distance (d) between the base station and a node where the agent is replicated.

L =
t
d

(3)

The La Niña server knows the approximated location of each node with a localization
mechanism that performs a triangulation based on signal strength between nodes.

(2) Success rate (S ) is measured as the ratio of the number of successful data transmis-
sions (Nsucc) to the total number of node-to-node data transmissions required for an agent
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to arrive at a base station (ntran).

S =
nsucc

ntran
(4)

(3) Cost (C) represents power consumption required for an agent to travel to a base
station from a node where it is replicated. C is measured with d, ntran and each node’s
radio communication range (r). ntran is considered because data transmission incurs the
highest power consumption among other operations in a node (Shnayder et al., 2004).

C =
ntran

d/r
(5)

The total number of data transmissions counts successful and unsuccessful (failed)
migrations of an agent as well as the transmissions of its migration and alert pheromones.
The theoretical lower bound of cost is one; one agent migration (i.e., data transmission)
per each node’s communication range without emitting pheromones.

(4) Degree of data aggregation is measured as the number of sensor data in an agent.
It is more than one in a swarming agent. The larger it is, the more often agents swarm.
This results in less power consumption of nodes because of a less number of agents and
agent migrations in the network. On the contrary, a large degree of data aggregation can
degrade latency because agents wait for other agents to swarm on nodes.

(5) Sleep period is the period for which a node sleeps between two duty cycles. The
longer a node sleeps, the less amount of power it consumes. However, it can degrade
latency because a sleeping node receives and sends out no agents. It can also increase
power consumption of the other nodes if they re-transmit agents to the sleeping node.

(6) Selfishness controls the level of cooperation among agents. Selfish agents can
reduce power consumption of nodes because they emit pheromones less often. However,
the other agents lose the opportunities to leverage pheromones in their migration decisions.
For example, if a selfish agent does not emit an alert pheromone when it fails to migrate to
a node, the other agents may try to migrate to the node and fail to do so. This can increase
power consumption due to failed agent migrations and degrade success rate and latency.

4.2 Confidence-based Domination (α-domination) and Constraint Violation (α-violation)

In its elite selection, La Niña compares agents that arrive at base stations and select
elite agents based on their objective values (i.e., event routing performance). For this com-
parison, the notion of domination ranking is commonly used in evolutionary multiobjective
optimization algorithms. One of the most well-known domination operators (e.g., Srinivas
and Deb (1995)) determines that agent A dominates agent B, i.e., A � B, iif:

• A’s objective values are better than, or equal to, B’s in all objectives, and

• A’s objective values are better than B’s in at least one objective.

This domination operator ranks agents based on domination relationships among agents.
Non-dominated agents have the highest rank, and in general, they are elite agents.

This classical domination operator does not work well in noisy problems. As discussed
in Section 1, noise considerably exists in evaluating objective values and constraint (QoS)
violation in WSNs. This means that, even if agents have the exactly same behavior policy,
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they can yield different objective values and different levels of constraint violation depend-
ing on network conditions. Therefore, La Niña employs new statistical operators to reduce
the impacts of noise on evaluating objective values and constraint violation.

The proposed operator, called α-domination operator, determines the domination rela-
tionship between two agents by statistically processing multiple sample sets of objective
values. With this operator, agent A is said to α-dominate agent B, i.e., A �α B, iif:

• A’s and B’s samples are classifiable with the statistical confidence level of α, and

• C(A,B) = 1∧C(B,A) >= 0.

In order to examine the first condition, the α-domination operator classifies A’s and B’s
samples with Support Vector Machine (SVM) and measures classification error (Step 1 in
Figure 2) The error (e) is calculated as the ratio of the number of miss-classified samples
to the total number of samples. For considering confidence level (α) in classification error,
the α-domination operator uses the confidence interval of classification error (eint):

eint = e± tα,n−1σ̂ (6)

tα,n−1 represents a t−distribution with α confidence level and n−1 degrees of freedom.
σ is the standard deviation of classification errors. It is approximated as follows. n denotes
the total number of samples.

σ �

√
e
n

(7)

If eint is significant (i.e., if eint does not span zero), the α-domination operator cannot
classify A’s and B’s samples with the confidence level of α. If eint spans zero, the operator
can classify A’s and B’s samples with the confidence level of α. In between the two cases,
the operator can classify A’s and B’s samples with a small enough classification error. See
also Figure 2 for these three cases.

In order to examine the second condition in α-domination, the α-domination operator
measures C-matric (Zitzler and Thiele, 1999) with a classical domination operator de-
scribed above. C(A,B) denotes the fraction of agent B’s samples that at least one sample
of agent A dominates:

C(A,B) =
|{b ∈ B | ∃a ∈ A : a � B}|

|B|
(8)

If C(A,B) = 1, all of B’s samples are dominated by at least one sample of A.
The α-domination operator determines A �α B if C(A,B) = 1 and C(B,A) ≥ 0 as far as

A’s and B’s samples are classifiable. On the other hand, if C(A,B) ≥ 0 and C(B,A) ≥ 0, the
α-domination operator determines neither A �α B nor B �α A. See also Figure 2.

Figure 2 shows an example α-domination with two objectives, f1 and f2, to be mini-
mized. Agent A and B have seven samples each (black circles and gray squares). The first
step is to classify these 14 samples with SVM and calculate eint. SVM provides a classi-
fication vector in the objective space as a boundary to classify samples. In Figure 2, two

samples of agent B are miss-classified; e is 2
14 (0.143). Thus, σ �

√
0.143

14 = 0.1. Assuming
α= 0.95, eint = 0.143±1.771∗0.1 = 0.143±0.1771. Since eint spans zero, the α-domination
operator can classify A’s and B’s samples with the confidence level of 95%. The second
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step is to calculate C(A,B) and C(B,A). In Figure 2, C(A,B) = 1 and C(B,A) = 2/14 (0.143).
Therefore, the α-domination operator determines A �α B.

In addition to the α-domination operator, La Niña provides the α-violation operator to
statistically determine constraint violation of agents. The operator chooses an agent whose
at least one sample violates a constraint. Then, it classifies the agent’s samples and the
closest point(s) on a violated constraint front(s) (Step 1 in Figure 3). It also calculates the
confidence interval of classification error (eint) with Equation 6. In the same way as the α-
domination operator does, the α-violation operator examines if it succeeds its classification
with the confidence level of α.

Figure 3 shows an example α-volation with two objectives, f1 and f2, to be minimized.
A constraint (upper bound) is given on f2: C( f2). Agent A has seven samples (black
circles), and two of them violate the constraint. The first step is to classify these 7 samples
with SVM and calculate eint. SVM provides a classification vector in the objective space
as a boundary to classify samples and the constraint front. In Figure 3, two samples of

agent A are miss-classified ; e is 2
7 (0.286). Thus, σ̂ �

√
0.286

7 = 0.2. Assuming α = 0.95,
eint = 0.286± 1.943 ∗ 0.2 = 0.286± 0.3886. Since eint spans zero, the α-violation operator
classifies A’s samples and the constraint front with the confidence level of 95%. The second
step is to count the number of samples in A that do not violate (|a<C( f2)|) and violate (|a≥
C( f2)|) the constraint. Because the number of samples that do not violate the constraint is
greater than the number of samples that violate the constraint; therefore, the α-violation
operator determines that A does not violate the constraint on f2.

4.3 Elite Selection

Figure 4 shows how the La Niña server periodically performs elite selection. The first
step is to measure six objective values of each agent that arrives at base stations. If an
agent α-violates at least one of constraints, it is eliminated. Remaining agents examine
α-domination relationships among them.

Then, a subset of non-dominated agents is selected as elite agents. This is performed
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with the objective space; a six dimensional hypercube space whose axes represent six
objectives. Each axis is divided between the maximum and minimum objective values of
non-dominated agents so that the space contains small cubes. Each non-dominated agent
is plotted in the objective space based on their objective values. If multiple agents are
plotted in the same cube, a single agent is randomly selected as an elite agent. If no agents
are plotted in a cube, no elite agent is selected from the cube. This hypercube-based elite
selection is designed to maintain the diversity of elite agents. Diversity can improve agent
adaptability even to unanticipated network conditions.

Empty the archive
while true

do



Empty the population pool.
Collect the agents that have arrived at base stations.
Add collected agents to the population pool.
Move agents from the archive to the population pool.
Empty the archive
for each agent of in the population pool

do


Obtain the agent’s objective values.
if one or more objective values α-violate constraints,

then Remove the agent from the population pool.
for each agent in the population pool

do


if not α-dominated by any other agents
in the population pool,
then Add the agent to the archive.

Select elite agents from the archive.
Propagate elite agents (their behavior policies),
mutation rate and sleep period to individual nodes.
Sleep for the sleep period.

Figure 4 Elite Selection in the La Niña Server
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Figure 5 An Example Elite Selection

Figure 5 shows an example hypercube that shows three objectives (success rate, cost
and latency). It is divided to two ranges over each objective; eight cubes exist in total.
Thus, the maximum number of elite agents is eight. In this example, six (A to F) non-
dominated agents are plotted. From the lower left cube, one agent is randomly selected as
an elite agent. A, E, and F are selected as elite agents because they are in different cubes.

As Figure 4 shows, La Niña performs elitism based on a (µ+ λ) evolution strategy.
Non-dominated agents compete with (or are evaluated together with) the agents that arrive
at base stations in the future. Elitism is intended to improve evolution speed of agents.

In addition to select elite agents, the La Niña server adjusts the mutation rate of agents
and the sleep period of nodes. Mutation rate is adjusted based on the disorderliness of the
current population of agents in the objective space. If agents are disordered (or sparse)
in the objective space, it indicates that agents have not adapted to the current network
conditions yet. In other words, they are still distant to the Pareto optimal front or unable
to form the Pareto front yet. Thus, in this case, La Niña uses a high mutation rate to have
agents evolve further. In contrast, if agents are ordered (or dense) in the objective space, it
indicates that they are close to the Pareto optimal front. Thus, La Niña uses a low mutation
rate to suppress agent evolution. This also helps agents reduce the fluctuation in their
objective values. La Niña calculates the disorderliness of agents by measuring entropy of
agents (H) in the objective space:

H = −
∑
i∈C

P(i) log2(
ni∑

i∈C ni
) (9)



Evolutionary Noise-aware Optimization for Wireless Sensor Networks 11

C is a set of cubes in the objective space. (In Figure 5, C is a set of eight cubes.) P(i)
denotes the probability that an agent is in cube i. ni is the number of agents in cube i. Then,
H is normalized with the maximum entropy value:

Ho =
H

Hmax
=

H
log2 n

(10)

WIth normalized entropy (Ho), mutation rate m is calculated as follows.

m = mmax×

√
1− (1−Ho)2 (11)

mmax denotes the maximum mutation rate. Mutation rate is adjusted in a non-linear
manner based on the current normalized entropy of agents.

Sleep period is adjusted in a stepwise manner in between the predefined minimum and
maximum values. When agents break at least one of latency, cost and success rate con-
straints, the sleep period is decreased by one minute; otherwise, increased by one minute.

The La Niña server propagates adjusted mutation rate and sleep period as well as elite
agents (their behavior policies) to individual nodes in the network. This propagation is
performed with a base station pheromone. When a node receives an adjusted sleep period,
it’s local La Niña runtime changes its current sleep period accordingly.

4.4 Genetic Operations

Upon receiving a base station pheromone, an agent performs the reproduction behavior
on each node with a certain reproduction rate. It selects one of propagated elite agents, as
a mating partner, which has the most similar genes (behavior policy). Gene similarity is
measured with the Euclidean distance between two sets of gene values. If two or more
elite agents have the same similarity, one of them is randomly selected. In reproduction, a
child agent performs one-point crossover; it randomly inherits the half of its genes from its
parent agent and the other half from the parent’s mating partner. If reproduction does not
occurs, the most similar elite agent replaces a parent agent on each node.

Mutation occurs on a child agent’s genes, with a certain mutation rate, by randomly
changing gene values within a predefined value range. As described in Section 4.3, muta-
tion rate is periodically adjusted by the La Niña server and propagated to individual nodes.
After reproduction, a child agent takes over its parent as the next generation agent.

5 Simulation Evaluation

This section shows a series of simulation results to evaluate La Niña. All simulations
were carried out with the TOSSIM simulator. A simulated WSN consists of 100 nodes
deployed uniformly in a 300 meters x 300 meters observation area. Each node’s communi-
cation range is 30 meters. At the beginning of each simulation, a simulated forest fire starts
at the middle of the observation area and spreads throughout the area. A base station is de-
ployed at the northwestern corner of the observation area. The base station connects to the
La Niña server via emulated serial port connection. The initial sleep period is one minute
on each node, and its minimum and maximum are one and five minutes, respectively. For
genetic operations, the reproduction rate is 0.5, and the maximum mutation rate (mmax in
Equation 11) is 0.2. The constraint (lower bound) of success rate in data transmission is
0.5. The confidence level of 95% is used in α-domination and α-violation operators.
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(a) Static Network
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(d) Noise Addition
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(b) Node Addition
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(e) Base Station Failure
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(c) Random Node Failure
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(f) Network Split

Figure 6 Event Routing Performance with a Success Rate Constraint

5.1 Event Routing Performance with a Single Constraint

Figure 6 shows the average objective values that agents yield with a constraint for suc-
cess rate. Each simulation tick represents a duty cycle. Figure 6 (a) shows a result in a
static network where no dynamic changes occur in the network. All objective values im-
prove and converge by the 65th tick. This demonstrates that La Niña allows agents evolve
their behavior policies and autonomously improve their performance under conflicting ob-
jectives. Note that agents always satisfy a given success rate constraint since the 20th tick.

Figures 6 (b) to (f) show how agents perform when network conditions change at the
80th tick. In Figure 6 (b), 25 nodes are added at random locations. As a result, objec-
tive values degrade because agents initially have random behavior policies on new nodes.
Those agents cannot migrate efficiently to the base station. Also, pheromones are not avail-
able on new nodes; agents cannot make proper migration decisions on those nodes. In Fig-
ure 6 (c), when 25 nodes are randomly removed, objective values degrade because agents
try to migrate to the missing nodes. Those agents cannot migrate efficiently to the base
station. In Figure 6 (d), node-to-node packet loss rate increases from 0.05 to 0.2. Thus,
agents fail migration more often. In Figure 6 (e), two base stations are initially deployed at
the northwestern and southeastern corners of the observation area. When the southeastern
base station fails, objective values drop because some agents migrate to the failed base sta-
tion. In Figure 6 (f), two base stations are deployed as in Figure 6 (e). Then, the network is
split at the middle and separated into two sub-networks. As a result, objective values drop
because some agents try to migrate to the base station on the other sub-network.

As Figures 6 (b) to (f) show, La Niña allows agents to autonomously adapt to dynamic
changes in the network and recover their performance with a given success rate constraint
satisified. Objective values are mostly same before and after each dynamic change. In
Figure 6 (b), upon node addition, agents yield a higher degree of data aggregation because
more agents migrates in the network and they can aggregate more often.
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(a) Static Network
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(d) Noise Addition
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(b) Node Addition
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(e) Base Station Failure
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(c) Random Node Failure
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(f) Network Split

Figure 7 Event Routing Performance with Success Rate, Latency and Cost Constraints

5.2 Event Routing Performance with Multiple Constraints

Figure 7 shows the average objective values that agents yield with constraints for suc-
cess rate, latency and cost. Latency and cost constraints are 0.5 second per 30 meters and
2.0 transmissions, respectively. All other simulation configurations are same as the ones
in Section 5.1. In Figure 7 (a), success rate, latency and cost improve faster than the other
objectives because agents strive to satisfy given constraints. In fact, latency and cost im-
prove faster and remain more stable than they do in Figure 6 (a). They are always around
or lower than their constraints since the 20th tick, and success rate is always higher than its
constraint since the 30th tick. La Niña allows agents to evolve and autonomously improve
their performance under conflicting objectives and satisfy multiple constraints.

In Figures 7 (b) to (f), agents perform similarly to Figures 6 (b) to (f) in that they exhibit
self-healing and self-adaptation properties against dynamics of the network. Object values
converge again after each dynamic change. Compared with Figures 6 (b) to (f), agents
recover their latency and cost performance faster and retain them more stable by following
given constraints. These results show that La Niña allows agents to autonomously adapt to
dynamic network conditions and recover their performance under multiple constraints.

5.3 Impacts of Adaptive Mutation on Event Routing Performance

In order to evaluate the impacts of adaptive mutation on event routing performance,
Figure 8 shows the average objective values that agents yield with adaptive mutation dis-
abled. Mutation rate is fixed at 0.2. All other simulation configurations are same as the
ones in Section 5.2. Compared with Figure 7, all objective values improve slower and
fluctuate more. For example, in Figure 8 (b), it takes 40 simulation ticks for success rate to
reach 50% while it takes only 30 ticks in Figure 7 (b). As discussed in Section 4.3, La Niña
increases mutation rate to stimulate agent evolution when agents do not adapt well to the
current network conditions. Thus, objective values converge faster. These results show
that adaptive mutation in La Niña allows agents to evolve more efficiently and stably.
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(a) Static Network
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(d) Noise Addition
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(b) Node Addition

20 40 60 80 100 120 140
Simulation Ticks

0

20

40

60

80

100

Su
cc

es
s 

Ra
te

 a
nd

 S
le

ep
 P

er
io

d

0

1

2

3

4

Co
st

, L
at

en
cy

, D
at

a 
Ag

gr
eg

at
io

n
an

d 
Se

lfi
sh

ne
ss

(e) Base Station Failure
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(c) Random Node Failure
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(f) Network Split

Figure 8 Event Routing Performance with Adaptive Mutation Disabled
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Figure 9 Mutation Rate, Power Consumption and Entropy

5.4 Mutation Rate, Power Consumption and Self-organization

Figures 9 shows the average amount of power that nodes consume as well as the aver-
age mutation rate that agents use. All simulation configurations are same as the ones used
in Section 5.1. La Niña adjusts mutation rate lower as agents adapt to network conditions.
This allows them to stabilize the fluctuation in their performance, as discussed in the previ-
ous section. Power consumption decreases as agents adapt to network conditions and sleep
period increases. When a network condition(s) changes, the degree of agent adaptation
drops. Sleep period also decreases because more agents violate constraints. As a result,
power consumption increases upon a dynamic change in the network. However, power
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(a) Static Network

20 40 60 80 100 120 140
Simulation Ticks

0

20

40

60

80

100

Su
cc

es
s 

Ra
te

 a
nd

 S
le

ep
 P

er
io

d

0

1

2

3

4

Co
st

, L
at

en
cy

, D
at

a 
Ag

gr
eg

at
io

n
an

d 
Se

lfi
sh

ne
ss

(d) Noise Addition
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(e) Base Station Failure
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(c) Random Node Failure

20 40 60 80 100 120 140
Simulation Ticks

0

20

40

60

80

100

Su
cc

es
s 

Ra
te

 a
nd

 S
le

ep
 P

er
io

d

0

1

2

3

4

Co
st

, L
at

en
cy

, D
at

a 
Ag

gr
eg

at
io

n
an

d 
Se

lfi
sh

ne
ss

(f) Network Split

Figure 10 Impacts of Selfishness on Event Routing Performance

consumption goes down again. La Niña strives to minimize power consumption.
Figures 9 also shows the degree of self-organization in agent population. It is measured

with normalized entropy, which is calculated with Equations 9 and 10. In this paper, nor-
malized entropy indicates how similar performance different agents yield. The lower it is,
the more similar performance agents yield. As Figures 9 shows, La Niña allows agents to
adapt to network conditions and perform similar with each other. Entropy spikes upon a
dynamic change in the network; however, it goes lower again through agent evolution.

5.5 Impacts of Agent Selfishness on Event Routing Performance

As Section 3.1 describes, when its ps is not zero, an agent becomes selfish and skips
emitting migration and alert pheromones for reducing power consumption (i.e., the num-
ber of data transmissions). For example, in Figure 7 (a), agents increase their selfishness
around the 50th tick. Correspondingly, power consumption decreases (Figure 9 (a)).

In order to evaluate the impacts of selfishness further, Figure 10 shows the average ob-
jective values that agents yield when they are not selfish at all (i.e., ps = 0). Compared with
Figure 7, agents incur higher costs because they always emit pheromones. For example, in
Figure 10 (b), the average cost is approximately 2.25 transmissions per hop while it is less
than 2.0 transmissions per hop in Figure 7 (b). This means that La Niña allows agents to
effectively save power consumption by reducing the number of pheromone emissions.

5.6 Impacts of α-domination and α-violation on Event Routing Performance

For evaluating the impacts of α-dominanation and α-violation on event routing perfor-
mance, Figure 11 shows the average objective values that agents yield with a traditional
domination ranking (Srinivas and Deb (1995)). All other simulation configuration are same
as the ones used in Section 5.2. Compared with Figure 7, all objective values improve
slower in Figure 11. For example, in Figure 11 (b), it takes approximately 10 ticks longer
for success rate to reach 50% than in Figure 7 (d). The α-domination and α-violation
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operators allow agents to evolve and operate more efficiently in noisy WSNs.
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(a) Static Network
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(b) Noise Addition
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(c) Network Split

Figure 11 Event Routing Performance with α-domination and α-violation Disabled

5.7 Impacts of Network Size on Event Routing Performance

In order to evaluate the impacts of network size on event routing performance, Fig-
ure 12 shows the average objective values that agents yield when the network contains 400
nodes. All other simulation configuration are same as the ones used in Section 5.2. All
objective values converge around the 65th tick and satisfy given constraints, although they
improve slower than in Figure 7. Compared with Figure 7, convergence speed doubles
approximately as network size becomes four times larger. These results show that La Niña
scales well in terms of network size.
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(b) Noise Addition
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Figure 12 Event Routing Performance in a Network of 400 nodes

5.8 Comparison with a Traditional Fault-tolerant Routing Algorithm

In order to compare La Niña with a traditional routing algorithm, Figure 13 shows
the average objective values with a fault-tolerant routing algorithm proposed by Gregoire
and Koren (2007). The routing algorithm is designed to be tolerant against node and link
failures by having each node examine whether its next-hop node forwards a packet to a
next-next-hop node. If the next-hop node fails to do so, the packet is retransmitted to an-
other next-hop node. Since this routing algorithm does not consider dynamic sleep period
adjustment, data aggregation and selfishness of packets, Figure 13 shows the other three
objective values only. The algorithm does not consider constraints either. All the other
simulation configurations are same as the ones used in Section 5.1.

Compared with Figure 6, all objective values are less sensitive to dynamic changes in
the network. However, they do not improve over time because no performance improve-
ment mechanisms are considered. Latency and cost tend to be higher because hop-by-hop
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routing recovery (i.e., routing inspection and packet retransmission) is expensive. In con-
trast, La Niña can improve performance through evolution and reduce latency and cost
lower than an algorithm proposed by Gregoire and Koren (2007). (For example, latency is
up to 75% lower.) However, La Niña is more sensitive to dynamics of the network.
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(e) Base Station Failure
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(c) Random Node Failure
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Figure 13 Event Routing Performance with a Traditional Fault-torelant Routing Protocol

5.9 Memory Footprint

Table 1 shows the memory footprint of TinyDDS on a MICA node. The total memory
footprint is approximately 32 KB in flash memory and 3.5 KB in RAM. A fault-tolerant
routing algorithm used in Section 5.8 consumes 24 KB in flash memory and 2.2 KB in
RAM. The difference in memory footprint is quite small between this algorithm and Tiny-
DDS. TinyDDS is lightweight enough to run on resource-limited nodes such as MICA2.

Software Component Flash Memory (Bytes) RAM (Bytes)
Pub/sub application 1,340 36
TinyDDS DDS Interface 1,784 2,240

La Niña Runtime 10,184 805
TinyOS 18,520 418

Total 31,828 3,499

Table 1 Memory Footprint of TinyDDS

6 Related Work

This paper describes a set of extensions to the authors’ prior work (Boonma and Suzuki,
2008a,b). TinyDDS is originally proposed in (Boonma and Suzuki, 2008b); however, it
does not consider self-adaptive event routing. An earlier version of La Niña is proposed
in (Boonma and Suzuki, 2008a); however, it does not consider noisy WSNs. This paper
investigates self-adaptive and noise-aware event routing in WSNs. In addition, this paper
studies a new adaptive mutation method that is not studied in (Boonma and Suzuki, 2008a).
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There exist several pub/sub middleware for WSNs (Marrón et al., 2005; Souto et al.,
2005; Costa et al., 2007; Choon-Sung Nam, 2008; Hoffert et al., 2008). They allow ap-
plication developers to reconfigure a series of configuration parameters. However, they do
not consider self-adaptation of those parameters; developers need to manually conduct a
time-consuming and error-prone process to optimize the parameters. In fact, these existing
work do not consider dynamic WSNs, but assume static and noise-free WSNs. In contrast,
TinyDDS is designed to inherently consider self-adaptation in dynamic and noisy WSNs.

Costa et al. (2005) and Carzaniga et al. (2004) propose pub/sub event routing protocols
for WSNs. They consider dynamic network changes such as node/link failures. However,
both protocols do not self-adapt to those changes; human administrators need to manually
adjust protocol parameters in order to retain/improve event routing performance. Unlike
them, TinyDDS can self-adapt to dynamic network conditions and dynamically improve
event routing performance Moreover, TinyDDS assumes noise in monitoring network con-
ditions, while Costa et al. (2005) and Carzaniga et al. (2004) do not.

Evolutionary multiobjective optimization algorithms (EMOAs) are used for routing (Ra-
jagopalan et al., 2005; Xuea et al., 2006; Sin et al., 2008), node placement (Jia et al., 2008;
Molina et al., 2008) and duty cycle management (Yang et al., 2007). Unlike La Niña, all of
these work do not assume dynamic WSNs, but static WSNs. Rajagopalan et al. (2005) and
Xuea et al. (2006) investigate EMOAs that optimize migration routes for mobile agents to
travel from a base station to cluster head nodes and collect sensor data from clusters. In
TinyDDS, La Niña allows agents to make their migration and other behavior decisions by
themselves. La Niña optimizes their behavior policies, not agents’ migration routes.

Mahjoub and El-Rewini (2007) propose a constraint-based EMOA for routing in WSNs.
In routing a packet to a base station, each intermediate node decides the next-hop node by
applying certain policies supplied by the central server. Human administrators manually
define those policies by anticipating possible network conditions; thus, routing decision
does not dynamically adapt to unanticipated network conditions. In contrast, La Niña
allows agents to dynamically evolve their behavior policies and adapt to unanticipated net-
work conditions without any intervention to/from human administrators.

Several EMOAs consider noise in objective functions (Teich, 2001; Lakshmikantha
and Babbar, 2003; Eskandari et al., 2007). They assume that noise follows particular prob-
ability distribution such as normal distribution and uniform distribution. Given a proba-
bility distribution, each of existing noise-aware EMOAs statistically estimate each gene’s
objective value by collecting its samples. In contrast, La Niña assumes no probability dis-
tribution because, in general, it is hard to predict and model it in dynamic and noisy WSNs
due to uncertainties such as packet loss rate and packet transmission pattern. Therefore,
instead of estimating each gene/agent’s objective values, La Niña measures the effect of
noise and determines whether it is confident enough to compare genes/agents.

7 Conclusion

This paper proposes and evaluates a self-adaptive event routing in TinyDDS, a pub/sub
middleware for WSNs. Its noise-aware and constraint-based evolutionary multiobjective
optimization framework, La Niña, allows TinyDDS to autonomously adapt its routing pa-
rameters to dynamic network conditions by reducing the impacts of noise and seeking
the optimal tradeoffs among conflicting performance objectives under given QoS require-
ments. Simulation results validate this ability of TinyDDS in various dynamic and noisy
WSNs. TinyDDS is lightweight enough to run on resource-limited sensor nodes.
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