
preprint. International Journal of Continuous Engineering Education and Life-Long Learning, Vol. 12, Nos. 1-4,

pp. 299-317, 2002 (23% acceptance rate). Special issue on Intelligent Agents for Education and Training Systems.

1

Building A Next-Generation Infrastructure for
Agent-based Distance Learning

Junichi Suzuki
Department of Information and Computer Science

University of California , Irvine
Irvine, CA 92697-3425, U.S.A.

949-824-3097

jsuzuki@ics.uci.edu

Yoshikazu Yamamoto
Department of Computer and Information Science,

 Keio University
Yokohama City, 223-8522, Japan

+81-45-563-3925

yama@cs.keio.ac.jp

Abstract
The emergence of the Internet has radically changed the
way in which we learn, teach and train. This paper
proposes an integrated and extensible architecture for
agent-based distance learning. The architecture provides
component-based extensibility, allowing emerging
technologies to be plugged-in, so that they can produce
synergy. It provides HTTP and IIOP connections for
maintaining and delivering courseware to students. Via the
HTTP connection, our Persona system provides the
personalization service to each set of courseware, allowing
it to customize its content and/or presentation context-
sensitively. This service facilitates the effective delivery of
courseware. Via the IIOP connection, our SoftDock system
provides the foundation facility allowing users to work
collaboratively in teams. Our current educational domain is
software modeling. Participants learn the basic concepts
and principles of software modeling, and then leverage
their newly-acquired modeling skills. We believe our work
provides a blue print for showing how emerging
technologies can be applied to practical distance learning
applications.

Keywords
Distance learning, Internet-based learning, Web-based
learning, Collaborative training, Intelligent user interface,
Agent computation, Personalization, XML, DOM, CORBA

Biographical Notes
Junichi Suzuki received his B.S., M.S. and Ph.D.
degrees in computer science from Keio University, Japan.
He is currently a post-doctoral scholar at the Univeristy of
California, Irvine. His research interests include
highly distributed systems, adaptive communication
systems, autonomous decentralized agent computing,
and biologically-inspired software architecutres.

He is a member of ACM, IEEE Computer Society, IEEE
Communications Society, IPSJ and JSSST.

Yoshikazu Yamamoto received his B.S., M.S. and Ph.D.
degrees in administration engineering from Keio University
in Tokyo. He is currently an associate professor of the
Department of Computer and Information Science at Keio
University. He worked at Linkoping University, Sweden as
a visiting professor from 1981 to 1983. His current
research interests include distributed discrete event
simulation and modeling, OOP, agent programming,
intelligent interface and documentation. He is a member of
ACM, IEEE-CS, IPSJ and also director of the board of
JSSST.

1. Introduction
1.1 Background
The emergence of the Internet has great significance for
distance learning and training, as it is an effective and
economical medium for making information available to
dispersed individuals. It has radically changed the way in
which we learn, teach and train. It has also altered the way
in which learning resources are developed. Distance
learning at “Internet speed” requires less time for preparing
courses and more frequent updates of courseware, and
allows just-in-time delivery of this courseware to students
anywhere, at any time, while maintaining high levels of
functionality and quality.

This paper proposes a flexible architecture for Internet-
based distance learning using an agent-mediated
mechanism to create and deliver educational materials
effectively. Our work makes advances in the areas of:

• Effective delivery of courseware to students

• Consistent remote editing of courseware by educators
and/or training participants

• Hardware and software heterogeneity

2

1.2 Our approach
Our system addresses the above challenges by using
interface agents and open standard technologies. To
address the first issue, it applies the document
personalization service to all courseware, customizing it
according to the context in which it is accessed by
students. This facility is provided by our Persona toolkit,
an agent-based engine that allows web documents (i.e.
HTML and XML documents) to be mined for their
appropriate content and/or presentation in a given context
[1].

To address the second issue, we developed an agent
management framework to track and fetch remote
documents on demand. It is used for distributed
synchronous or asynchronous collaborative work. The
framework is layered on top of our SoftDock system,
which manages XML documents in a distributed
environment [2].

To address the third issue, our system uses CORBA
(Common Object Request Broker Architecture) [3], a
middleware specification which allows distributed
applications developed with different languages to
interoperate with each other across different platforms. It
allows educators and learners to participate in a course
without forcing them to use any specific hardware or
software.

The system’s focus is online self-paced learning and group-
paced training which are conducted by universities
providing online courses for their students or distance
learners, and private organizations that wish to keep their
workforces well trained. The target educational domain is
software modeling. The courseware consists of online
courses for teaching the concepts and principles of
software modeling, and exercises designed to developed
modeling skills. The self-paced learning courses are
intended to teach general software modeling techniques for
novice learners. The group-paced training courses are
intended to be used in a team setting, where participants
collaboratively model software structure and behavior.

They can be used by universities for student’s semester
projects or by organizations for development team training.
Team members can share their knowledge, practical
techniques and heuristics gained through experience, so
members continue to benefit even though they are already
high-performing experts. This course is intended to help
the development teams gain skills in distributed software
development.

Our courses use the Unified Modeling Language (UML)
[4] as the modeling language. UML is a standard object-
oriented modeling method that provides most of the
semantics and their notations required for representing
software constructs, and has been widely accepted by
academic and commercial developers. Our courses also use
an XML-based format for describing and exchanging UML
models, called UXF (UML eXchange Format) [5, 6]. Note
that due to space limitations, the basics and benefits of
UML, UXF and XML are not covered here. Please see [5,
6] for more depth discussion.

In this paper, we describe how new technologies including
agent technologies and emerging standards can be applied
to distance teaching and learning. Leveraging these
technologies to structure the courseware and learning
environment can yield significant benefits.

The remainder of this paper is organized as follows:
Section2 overviews the foundation technologies in our
system. Section 3 proposes our architecture for distance
learning and describes our system. We conclude with a
note on the current project status and future work in
Section 4 and 5.

2. Foundation Technologies
This section presents an overview of the technologies that
provides the foundation of our system.

2.1 Document Personalization
One of the current issues in managing web documents is
context-sensitive customization or personalization of
documents for different users or users’ behavior. Up until
now, every document has had only one presentation and

Figure 1: In the traditional manner, multiple presentations are attached to a single document. Users access the document
through a selected presentation (left). In Persona, an interface agent intermediates between a document and its presentations
(right). It adapts the presentation for a specific user.

Presentations document

attached to

accesses

presentations agent

selects

accesses

document

knows

3

content across its entire readership. Obviously, a better
solution is to transfer documents such that their
presentations and/or contents are tuned for the reader.
Such a capability is called personalization [7].
Personalization is considered the next logical step in the
evolution of the Web. Our system provides this capability
for educational materials.

2.2 Persona and Agent Technology
Our vehicle for researching personalization is the Persona
toolkit [1, 7, 8]. Persona is a personalization engine for
HTML and XML documents. It inspects the contextual
information and dynamically generates an appropriate
document best-tuned to the context by re-authoring the
content and/or applying a stylesheet. Persona allows web
documents to be dynamic and active without inconsistency.
Their contents and presentations are determined at
runtime. This contrasts with static traditional documents
where a document has a single content/presentation (Figure
1). Using Persona, educators need only prepare a single
source document. Then, defining policies for re-authoring
content and applying stylesheets. This increases the
educator’s productivity.

The process of selecting an appropriate content and
presentation for a given document is performed by a
document agent (right of Figure 1). A document agent
exists for each document. It knows the metadata (or
document profile) of a corresponding document. Section
2.3 describes document metadata, and Section 3 presents
how the agent works. A user agent asks document agents
to personalize courseware on its behalf. It represents each
user and maintains user metadata (or user profile). It
decides when and how to personalize courseware. Section
2.3 describes user metadata, and Section 3 presents how
the document and user agents cooperate.

The personalization service requires intelligent user
interface and content management. We have used agent
technology to provide this intelligence. Conceptually, a
software agent is a computational entity that:

• acts on behalf of its users or other entities in
autonomous fashion (agency or autonomy).

• behaves with some degree of proactivity and/or
reactivity.

• exhibits some degree of learning, cooperation and
mobility.

Agents are expected to know users' interests and to act
autonomously to meet their goals without their supervision.
Users can delegate a task to an agent rather than explicitly
ordering the agent to perform it [9]. Recent research has
identified three promising application domains: intelligent
interface agents, distributed agents and mobile agents

[10]. Persona provides interface agents, i.e. user and
document agents, for personalizing web documents.

An interface agent operates in an autonomous fashion. It
may observe user interface actions and make changes to
interface objects displayed on the screen [11]. Interface
agent is required to be aware of user metadata, as well as
its application domains or environment in which it operates
[12].

2.3 Metadata Management
Metadata is data about data, or specifically descriptive
information about learning resources, e.g. educational
materials, educators, learners, etc., in the context of our
system. It is used to index, retrieve, manage, interchange or
automate learning resources. The concept of metadata is
becoming important in the web community. Resource
Description Framework (RDF) [13] has been proposed as a
recommendation by the World Wide Web Consortium

<RDF
 xmlns="http://www.yy.cs.keio.ac.jp/~suzuki/RDF"
 xmlns:SoftDock="http://www.yy.cs.keio.ac.jp/~suzuki/SoftDock"
 xmlns:IMS="http://www.yy.cs.keio.ac.jp/~suzuki/IMS"
 xmlns:Persona="http://www.yy.cs.keio.ac.jp/~suzuki/Persona">
 <!-- Description about a course -- >
 <Description about="http://www.yy.cs.keio.ac.jp/cources/uml001">
 <SoftDock:Educators>
 <Bag>
 <li resource="softdock://people/yy"/>
 </Bag>
 </SoftDock:Educators>
 <SoftDock:Learners>
 <Bag>
 <li resource="softdock://people/jsuzuki"/>
 <li resource="..."/>
 </Bag>
 </SoftDock:Learners>
 <SoftDock:Materials>
 <Sequence>
 <li resource="softdock://cources/uml001/intro.xml"/>
 <li resource="..."/>
 </Sequence>
 </SoftDock:Materials>
 ...
 </Description>
 <!-- Description about a user -- >
 <Description about="softdock://people/jsuzuki">
 <Persona:Name>jun</Persona:Name>
 <Persona:Preference>
 ...
 </Persona:Preference>
 ...
 </Description>
 <!-- Description about a material -- >
 <Description about="softdock://cources/uml001/intro.xml">
 <IMS>
 <IMS:Category>
 ...
 </IMS:Category>
 </IMS>
 <Persona:Persona>
 <Persona:Presentation format="XSL"
 src="table.xsl">
 <Persona:Name>table</Persona:Name>
 </Persona:Presentation>
 ...
 </Persona:Persona>
 </Description>
</RDF>

Figure 2: Sample metadata description with RDF

4

(W3C). RDF allows us to define metadata of arbitrary web
resources including an entire web document, a part of a
document, a collection of documents and even an object
that is not directly accessible via the web.

In the area of distance learning, the IMS project [14] is in
the process of standardizing the IMS Meta-Data
specification [14, 15]. The goal of IMS Meta-Data is
almost the same as that of RDF, but IMS Meta-Data is
more specific for describing metadata of educational
resources. RDF is designed as a XML-based format, while
IMS Meta-Data is not constrained to XML.

In our system, we use RDF to define metadata of the
overall structure of learning courses. Figure 2 shows a
sample RDF description. It defines metadata of a course, a
person and an educational material. The course description
specifies the course name, educators, learners, materials
used, etc. The section of user metadata defines every user
including his/her name, selected courses, progress of
courses, access history, preferences and so on. The section
of material description defines document metadata based
on the IMS Meta-Data specification and document’s
available presentations. Our system uses about the half
elements defined in the IMS Meta-Data: some elements of
the General and Characteristics sections, and the most
elements of Life Cycle, Technical and Educational Use
Dependent sections.

2.4 SoftDock and Resource Management
The foundation of our system is constructed with the
SoftDock system that we have provided [2, 16]. SoftDock
is a distributed model management system for UML. It
allows developers to share UML model information using
UXF and PML (Pattern Markup Language). PML is an
XML-based description language for software patterns
[17]. A software pattern represents a recurring solution to a
software development problem within a particular context
[18]. A pattern identifies the static and dynamic
collaborations and interactions between software

components. It leverages design reuse by documenting
design heuristics including typical decision-makings and
trade-offs. In general, applying patterns to complex
applications can significantly improve software quality,
increase software maintainability and support broad reuse
of components and architectural designs [17].

SoftDock interchanges model information with UXF and
PML through the Document Object Model (DOM)
interface [19] implemented on CORBA (Common Object
Request Broker Architecture). DOM defines a general-
purpose interface to manipulate parsed tree structures of
XML documents. It provides a set of APIs for the
following capabilities:

• Structure navigation, which is the navigation of
document structures such as accessing and searching
elements or attributes

• Structure manipulation, which is the manipulation of
document structures such as adding, changing and
removing elements or attributes

• Content manipulation, which is the manipulation of
document contents such as putting or getting values to
elements and attributes

CORBA is a standard for object middleware in the
heterogeneous environment. It provides a standard way to
interoperate distributed objects. CORBA defines a series of
interfaces and components that organize an Object Request
Broker (ORB). An application that needs to access the
services of a remote object uses an ORB to send messages
and receive results. The CORBA allows to distribute
objects on multiple platforms in a seamless and transparent
manner to applications. One of the key components in
CORBA is the OMG Interface Definition Language (IDL),
a language to define the interface of a remote CORBA
object. It is programming language neutral by providing
mappings from IDL to various languages. Another
important component is the Internet Inter-ORB Protocol

Figure 3: Our system architecture

Figure 4: Current system organization

Extensions for distance learning

DOM

SAX

UXF/PML (XML)

Apps

D
ocum

ent A
gent

Internet

CORBA

File

Repository

DOM

CORBA Web Server

Resource
Server

CORBA
Clients Browsers

Tools

FilesRepository

IIOP

IIOP IIOP
FTP

HTTP

5

(IIOP), which is a standard on-the-wire protocol based on
TCP. IIOP leverages the interoperability between different
ORBs as well as across a single ORB. CORBA provides a
rich set of services including naming, event notification,
transaction, security, life cycle, A/V streaming.

Our distance learning system is developed by extending the
SoftDock. system and integrating Persona with its
architecture. Section 3 describes the architecture and
system organization based on Persona and SoftDock.

2.5 Benefits of Using New Promising
Technologies
As described above, our system uses XML for describing
various information associated with online courses, and
DOM/CORBA for sharing and interchanging them.
Currently, several hundreds of XML compliant tools exist
as free and commercial products. The DOM compliant
tools are now about 30. There are over 70 CORBA
complaint ORBs, which support about 15 languages on
over 30 platforms from handheld computers such as
Windows CE and PalmPilot to mainframes. Using these
widely-accepted standards ensures the interoperability
between tools that educators and students use. They can
choose and replace their tools that are compliant to these
standards, without relearning particular tools when they
change from one environment to another. This increases
the interchangeability of courseware and productivity of
both educators and students by reusing materials between
tools and between courses. In addition, open standards
reduce the strategic and political risks to develop and
maintain the distance learning system.

3. System Overview
This section presents our extensible architecture and its
deployment.

3.1 Architecture
Figure 3 shows our system architecture, which describes
the relationships between different APIs to access
educational materials. The UXF and PML descriptions are
manipulated through either DOM or SAX (Simple API for
XML) [20]. SAX is a de-facto interface between a XML
parser and its applications, which has been developed in
the XML community. The SAX is an event-based parser
interface, while DOM is a tree-based [21]. Some DOM
compliant parsers encapsulate SAX-based parsers. Any
parsers supporting either DOM or SAX can be plugged into
our framework without affecting other components in the
system. The extension part in the architecture provides a
series of utility objects that are useful for building various
distance learning applications (see Figure 3). One of the
most important objects in this part is DocumentAgent.
Its responsibilities are:

• Fetching the content of a document.

• Personalizing the presentations and/or contents of a
document.

• Connecting the DOM interface with external
environments such as the Internet, CORBA, file
systems and repositories.

The design of DocumentAgent is described in Section
3.3.

Figure 5: Educational materials are delivered
using Persona via the HTTP connection

Figure 6: Sample textual (left) and table (right)
presentations

Resource Server

CGI

RequestHandler

Persona

Educational
Materials

Metadata

Web Server

HTTP accesses

Change notifications

6

Figure 4 depicts the current system organization. Course
documents including UXF and PML descriptions are stored
in a resource server. The server is accessed from a web
server and CORBA environment. The HTTP connection
aims to allow client applications such as web browsers to
refer the educational materials� stored in a web server.
Whenever a material is updated, the resource server pushes
it to an appropriate web server. The IIOP connection aims
to allow learners to refer, create and modify arbitrary
materials. Client applications include web browsers,
program editors, CASE tools, graphical profiling tools,
documentation tools, metrics tools, etc. The HTTP
connection is basically used for self-paced learning, while
the IIOP connection is for group-paced collaborative
training. In the following sections, Section 3.2 describes
the former, and Section 3.3 describes the latter.

3.2 Self-paced Learning via HTTP
The self-paced learning is provided by broadcasting and
navigating educational materials via the HTTP connection.
As depicted in Figure 5, Persona is deployed in the back-
end of a web server. We are currently using it on our
reflective web server, OpenWebServer, which is extensible
and configurable for various requirements [22, 23, 24].
Persona recognizes the user and client-side environment
information using an incoming HTTP request, and then
delivers an appropriate material. It provides two levels of
personalization services. The first personalization involves
generating a HTML document from a XML-formatted
courseware by applying the best-suited XSL stylesheet in a
given context. The second one is performed by rearranging

the content and/or presentation of the generated HTML
document.

When a user accesses a Persona-enabled web server, the
user information is passed to the web server with cookie
[25], explicit URL or CGI. With a cookie, user information
is embedded in a HTTP header and passed from a web
browser to a web server. A sample header is like:

Cookie: PersonaUserName=jun

The user information can be also transferred with an
explicit URL:

http://.../test.htm?PersonaUserName=jun

Or, it may be passed through CGI:

http://.../persona.cgi?PersonaMaterial=
test.htm?PersonaUserName=jun

Persona finds the user agent corresponding to the user
name passed from a web browser. Then, the user agent
retrieves the user’s metadata to inspect his/her progress of
courses, preferences, etc. It chooses the courseware that
follows the one the learners used last time. The target
courseware is retrieved from a set of plain documents or
external document repositories (see Figure 3 and 4). The
user metadata is written in RDF, as described in Section
2.3, and maintained as a parsed tree structure in memory.
User agents access the RDF tree structure via the DOM
interface.

The user metadata is created by educators and learners
explicitly. Educators create the metadata entry for every
learner with RDF (see also Figure 2), and learners input the
information about themselves through a HTML form in the
process of course registration. After the registration, a web
server creates a cookie about the user by passing a HTTP
header to the user’s browser like:

Set-Cookie: PersonaUserName=jun;
path=/; expires=DATE

By default, Persona sets the one month later as an
expiration date.

As for initializing the user metadata, there are some ways
in general (based on [26]):

• Explicit installation

• Initialization using user characteristics

• Collaborative filtering initialization with the user's
participation

• Initialization using examples

• Initialization by observing the user's behavior

Our current system basically creates the user metadata in
the first way. User agents can refine its metadata, for
example access history or preferences, by watching their
behavior.

Figure 7: Sample presentations using a Java
applet (left) and DHTML (right)

7

When a user agent forwards courseware to a client, it
obtains the corresponding document agent to personalize
its presentation. It asks the document agent to choose an
appropriate presentation by applying a XSL stylesheet to a
target document. A set of applicable XSL stylesheets for a
document is defined in its document metadata, as described
in Section 2.3 (see also Figure 2). A document agent
chooses the most appropriate XSL definition to produce a
HTML formatted document, by referring the user’s
preference and history of XML selection. Figure 6 shows
sample textual and table presentations that are generated
from a single material (i.e. UXF description) with different
XSL stylesheets.

As described above, a document agent can customize the
generated HTML document further in order to insert
additional contents to the document, and to display the
document best-tuning the client-side environment. When
learners use a mailing list to discuss with an educator or
each other, emails in the list are retrieved and inserted in a
browser’s additional frame. Also, the results from previous
online quizzes or reports may be inserted.

In order to customize documents so that they are displayed
best-tuned to the client environment, document agents
inspect the client-side environment information such as the
resolution, color/grayscale of display, extent of the current
window, Dynamic HTML enable/disable, Java
enable/disable and operating system. This information is
obtained by JavaScript running on a browser. When
Persona accepts a request for courseware through a web
server (see Figure 5), it sends back a dummy HTML
document containing the JavaScript script to inspect the
client-side information. Then, the script automatically
requests the target document again using the URL that
embeds the environment information. A sample URL
description is like:

http://.../index.htm?resolution=800*600

Users can explicitly specify the environment information
within a URL instead of the above automatic manner using
JavaScript. This approach can be taken in the situation
where a leaner uses JavaScript-disabled browser.

Figure 7 shows sample presentations that Persona
transforms a material using the above capability. A Java
applet presentation (left of Figure 7) helps learners to
browse the software model in the graphical and intuitive
manner. The DHTML-based presentation (right of Figure
7) allows the content to stretch and shrink when learners
point headers with mouse. These presentations are
generated when the client browser is Java-enable and
DHTML-enable respectively. The preference of these
presentations is recorded in every user metadata.

Persona can also re-author HTML documents according to
the client-side resolution. It provides the following re-
authoring policies by default [8]:

• Outlining

• Only first sentence

• Image reduction and elision

• Device-specific

The outlining policy transforms documents so that the
content of each section is elided and every section header
is converted into a hyperlink to the content. The converted
document seems to be a table of contents. This strategy can
be applied well for structured documents such as technical
papers and manuals. Persona extracts HTML header tags,
from H1 to H4 tags, and outlines the document.

The only first sentence policy transforms documents so
that the content of each section is elided except the first
sentence. This can be co-used with the outlining policy.

Figure 8: System organization for the IIOP
connection

Figure 9: The essential objects in the DOM Core
specification

CharacterData

Text Comm ent

Process ingInstruction
Attribute

DOMImplem entation

Document

DocumentFragm ent

Node

Elem ent

C
lient-side T

ools

Remote
Doc Factory

Local
Doc Factory

Doc Agent
Remote Doc

Client-side Server-side

8

The image reduction and elision policy transforms images
in a document using pre-defined scaling factors, and then
makes a hyperlink from the reduced image to original one.
Persona can reduce images with 75%, 50%, 25% and 0%
scaling factors. 0% means the image elision. An elided
image is replaced with the text of its ALT attribute. The
above three strategies are used to display the courseware
on a hand-held PC that provides the pen-based input
method.

The device-specific policy transforms documents so that
they are displayed on a certain device. We are using this
policy to display the course information on a cellular
phone, which has a very limited memory buffer. Learners
can browse the syllabus, schedule and progress of their
courses.

In our system, educators and learners have to specify when
and how the re-authoring policies are used in advance.
Learners may specify a policy within a URL explicitly like:

http://.../index.htm?policy=outlining

Persona allows educators and learners to define a new re-
authoring policy.

3.3 Group-paced Training via IIOP
The group-paced training is basically provided with the
IIOP connection (see Figure 3 and 4). It allows the
complete two-way communication between clients and
servers. Course participants collaboratively create and
refine software models of their deliverable. They can work
in either synchronous and asynchronous mode.

Our IIOP-based system is organized as shown in Figure 8.
A client-side application accesses a remote courseware
using a document agent, which is the client-side equivalent
of a server-side document. It serves as a local proxy or
cache of a remote document. It is different entity from a
document agent in the Persona system. The local and
remote factory objects are responsible for managing the
lifecycle of local and remote documents respectively.

The essential objects that consist of the DOM Core
specification are depicted in Figure 9. The DOM objects
are defined with CORBA IDL (see Section 2..4), and
represent common structure of XML documents. The
Document object has a recursive aggregation relationship
to Node. This means an instance of Document is the root
of instances of its any subclasses. Our system uses only the
DOM Core interface, instead of the DOM HTML
interface, because our system processes only XML
documents.

Our system defines an extension IDL module so that it can
handle the XML materials, i.e. UXF/PML descriptions, on
CORBA, because DOM is not designed to run on CORBA
originally. Figure 10 shows three extended interfaces:
UXFDescription, CorbaDocAgent and
CorbaDocFactory. UXFDescription is a remote
document shown in Figure 8, and represents the server-side
root element of an entire UXF document. It is derived from
dom::Document, which provides the primary access to
the document’s data and defines factory methods needed to

#include <dom.idl>

module SoftDockExtention {

 interface UXFDescription

:dom::Document,

:CosEventComm::ConsumerAdmin,

:CosEventComm::SupplierAdmin {

 readonly attribute float revision;

 void externalize();

 sequence<string> content();

 boolean isLocked();

 oneway void lockNode(in dom::Document doc,

 in CorbaDocAgent agent);

 oneway void releaseNode(in dom::Document doc);

};

interface CorbaDocAgent

:dom::Document,

:CosEventComm::ConsumerAdmin,

:CosEventComm::SupplierAdmin {

 readonly attribute dom::Document remoteDoc;

 oneway metadata(in sequence<string> mdata);

};

 interface CorbaDocFactory {

 dom::Document createDocument();

 dom::Document cloneDocument(

 dom::Document doc);

 oneway void releaseNode(in dom::Node node);

 void destroyDocument(in dom::Document doc);

 };

};

Figure 10: IDL extension

Figure 11: DocumentFactory and its subclasses

_CorbaDocFactoryOperations
<<interface>>

_CorbaDocFactoryImplBase

CorbaDocLocalFactoryImpl_CorbaDocFactoryTie

delegates

Implements

CorbaDocFactory
<<interface>>

Im plements

DocumentFactory

{s tatic} create(className : s tring) : Factory
{abstract} init() : void

CorbaDocRemoteFactoryImplOWSDocFactory FileDocFactory

9

create objects inside its context, e.g. Element,
TextNode, Comment, ProcessingInstruction,
etc (see Figure 9). It is also derived from
CosEvent::ConsumerAdmin and
CosEvent::ConsumerAdmin, which are defined in
the CORBA event service. These interfaces are used to
notify the change events between CORBA objects. A
document change notification is transmitted between
UXFDescription and CorbaDocAgent.
UXFDescription has an attribute revision to track
its revision number and exposes four methods.
externalize() externalizes a document’s tree
structure into a file, and content() returns its
representation as a sequence of string data. lockNode()
and releaseNode() are used to require and release a
lock of the document passed with the argument. The
CorbaDocAgent interface is a client-side document
agent shown in Figure 8. It has a reference to a remote
document, and a method to obtain metadata about a certain
remote document. The CorbaDocFactory interface
represents local and remote factory objects described
above.

The DOM specification does not define the way of creating
a document instance, and therefore CorbaDocFactory
provides factory methods for creating, cloning and
destroying every document. The typical time a client
should use these factory methods is when it creates an

initial document. The CorbaDocFactory interface is
translated to a series of objects by an IDL-Java compiler.
Currently we are using JavaIDL included in Java2 and
ORBacus for Java [27]. Figure 11 shows the objects
generated by the IDL compiler of JavaIDL. The compiler
automatically generates CorbaDocFactory and objects
whose name has the prefix “_”. CorbaDocFactory is
an interface class that is a Java-side equivalent of the
CorbaDocFactory IDL interface.
_CorbaDocFactoryImplBase and
_CorbaDocFactoryTie are the stub and skeleton
class for CorbaDocFactory respectively. Our system
employs the tie approach that a skeleton delegates the
method invocations to its implementation class, instead
that an implementation class derives from its skeleton.
CorbaDocLocalFactoryImpl and
CorbaDocRemoteFactoryImpl are implementation
classes for CorbaDocFactory.
CorbaDocLocalFactoryImpl is the factory object
for the client-side copies of remote documents (see also
Figure 8). CorbaDocRemoteFactoryImpl manages
the server-side documents.

Figure 12 shows a typical server-side behavior in creating a
remote document. When
CorbaDocRemoteFactoryImpl’s
createDocument() is called, it builds an in-memory
tree structure of the target UXF description and then
registers each nodes into the Basic Object Adapter (BOA),
which is a server-side component in CORBA. After that,
newly created document is accessible remotely.

As described above, our system supports both synchronous
and asynchronous manipulation of courseware. The
synchronous editing is performed as shown in Figure 13. A
client-side document agent locks the remote document
using its method lockNode() to prevent modifications
by other applications. Once the document is locked, its
metadata is transferred to the document agent. Then, the
document agent accesses and manipulates the remote

Figure 12: Server-side typical behavior in creating
remote document

Figure 13: Client-server Interactions in the
synchronous editing mode

Figure 14: Client-server Interactions in the
asynchronous editing mode

(1) createDocument()

Client BOA

CorbaDocRemoteFactory

(2) instantiate

UxFDescription

(3) registers

Naming
Service

(4) bind()

Client-side Server-side

lockNode()

metatada()

document manipulation

releaseNode()

Client-side Server-side

lockNode()

metatada()

document manipulation

releaseNode()

merge changes

lockNode()

releaseNode()

10

document using the obtained metadata. After editing
remote documents, the document agent releases the lock
with its method releaseNode(). The synchronous
editing is a simple model and ensures the document’s
consistency by preventing overwrites. However, it does not
scale well in the situation where many learners are
accessing a remote document frequently because every
access requires a lock even if the document is not changed.

In contrast to the exclusive lock, our system provides an
alternative lock, shared lock, which allows a group of
participants to work together on a single resource. This
lock enables the asynchronous editing. Participants can
continue to work even when users are offline, e.g. using
mobile computers, and merge changes later. It can also
reduce the number of remote method invocations. Figure
14 shows the interactions between client and server in the
asynchronous mode. This mode works best in
environments in which participants know each other’s
activities, or just refer the remote document.

4. Current Project Status and Future Work
We are now developing some applications for group-paced
training via the IIOP connection. We have developed a
command-line document reference/revision tool, and
connectivity glues for a commercial CASE tools named
Rational Rose and MagicDraw. These glue tools fetch UXF
description from the resource server using document
agents, and converts from UXF to proprietary formats used
in Rose and MagicDraw. We are developing glues for some
Java source code editors and source code documentation
tools.

As for the metadata handling, we work for supporting a full
set of the IMS Meta-Data specification. We plan to
develop a LDAP (Lightweight Directory Access Protocol)
compatible repository to manage metadata in the
centralized manner. It would allow metadata to be
exchanged among a variety of distance learning systems.

As for the Persona system, we extend it so that both
document and user agents are more intelligent and
proactive. We are analyzing those agents’ behaviors, and
investigating more effective behaviors for learners. Also,
we are adding additional HTML customization policies.
The HTTP connection is extended using WebDAV [28] to
extend its one-way communication for the collaborative
training.

As for the IIOP-based system, we are investigating the
different locking scopes, e.g. a lock for a collection of
documents. We are also analyzing the system behavior in
the asynchronous editing mode, and investigating the
consistent distributed document management.

We have finished an experiment use of our system, and are
now in the process of applying it for some real student
courses. We plan to improve our system functionality and

usability by analyzing the student attitude to courses and
their effectiveness using questionnaires for students and
educators.

5. Conclusion
This paper proposes an integrated system architecture for
agent-based distance learning, and describes our current
applications for self-paced learning and group-paced
training. Our system delivers courseware effectively to
students, allows educators and learners to work for
educational materials collaboratively, and provides the
application-interoperability in heterogeneous computing
environments. We believe our work provides a blue print
for showing how emerging technologies can be applied to
practical distance learning applications.

6. Acknowledgements
We sincerely thank Robb Keayes for improving this paper
with his careful reading and invaluable comments. We are
grateful to Yutaka Abe and Kei Fuji for their significant
contributions to the Persona project. We also thank
Nozomu Matsui, Kumiko Nakano, Gaku Tashiro, Shogo
Tsuji for their supports.

7. References
[1] J. Suzuki and Y. Yamamoto. Document Brokering

with Agents: Persona approach. In Proceedings of the
6th Workshop on Interactive Systems and Software
(JSSST WISS ’98), Miyazaki, Japan, December 1998.

[2] J. Suzuki and Y. Yamamoto. Toward the Interoperable
Software Design Models: Quartet of UML, XML,
DOM and CORBA. In Proceedings of the 4th IEEE
International Software Engineering Standards
Symposium (ISESS’99), Curitiba, Brazil, May 1999.

[3] Object Management Group, Common Object Request
Broker Architecture version 2.2, 1998, at
http://www.omg.org/library/c2indx.html.

[4] Object Management Group, Unified Modeling
Language Specification version 1.3 beta R1, 1999, at
http://uml.systemhouse.mci.com/artifacts.htm.

[5] J. Suzuki and Y. Yamamoto. Making UML Models
Exchangeable with XML over the Internet: UXF
approach. In Proceedings of UML’98, Mulhouse,
France, June 1998.

[6] J. Suzuki and Y. Yamamoto. Managing the Software
Design Documents with XML. In Proceedings of ACM
SIGDOC’98, Quebec City, Canada, September 1998.

[7] J. Suzuki and Y. Yamamoto. Metadata Management in
Personalizing Web Presentations. Poster position
paper of 7th International Conference on User
Modeling, Banff, Canada, June 1999.

[8] J. Suzuki, G. Tashiro, Y. Abe and Y. Yamamoto.
Persona: A Framework to provide Adaptive

11

Presentation for Web Documents. In Proceedings of
the IPSJ Summer Programming Symposium,
Tateshina, Japan, September 1998.

[9] P. Maes. Agents that reduce work and information
overhead. In Communications of the ACM, July 1994.

[10] S. Green et. al. Software Agents: A review. at
http://www.cs.tcd.ie/research_groups/aig/iag/toplevel2
.html.

[11] H. Lieberman. Autonomous Interface Agents. In
Proceedings of the ACM Conference on Computers
and Human Interface (CHI ‘97), March 1997.

[12] B. Laurel. Interface Agents: Metaphors with character.
In Software Agents (M. Bradshaw, ed.), MIT Press,
1997.

[13] O. Lassila and R. R. Swick (eds.). Resource
Description Framework (RDF) Model and Syntax
Specification. W3C Proposed Recommendation,
February 1999, at
http://www.w3.org/Press/1999/RDF-REC.

[14] M. Resmer. Internet Architectures for Learning. In
IEEE Computer, vol. 31, No. 9, September 1998.

[15] IMS Project. IMS Meta-Data Specification, version
1.02. at http://www.imsproject.org/.

[16] J. Suzuki and Y. Yamamoto. SoftDock: a Distributed
Collaborative Platform for Model-based Software
Development. In the Proceedings of the 2nd
International Workshop on Network-Based
Information Systems (NBIS'99), Florence, Italy,
October 1999.

[17] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad
and M. Stal. A System of Patterns: Pattern-oriented
software architecture. WILEY, 1996.

[18] E. Gamma, R. Helm, R. Johnson and J. Vlissides.
Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley, 1995.

[19] M. Champion et. al. (eds.). Document Object Model
Level 1 Specification. W3C Recommendation, 1998.

[20] SAX 1.0: The Simple API for XML. at
http://www.megginson.com/SAX/index.html.

[21] D. Chang and D. Harkey. Client/Server Data Access
with Java and XML. Wiley, 1998.

[22] J. Suzuki and Y. Yamamoto. OpenWebServer: an
Adaptive Web Server using Software Patterns. In
IEEE Communications Magazine, Vol.37, No.4, April
1999.

[23] J. Suzuki and Y. Yamamoto. Building an Adaptive
Web Server with a Meta-architecture: AISF approach.
In Proceedings of SPA’98, March 1998.

[24] J. Suzuki and Y. Yamamoto. Dynamic Adaptation in
the Web Server Design Space using OpenWebServer.
In Proceedings of SPA’99, to be appeared.

[25] Netscape Corporation. Persistent Client State: HTTP
Cookies. at
http://www.netscape.com/newsref/std/cookie_spec.ht
ml

[26] W. Brenner, R. Zarnekow and H. Wittig. Intelligent
Software Agents: Foundations and Applications.
Springer, 1998

[27] ORBucus ORB. http://www.ooc.com/ob/.

[28] J. Whitehead, Jr. and M. Wiggins. WEBDAV: IETF
Standard for Collaborative Authoring on the Web. In
IEEE Internet Computing, Vol2. No. 5, Sept/Oct,
1998.

